-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsvd.c
368 lines (327 loc) · 10.2 KB
/
svd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <complex.h>
#include <time.h>
#include <stdlib.h>
#define OUTPUT stdout
int gfactorNum;
//int trfread = 0;
//int tefread = 0;
//inline double Validate(FILE *testDataFile,double av,double bu , double bi , double *pu ,double *qi,int factorNum);
//can be repaced
inline int readTrainDataFile(FILE *fp,int *uid,int *iid,int *score)
{
//char *data = NULL;
char data[256];
//int llen;
//size_t nbytes;
const char *delim = "\t";
if(fp == NULL) return 0;
//if((llen = getline(&data,&nbytes,fp)) == -1) return 0;
//char *fgets(char *s, int size, FILE *stream);
if(fgets(data,256,fp) == NULL) return 0;
//printf("[%s]",data);
*uid = atoi(strtok(data,delim)) -1; // arg[0]
*iid = atoi(strtok(NULL,delim)) -1;//arg[1]
*score = atoi(strtok(NULL,delim));//arg[2]
//printf("read train data: %d %d %d\n",*uid,*iid,*score);
//if(!trfread) getchar();
//trfread++;
//free(data);
return 1;
}
//can be repaced
inline int readTestDataFile(FILE *fp,int *uid,int *iid,int *score)
{
//char *data = NULL;
char data[256];
//int llen;
//size_t nbytes;
const char *delim = "\t";
if(fp == NULL) return 0;
//if((llen = getline(&data,&nbytes,fp)) == -1) return 0;
if(fgets(data,256,fp) == NULL) return 0;
*uid = atoi(strtok(data,delim)) -1; // arg[0]
*iid = atoi(strtok(NULL,delim)) -1;//arg[1]
*score = atoi(strtok(NULL,delim));//arg[2]
//printf("read test data: %d %d %d\n",*uid,*iid,*score);
//if(!tefread) getchar();
//tefread++;
//free(data);
return 1;
}
//
inline int readConfigureFile(FILE *fp,double *averageScore,int *userNum ,int *itemNum ,
int *factorNum,double *learnRate,double *regularization)
{
//char *data = NULL;
char data[256];
//int llen;
//size_t nbytes;
const char *delim = " ";
if(fp == NULL) return 0;
rewind(fp);
//if((llen = getline(&data,&nbytes,fp)) == -1) return 0;
if(fgets(data,256,fp) == NULL) return 0;
*averageScore = atof(strtok(data,delim)); // arg[0]
*userNum = atoi(strtok(NULL,delim));//arg[1]
*itemNum = atoi(strtok(NULL,delim));//arg[2]
*factorNum = atoi(strtok(NULL,delim));//arg[3]
*learnRate = atof(strtok(NULL,delim)); // arg[4]
*regularization = atof(strtok(NULL,delim)); // arg[5]
//free(data);
return 1;
}
// with parse
double Average(const char *fileName)
{
FILE *fp = fopen(fileName,"r");
char *data = NULL;
char *tmp;
//int llen;
//size_t nbytes;
const char *delim = " ";
if(fp == NULL) return 0;
double result = 0.0;
int cnt = 0;
//while((llen = getline(&data,&nbytes,fp))!= -1)
while(fgets(data,256,fp) != NULL)
{
cnt++;
strtok(data,delim); // arg[0]
strtok(NULL,delim);//arg[1]
tmp = strtok(NULL,delim);//arg[2]
result += atof(tmp);
free(data);
data = NULL;
}
printf("%f-%f\n",result,cnt);
fclose(fp);
if(!cnt) return 0;
return result / cnt;
}
inline double InerProduct(double *v1,double *v2,int lv1)
{
int i;
double result = 0;
for(i = 0 ; i <lv1 ; i ++) result += v1[i] * v2[i];
return result;
}
inline double PredictScore(double av,double bu,double bi,double *pu,double *qi,int len)
{
double pScore = av + bu + bi + InerProduct(pu,qi,len);
return (pScore < 1) ? ( 1 ):( (pScore > 5 )? (5) : (pScore) );
}
//validate the model
inline double Validate(FILE *testDataFile,double av,double *bu , double *bi ,
double (*pu)[gfactorNum] ,double (*qi)[gfactorNum],int factorNum)
