-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
184 lines (150 loc) · 6.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import time
import json
import torch
import random
import argparse
import logging
import numpy as np
from bertkpe import evaluate_chinese
logger = logging.getLogger()
# -------------------------------------------------------------------------------------------
# Select Input Refactor
# -------------------------------------------------------------------------------------------
# bert2joint
def train_input_refactor_bert2joint(batch, device):
ex_indices = batch[-1]
batch = tuple(b.to(device) for b in batch[:-1])
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'valid_ids': batch[2],
'active_mask': batch[3],
'valid_output': batch[4],
'labels': batch[5],
'chunk_labels': batch[6],
'chunk_mask': batch[7],
}
return inputs, ex_indices
def test_input_refactor(batch, device):
# ex_indices: 当前 Batch 在整个数据集中的 起止位置; ex_phrase_numbers: 候选关键词集合中元素个数, 即 phrase_list 的长度
ex_indices, ex_phrase_numbers = batch[-1], batch[-2]
batch = tuple(b.to(device) for b in batch[:-2])
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'valid_ids': batch[2],
'active_mask': batch[3],
'valid_output': batch[4],
}
return inputs, ex_indices, ex_phrase_numbers
# -------------------------------------------------------------------------------------------
# Select Prediction Arranger
# -------------------------------------------------------------------------------------------
def pred_arranger_chinese(tot_predictions):
data_list = []
for prediction in tot_predictions:
item = {}
item['doc_id'] = prediction[0]
item['predicted_keyphrases'] = prediction[1]
item['scores'] = prediction[2]
data_list.append(item)
return data_list
def pred_saver(args, tot_predictions, filename):
with open(filename, 'w', encoding='utf-8') as f_pred:
for url, item in tot_predictions.items():
data = {}
data['url'] = url
data['KeyPhrases'] = item['KeyPhrases']
if "Scores" in item:
data['scores'] = item['scores']
f_pred.write("{}\n".format(json.dumps(data)))
f_pred.close()
logger.info('Success save %s prediction file' % filename)
# -------------------------------------------------------------------------------------------
# Select Evaluation Scripts
# -------------------------------------------------------------------------------------------
# KP20k Evaluation Script
def chinese_evaluate_script(args, candidate, stats, mode, metric_name='max_f1_score5'):
logger.info("*" * 80)
logger.info("Start Evaluatng : Mode = %s || Epoch = %d" % (mode, stats['epoch']))
epoch_time = Timer()
pretrained_model = 'bert' if 'roberta' not in args.pretrained_model_type else 'roberta' # 预训练模型类型
output_filename = os.path.join(args.result_save_path, 'result2.txt')
# 真实关键词保存于 cached 文件中
cached_filename = os.path.join(args.general_cached_features_folder, "cached.%s.%s.%s.%s.json"
% (args.model_class, pretrained_model, args.dataset_class, mode))
f1_scores, precision_scores, recall_scores = evaluate_chinese(candidate, cached_filename, output_filename)
for i in precision_scores:
logger.info("@{}".format(i))
logger.info("F1:{}".format(np.mean(f1_scores[i])))
logger.info("P:{}".format(np.mean(precision_scores[i])))
logger.info("R:{}".format(np.mean(recall_scores[i])))
f1_score5 = np.mean(f1_scores[5])
if f1_score5 > stats[metric_name]:
logger.info("-" * 60)
stats[metric_name] = f1_score5
logger.info('Update ! Update ! Update ! || Mode = %s || Max f1_score5 = %.4f (epoch = %d, local_rank = %d)'
% (mode, stats[metric_name], stats['epoch'], args.local_rank))
logger.info("-" * 60)
logger.info("Local Rank = %d || End Evaluatng : Mode = %s || Epoch = %d (Time: %.2f (s)) "
% (args.local_rank, mode, stats['epoch'], epoch_time.time()))
logger.info("*" * 80)
return stats
# -------------------------------------------------------------------------------------------
# Common Functions
# -------------------------------------------------------------------------------------------
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def override_args(old_args, new_args):
''' cover old args to new args, log which args has been changed.'''
old_args, new_args = vars(old_args), vars(new_args)
for k in new_args.keys():
if k in old_args:
if old_args[k] != new_args[k]:
logger.info('Overriding saved %s: %s --> %s' % (k, old_args[k], new_args[k]))
old_args[k] = new_args[k]
else:
old_args[k] = new_args[k]
return argparse.Namespace(**old_args)
class AverageMeter(object):
"""Computes and stores the average and current value."""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Timer(object):
"""Computes elapsed time."""
def __init__(self):
self.running = True
self.total = 0
self.start = time.time()
def reset(self):
self.running = True
self.total = 0
self.start = time.time()
return self
def resume(self):
if not self.running:
self.running = True
self.start = time.time()
return self
def stop(self):
if self.running:
self.running = False
self.total += time.time() - self.start
return self
def time(self):
if self.running:
return self.total + time.time() - self.start
return self.total