-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
239 lines (170 loc) · 8.84 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import cv2
import streamlit as st
from deep_list import *
import torch
from PIL import Image
img = Image.open('favicon.jpeg')
st.set_page_config(page_title='VisionX', page_icon=img)
def main():
st.title("VisionX")
inference_msg = st.empty()
st.sidebar.title("Configuration")
input_source = st.sidebar.radio(
"Select input source",
('Local video', 'Webcam', 'Real Time Streaming Platform'))
conf_thres = st.sidebar.text_input("Class confidence threshold", "0.25")
conf_thres_drift = st.sidebar.text_input("Class confidence threshold for drift dectection", "0.75")
fps_drop_warn_thresh = st.sidebar.text_input("FPS drop warning threshold", "8")
save_output_video = st.sidebar.radio("Save output video?",('Yes', 'No'))
if save_output_video == 'Yes':
nosave = False
display_labels = False
else:
nosave = True
display_labels = True
save_poor_frame = st.sidebar.radio("Save poor performing frames?",('Yes', 'No'))
if save_poor_frame == "Yes":
save_poor_frame__ = True
else:
save_poor_frame__ = False
# ------------------------- LOCAL VIDEO ------------------------------
if input_source == "Local video":
video = st.sidebar.file_uploader("Select input video", type=["mp4", "avi"], accept_multiple_files=False)
if st.sidebar.button("Start tracking"):
stframe = st.empty()
st.subheader("Inference Stats")
kpi1, kpi2, kpi3 = st.columns(3)
st.subheader("System Stats")
js1, js2, js3 = st.columns(3)
# Updating Inference results
with kpi1:
st.markdown("**Frame Rate**")
kpi1_text = st.markdown("0")
fps_warn = st.empty()
with kpi2:
st.markdown("**Detected objects in curret Frame**")
kpi2_text = st.markdown("0")
with kpi3:
st.markdown("**Total Detected objects**")
kpi3_text = st.markdown("0")
# Updating System stats
with js1:
st.markdown("**Memory usage**")
js1_text = st.markdown("0")
with js2:
st.markdown("**CPU Usage**")
js2_text = st.markdown("0")
with js3:
st.markdown("**GPU Memory Usage**")
js3_text = st.markdown("0")
st.subheader("Inference Overview")
inf_ov_1, inf_ov_2, inf_ov_3, inf_ov_4 = st.columns(4)
with inf_ov_1:
st.markdown("**Poor performing classes (Conf < {0})**".format(conf_thres_drift))
inf_ov_1_text = st.markdown("0")
with inf_ov_2:
st.markdown("**No. of poor peforming frames**")
inf_ov_2_text = st.markdown("0")
with inf_ov_3:
st.markdown("**Minimum FPS**")
inf_ov_3_text = st.markdown("0")
with inf_ov_4:
st.markdown("**Maximum FPS**")
inf_ov_4_text = st.markdown("0")
detect(source=video.name, stframe=stframe, kpi1_text=kpi1_text, kpi2_text=kpi2_text, kpi3_text=kpi3_text, js1_text=js1_text, js2_text=js2_text, js3_text=js3_text, conf_thres=float(conf_thres), nosave=nosave, display_labels=display_labels, conf_thres_drift = float(conf_thres_drift), save_poor_frame__= save_poor_frame__, inf_ov_1_text=inf_ov_1_text, inf_ov_2_text=inf_ov_2_text, inf_ov_3_text=inf_ov_3_text, inf_ov_4_text=inf_ov_4_text, fps_warn=fps_warn, fps_drop_warn_thresh = float(fps_drop_warn_thresh))
inference_msg.success("Inference Complete!")