{
double rmse = 0;
int cnt = 0;
int uid;
int iid;
int score;
int pScore;
int tScore;
fseek(testDataFile,0L,SEEK_SET); //rewind(testDataFile);
while(readTestDataFile(testDataFile,&uid,&iid,&score))
{
cnt ++;
pScore = PredictScore(av,bu[uid],bi[iid],pu[uid],qi[iid],factorNum);
tScore = score;
rmse += (tScore - pScore) * (tScore - pScore);
}
//printf("~ rmse %f-- cnt %d\n",rmse,cnt);
return sqrt(rmse / cnt);
}
int SVD(FILE *configureFile,FILE * testDataFile,FILE *trainDataFile,FILE *modelSaveFile)
{
//char *data = NULL;
//size_t nbytes;
//int llen;
//const char *delim = " ";
//if((llen = getline(&data,&nbytes,configureFile)) == -1) return 0;
//double averageScore = atof(strtok(data,delim)); // arg[0]
//int userNum = atoi(strtok(NULL,delim));//arg[1]
//int itemNum = atoi(strtok(NULL,delim));//arg[2]
//int factorNum = atoi(strtok(NULL,delim));//arg[3]
//double learnRate = atof(strtok(NULL,delim)); // arg[4]
//double regularization = atof(strtok(NULL,delim)); // arg[5]
double averageScore ;
int userNum ;
int itemNum ;
int factorNum ;
double learnRate ;
double regularization ;
readConfigureFile(configureFile,&averageScore,&userNum ,&itemNum ,
&factorNum,&learnRate,®ularization);
fprintf(OUTPUT,"%f-%d-%d-%d-%f-%f\n",averageScore,userNum,itemNum,
factorNum,learnRate,regularization);
//getchar();
gfactorNum = factorNum;
int i;
int j;
int k;
double bi[itemNum];
double bu[userNum];
//memset(bi,0,itemNum*sizeof(double));
//memset(bu,0,userNum*sizeof(double));
for(i=0;i<itemNum;i++) bi[i] = 0;
for(i=0;i<userNum;i++) bu[i] = 0;
double temp = sqrt(factorNum);
double qi[itemNum][factorNum];
double pu[userNum][factorNum];
double min,max;
min = 100;
max = 0;
for(i=0;i<itemNum;i++)
for(j=0;j<factorNum;j++)
{
qi[i][j] = 0.1*(double)(rand()%(int)(temp*10000))/10000;
//if(i*j < 100) printf("%f --\n",qi[i][j]);
if(qi[i][j] < min) min = qi[i][j];
if(qi[i][j] > max) max = qi[i][j];
}
for(i=0;i<userNum;i++)
for(j=0;j<factorNum;j++)
{
//pu[i][j] = 0.1*((double)rand()/(double)temp);
pu[i][j] = 0.1*(double)(rand()%(int)(temp*10000))/10000;
//if(i*j < 100) printf("%f --\n",pu[i][j]);
if(pu[i][j] < min) min = pu[i][j];
if(pu[i][j] > max) max = pu[i][j];
}
printf("min:%f max:%f\n",min,max);
fprintf(OUTPUT,"initialization end\nstart training\n");
//train model
double preRmse = 1000000.0;
int arr;
int uid;
int iid;
int score;
double eui;
double prediction;
double curRmse;
for(i=0;i<100;i++)
{
rewind(trainDataFile);
while(readTrainDataFile(trainDataFile,&uid,&iid,&score))
{
//printf("%d-%d-%d\n",uid,iid,score);
prediction = PredictScore(averageScore,bu[uid],bi[iid],pu[uid],qi[iid],factorNum);
eui = score - prediction;
//update parameters
bu[uid] += learnRate * (eui - regularization * bu[uid]);
bi[iid] += learnRate * (eui - regularization * bi[iid]);
for(k = 0;k<factorNum;k++)
{
//temp = pu[uid][k] #attention here, must save the value of pu before updating
//pu[uid][k] += learnRate * (eui * qi[iid][k] - regularization * pu[uid][k])
//qi[iid][k] += learnRate * (eui * temp - regularization * qi[iid][k])
//attention here, must save the value of pu before updating
double temp = pu[uid][k];
pu[uid][k] += learnRate * (eui * qi[iid][k] - regularization * pu[uid][k]);
qi[iid][k] += learnRate * (eui * temp - regularization * qi[iid][k]);
}
}
//learnRate *= 0.9; // learnRate *= 0.9?
