import os import numpy as np from PIL import Image def main(): image_paths, label_paths = init_path() hist = compute_hist(image_paths, label_paths) show_result(hist) def init_path(): list_file = './human/list/val_id.txt' file_names = [] with open(list_file, 'rb') as f: for fn in f: file_names.append(fn.strip()) image_dir = './human/features/attention/val/results/' label_dir = './human/data/labels/' image_paths = [] label_paths = [] for file_name in file_names: image_paths.append(os.path.join(image_dir, file_name+'.png')) label_paths.append(os.path.join(label_dir, file_name+'.png')) return image_paths, label_paths def fast_hist(a, b, n): k = (a >= 0) & (a < n) return np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n) def compute_hist(images, labels): n_cl = 20 hist = np.zeros((n_cl, n_cl)) for img_path, label_path in zip(images, labels): label = Image.open(label_path) label_array = np.array(label, dtype=np.int32) image = Image.open(img_path) image_array = np.array(image, dtype=np.int32) gtsz = label_array.shape imgsz = image_array.shape if not gtsz == imgsz: image = image.resize((gtsz[1], gtsz[0]), Image.ANTIALIAS) image_array = np.array(image, dtype=np.int32) hist += fast_hist(label_array, image_array, n_cl) return hist def show_result(hist): classes = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes', 'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt', 'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe', 'rightShoe'] # num of correct pixels num_cor_pix = np.diag(hist) # num of gt pixels num_gt_pix = hist.sum(1) print '=' * 50 # @evaluation 1: overall accuracy acc = num_cor_pix.sum() / hist.sum() print '>>>', 'overall accuracy', acc print '-' * 50 # @evaluation 2: mean accuracy & per-class accuracy print 'Accuracy for each class (pixel accuracy):' for i in xrange(20): print('%-15s: %f' % (classes[i], num_cor_pix[i] / num_gt_pix[i])) acc = num_cor_pix / num_gt_pix print '>>>', 'mean accuracy', np.nanmean(acc) print '-' * 50 # @evaluation 3: mean IU & per-class IU union = num_gt_pix + hist.sum(0) - num_cor_pix for i in xrange(20): print('%-15s: %f' % (classes[i], num_cor_pix[i] / union[i])) iu = num_cor_pix / (num_gt_pix + hist.sum(0) - num_cor_pix) print '>>>', 'mean IU', np.nanmean(iu) print '-' * 50 # @evaluation 4: frequency weighted IU freq = num_gt_pix / hist.sum() print '>>>', 'fwavacc', (freq[freq > 0] * iu[freq > 0]).sum() print '=' * 50 if __name__ == '__main__': main()