# -------------------------- WEBCAM ----------------------------------
if input_source == "Webcam":
if st.sidebar.button("Start tracking"):
stframe = st.empty()
st.subheader("Inference Stats")
kpi1, kpi2, kpi3 = st.columns(3)
st.subheader("System Stats")
js1, js2, js3 = st.columns(3)
# Updating Inference results
with kpi1:
st.markdown("**Frame Rate**")
kpi1_text = st.markdown("0")
fps_warn = st.empty()
with kpi2:
st.markdown("**Detected objects in curret Frame**")
kpi2_text = st.markdown("0")
with kpi3:
st.markdown("**Total Detected objects**")
kpi3_text = st.markdown("0")
# Updating System stats
with js1:
st.markdown("**Memory usage**")
js1_text = st.markdown("0")
with js2:
st.markdown("**CPU Usage**")
js2_text = st.markdown("0")
with js3:
st.markdown("**GPU Memory Usage**")
js3_text = st.markdown("0")
st.subheader("Inference Overview")
inf_ov_1, inf_ov_2, inf_ov_3, inf_ov_4 = st.columns(4)
with inf_ov_1:
st.markdown("**Poor performing classes (Conf < {0})**".format(conf_thres_drift))
inf_ov_1_text = st.markdown("0")
with inf_ov_2:
st.markdown("**No. of poor peforming frames**")
inf_ov_2_text = st.markdown("0")
with inf_ov_3:
st.markdown("**Minimum FPS**")
inf_ov_3_text = st.markdown("0")
with inf_ov_4:
st.markdown("**Maximum FPS**")
inf_ov_4_text = st.markdown("0")
detect(source='0', stframe=stframe, kpi1_text=kpi1_text, kpi2_text=kpi2_text, kpi3_text=kpi3_text, js1_text=js1_text, js2_text=js2_text, js3_text=js3_text, conf_thres=float(conf_thres), nosave=nosave, display_labels=display_labels, conf_thres_drift = float(conf_thres_drift), save_poor_frame__= save_poor_frame__, inf_ov_1_text=inf_ov_1_text, inf_ov_2_text=inf_ov_2_text, inf_ov_3_text=inf_ov_3_text, inf_ov_4_text=inf_ov_4_text, fps_warn=fps_warn, fps_drop_warn_thresh = float(fps_drop_warn_thresh))
# -------------------------- RTSP ------------------------------
if input_source == "Real Time Streaming Platform":
rtsp_input = st.sidebar.text_input("IP Address", "rtsp://192.168.0.1")
if st.sidebar.button("Start tracking"):
stframe = st.empty()
st.subheader("Inference Stats")
kpi1, kpi2, kpi3 = st.columns(3)
st.subheader("System Stats")
js1, js2, js3 = st.columns(3)
# Updating Inference results
with kpi1:
st.markdown("**Frame Rate**")
kpi1_text = st.markdown("0")
fps_warn = st.empty()
with kpi2:
st.markdown("**Detected objects in curret Frame**")
kpi2_text = st.markdown("0")
with kpi3:
st.markdown("**Total Detected objects**")
kpi3_text = st.markdown("0")
# Updating System stats
with js1:
st.markdown("**Memory usage**")
js1_text = st.markdown("0")
with js2:
st.markdown("**CPU Usage**")
js2_text = st.markdown("0")
with js3:
st.markdown("**GPU Memory Usage**")
js3_text = st.markdown("0")
st.subheader("Inference Overview")
inf_ov_1, inf_ov_2, inf_ov_3, inf_ov_4 = st.columns(4)
with inf_ov_1:
st.markdown("**Poor performing classes (Conf < {0})**".format(conf_thres_drift))
inf_ov_1_text = st.markdown("0")
with inf_ov_2:
st.markdown("**No. of poor peforming frames**")
inf_ov_2_text = st.markdown("0")
with inf_ov_3:
st.markdown("**Minimum FPS**")
inf_ov_3_text = st.markdown("0")
with inf_ov_4:
st.markdown("**Maximum FPS**")
inf_ov_4_text = st.markdown("0")
detect(source=rtsp_input, stframe=stframe, kpi1_text=kpi1_text, kpi2_text=kpi2_text, kpi3_text=kpi3_text, js1_text=js1_text, js2_text=js2_text, js3_text=js3_text, conf_thres=float(conf_thres), nosave=nosave, display_labels=display_labels, conf_thres_drift = float(conf_thres_drift), save_poor_frame__= save_poor_frame__, inf_ov_1_text=inf_ov_1_text, inf_ov_2_text=inf_ov_2_text, inf_ov_3_text=inf_ov_3_text, inf_ov_4_text=inf_ov_4_text, fps_warn=fps_warn, fps_drop_warn_thresh = float(fps_drop_warn_thresh))
# torch.cuda.empty_cache()
if __name__ == "__main__":
try:
main()
except SystemExit:
pass