curRmse = Validate(testDataFile, averageScore, bu, bi, pu, qi,factorNum);
fprintf(OUTPUT,"preRmse :%f test_RMSE in step %d: %f\n",preRmse,i,curRmse);
if (curRmse >= preRmse) break;
preRmse = curRmse;
}
//write the model to files
//size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
//size_t fwrite(const void *ptr, size_t size, size_t nmemb,FILE *stream);
for(i=0;i<itemNum;i++) fwrite(&(bi[i]),1,sizeof(double),modelSaveFile);
for(i=0;i<userNum;i++) fwrite(&(bu[i]),1,sizeof(double),modelSaveFile);
//for(i=0;i<itemNum;i++) fprintf(modelSaveFile,"bi[%d]=%f\n",i,bi[i]);
//for(i=0;i<userNum;i++) fprintf(modelSaveFile,"bu[%d]=%f\n",i,bu[i]);
for(i=0;i<itemNum;i++)
for(j=0;j<factorNum;j++)
fwrite(&(qi[i][j]),1,sizeof(double),modelSaveFile);
//fprintf(modelSaveFile,"qi[%d][%d]=%f\n",i,j,qi[i][j]);
for(i=0;i<userNum;i++)
for(j=0;j<factorNum;j++)
fwrite(&(pu[i][j]),1,sizeof(double),modelSaveFile);
//fprintf(modelSaveFile,"pu[%d][%d]=%f\n",i,j,pu[i][j]);
fprintf(OUTPUT,"model generation over\n");
//free(data);
return 1;
}
int Predict(FILE * configureFile, FILE * modelSaveFile, FILE * testDataFile, FILE * resultSaveFile)
{
//get parameter
double averageScore ;
int userNum ;
int itemNum ;
int factorNum ;
double learnRate ;
double regularization ;
readConfigureFile(configureFile,&averageScore,&userNum ,&itemNum ,
&factorNum,&learnRate,®ularization);
fprintf(OUTPUT,"%f-%d-%d-%d-%f-%f\n",averageScore,userNum,itemNum,
factorNum,learnRate,regularization);
//get model
double bi[itemNum];
double bu[userNum];
double qi[itemNum][factorNum];
double pu[userNum][factorNum];
int i;
int j;
for(i=0;i<itemNum;i++) fread(&(bi[i]),1,sizeof(double),modelSaveFile);
for(i=0;i<userNum;i++) fread(&(bu[i]),1,sizeof(double),modelSaveFile);
for(i=0;i<itemNum;i++)
for(j=0;j<factorNum;j++)
fread(&(qi[i][j]),1,sizeof(double),modelSaveFile);
for(i=0;i<userNum;i++)
for(j=0;j<factorNum;j++)
fread(&(pu[i][j]),1,sizeof(double),modelSaveFile);
int uid;
int iid;
int score;
int pScore;
rewind(testDataFile);
//predict
while(readTestDataFile(testDataFile,&uid,&iid,&score))
{
pScore = PredictScore(averageScore,bu[uid], bi[iid], pu[uid], qi[iid],factorNum);
fprintf(resultSaveFile,"%f\n",pScore);
}
fprintf(OUTPUT,"predict over\n");
}
int main(int argc,char *argv[])
{
FILE *configureFile = fopen("svd.conf","r");
FILE *trainDataFile = fopen("ml_data/training.txt","r");
FILE *testDataFile = fopen("ml_data/test.txt","r");
FILE *modelSaveFile = fopen("svd_model.pkl","wb");
//FILE *modelSaveFile = fopen("svd_model.pkl","w");
FILE *resultSaveFile = fopen("prediction","w");
srand((unsigned) time(NULL));
if(configureFile == NULL || trainDataFile == NULL || testDataFile == NULL
||modelSaveFile == NULL ||resultSaveFile == NULL)
{
fprintf(stderr,"error opening file %p|%p|%p|%p|%p",configureFile,trainDataFile,
testDataFile,modelSaveFile,resultSaveFile);
return -1;
}
// Average("svd.conf");
// print %f Average ua.base ?
SVD(configureFile,testDataFile,trainDataFile,modelSaveFile);
fclose(modelSaveFile);
if((modelSaveFile = fopen("svd_model.pkl","rb")) == NULL)
{
fprintf(stderr,"error opening file svd_mode.pkl");
return -1;
}
Predict(configureFile, modelSaveFile, testDataFile, resultSaveFile);
fclose(configureFile);
fclose(trainDataFile);
fclose(testDataFile);
fclose(modelSaveFile);
fclose(resultSaveFile);
//printf("trf:%d tsf:%d \n",trfread,tefread);
return 0;
}