-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathCancerModel.py
92 lines (69 loc) · 2.37 KB
/
CancerModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np
import pytesseract
from PIL import Image
import cv2
import re
import pickle
import os
import warnings
from termcolor import colored
pytesseract.pytesseract.tesseract_cmd = r"D:\Software Setups\Tesseract-OCR\tesseract.exe"
warnings.filterwarnings('ignore')
ImagePath1 = "D:\IT\Hackathon\Impulse\Prediction\Breast Cancer Prediction\Images\LabReport.png"
ImagePath2 = "D:\IT\Hackathon\Impulse\Prediction\Breast Cancer Prediction\Images\LabReport1.png"
ImagePath3 = "D: \IT\Hackathon\Impulse\ML Frontend\Test1.png"
def get_string(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
# Write image after removed noise
# cv2.imwrite("removed_noise.png", img)
# Apply threshold to get image with only black and white
#img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
cv2.imwrite("thres.png", img)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open("thres.png"))
os.remove("thres.png")
return result
def Predict(ImagePath1):
result = get_string(ImagePath1)
result = result.split("\n")
print(result)
final = []
final = result[-29:]
# for sentence in result:
# pattern = ".* : (.*)"
# output = re.search(pattern, sentence)
# if output:
# final.append(output.group(1))
print()
# name = final[0]
# age = final[1]
# sex = final[2]
# reportID = final[3]
# final = final[:-29]
# final = final[2:]
print(final)
print("\n\n\n")
# print("Name : ", name, "\nAge : ", age, "\nSex : ", sex)
print()
print("Report final resuls :- \n", final)
with open("Models/BreastCancer", "rb") as f:
randomForest = pickle.load(f)
pred = randomForest.predict([final])
print(pred)
if pred[0]:
print()
print(colored("The cell is Malignant i.e its cancerus cell", "red"))
return 1
else:
print()
print(colored("The cell is Benign i.e the patient is safe", "green"))
return 0
if __name__ == '__main__':
# Predict("Test2.png")
pass