forked from starrohan999/Hacktoberfest-Accepted
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFactorial_Large_No.cpp
90 lines (72 loc) · 2.85 KB
/
Factorial_Large_No.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
// Input :50
// Output : 3041409320171337804361260816606476884-
// 4377641568960512000000000000
// factorial(n) -- Algo
// 1) Create an array ‘res[]’ of MAX size where MAX is number of maximum digits in output.
// 2) Initialize value stored in ‘res[]’ as 1 and initialize ‘res_size’ (size of ‘res[]’) as 1.
// 3) Do following for all numbers from x = 2 to n.
// ……a) Multiply x with res[] and update res[] and res_size to store the multiplication result.
// How to multiply a number ‘x’ with the number stored in res[]?
// The idea is to use simple school mathematics. We one by one multiply x with every digit of res[]. The important point to note here is digits are multiplied from rightmost digit to leftmost digit. If we store digits in same order in res[], then it becomes difficult to update res[] without extra space. That is why res[] is maintained in reverse way, i.e., digits from right to left are stored.
// multiply(res[], x)
// 1) Initialize carry as 0.
// 2) Do following for i = 0 to res_size – 1
// ….a) Find value of res[i] * x + carry. Let this value be prod.
// ….b) Update res[i] by storing last digit of prod in it.
// ….c) Update carry by storing remaining digits in carry.
// 3) Put all digits of carry in res[] and increase res_size by number of digits in carry.
// ======== CPP Implementation of Above Algo ===========
#include<iostream>
using namespace std;
// Maximum number of digits in output
#define MAX 500
int multiply(int x, int res[], int res_size);
// This function finds factorial of large numbers
// and prints them
void factorial(int n)
{
int res[MAX];
// Initialize result
res[0] = 1;
int res_size = 1;
// Apply simple factorial formula n! = 1 * 2 * 3 * 4...*n
for (int x=2; x<=n; x++)
res_size = multiply(x, res, res_size);
cout << "Factorial of given number is \n";
for (int i=res_size-1; i>=0; i--)
cout << res[i];
}
// This function multiplies x with the number
// represented by res[].
// res_size is size of res[] or number of digits in the
// number represented by res[]. This function uses simple
// school mathematics for multiplication.
// This function may value of res_size and returns the
// new value of res_size
int multiply(int x, int res[], int res_size)
{
int carry = 0; // Initialize carry
// One by one multiply n with individual digits of res[]
for (int i=0; i<res_size; i++)
{
int prod = res[i] * x + carry;
// Store last digit of 'prod' in res[]
res[i] = prod % 10;
// Put rest in carry
carry = prod/10;
}
// Put carry in res and increase result size
while (carry)
{
res[res_size] = carry%10;
carry = carry/10;
res_size++;
}
return res_size;
}
// Driver program
int main()
{
factorial(100);
return 0;
}