-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ctc.py
248 lines (219 loc) · 10.2 KB
/
train_ctc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import time
import random
import argparse
import logging
import numpy as np
import torch
from torch import nn, autograd
import torchaudio
from torch.utils import data
from torch.autograd import Variable
import torch.nn.functional as F
from model import RNNModel
import tensorboard_logger as tb
from torch.utils.tensorboard import SummaryWriter
#from DataLoader import SequentialLoader, TokenAcc
from DataLoader import data_processing, TokenAcc
import warnings
warnings.simplefilter("ignore", UserWarning)
parser = argparse.ArgumentParser(description='PyTorch LSTM CTC Acoustic Model on TIMIT.')
parser.add_argument('--lr', type=float, default=1e-3,
help='initial learning rate')
parser.add_argument('--epochs', type=int, default=200,
help='upper epoch limit')
parser.add_argument('--start_epoch', type=int, default=1,
help='start epoch')
parser.add_argument('--batch_size', type=int, default=1, metavar='N',
help='batch size')
parser.add_argument('--dropout', type=float, default=0,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--bi', default=False, action='store_true',
help='whether use bidirectional lstm')
parser.add_argument('--noise', default=False, action='store_true',
help='add Gaussian weigth noise')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='report interval')
parser.add_argument('--stdout', default=False, action='store_true', help='log in terminal')
parser.add_argument('--out', type=str, default='exp/ctc_lr1e-3',
help='path to save the final model')
parser.add_argument('--cuda', default=True, action='store_false')
parser.add_argument('--init', type=str, default='',
help='Initial am parameters')
parser.add_argument('--gradclip', default=False, action='store_true')
parser.add_argument('--schedule', default=False, action='store_true')
parser.add_argument('--resume', type=str, default='', help="Resume the model training")
args = parser.parse_args()
os.makedirs(args.out, exist_ok=True)
with open(os.path.join(args.out, 'args'), 'w') as f:
f.write(str(args))
if args.stdout: logging.basicConfig(format='%(asctime)s: %(message)s', datefmt='%H:%M:%S', level=logging.INFO)
else: logging.basicConfig(format='%(asctime)s: %(message)s', datefmt='%H:%M:%S', filename=os.path.join(args.out, 'train.log'), level=logging.INFO)
tb.configure(args.out)
# Writer will output to ./runs/ directory by default
writer = SummaryWriter()
random.seed(1024)
torch.manual_seed(1024)
torch.cuda.manual_seed_all(1024)
# Hyperparameters
start_epoch = 1
model = RNNModel(80, 29, 250, 3, args.dropout, bidirectional=args.bi)
if args.init: model.load_state_dict(torch.load(args.init))
else:
for param in model.parameters(): torch.nn.init.uniform(param, -0.1, 0.1)
if args.cuda:
model.cuda()
device = torch.device('cuda')
# optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=.9)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.resume: load_checkpoint(args.resume)
if args.batch_size > 0 :
criterion = nn.CTCLoss(blank=0, reduction='mean', zero_infinity =True).to(device)
# criterion = CTCLoss(size_average=True).to(device)
else:
criterion = nn.CTCLoss(blank=0, reduction='mean').to(device)
# data set
# trainset = SequentialLoader('train', args.batch_size)
# devset = SequentialLoader('dev', args.batch_size)
train_url1 = "train-clean-100"
train_url2 = "train-clean-360"
train_url3 = "train-other-500"
test_url = "test-clean"
dev_url = "dev-clean"
if not os.path.isdir("./data_100"):
os.makedirs("./data_100")
train_dataset1 = torchaudio.datasets.LIBRISPEECH("./data_100", url=train_url1, download=True)
train_dataset2 = torchaudio.datasets.LIBRISPEECH("./data", url=train_url2, download=False)
train_dataset3 = torchaudio.datasets.LIBRISPEECH("./data", url=train_url3, download=False)
# train_dataset_full = data.ConcatDataset([train_dataset1,train_dataset2,train_dataset3])
dev_dataset = torchaudio.datasets.LIBRISPEECH("./data", url=dev_url, download=True)
train_loader = data.DataLoader(dataset=train_dataset1, pin_memory=True,
batch_size=args.batch_size,
shuffle=True,
collate_fn=lambda x: data_processing(x, 'train'))
dev_loader = data.DataLoader(dataset=dev_dataset, pin_memory=True,
batch_size=args.batch_size,
shuffle=False,
collate_fn=lambda x: data_processing(x, 'valid'))
def save_checkpoint(state, best_model):
torch.save(state, best_model)
def load_checkpoint(checkpoint):
checkpoint = torch.load(checkpoint)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
return model, optimizer, start_epoch
if args.resume:
model,optimizer,start_epoch = load_checkpoint(args.resume)
if args.start_epoch:
start_epoch = args.start_epoch
tri = cvi = 0
patience = 15
def eval(epoch):
global cvi
losses = []
tacc = TokenAcc()
for i, (xs, ys, xlen, ylen) in enumerate(dev_loader):
x = Variable(torch.FloatTensor(xs), volatile=True)
x = torch.squeeze(x,1).transpose(1,2).cuda()
ys = np.hstack([ys[i, :j] for i, j in enumerate(ylen)])
y = Variable(torch.IntTensor(ys)).cuda()
xl = Variable(torch.IntTensor(xlen)).cuda(); yl = Variable(torch.IntTensor(ylen)).cuda()
model.eval()
out = model(x)[0]
out = F.log_softmax(out, dim=2)
#print(out.shape)
loss = criterion(out.transpose(0,1).contiguous(), y, xl, yl)
# loss = F.ctc_loss(out.transpose(0,1).contiguous(), y, xl, yl)
loss = float(loss.data) * len(xlen) # batch size
losses.append(loss)
tacc.update(out.data.cpu().numpy(), xlen, ys)
tb.log_value('cv_loss', loss/len(xlen), epoch * len(dev_loader) + i)
writer.add_scalar('cv_loss', loss/len(xlen), epoch * len(dev_loader) + i)
writer.add_scalar('Loss/validation', loss/len(xlen), epoch)
cvi += 1
return sum(losses) / len(dev_loader), tacc.getAll()
def train():
def adjust_learning_rate(optimizer, lr):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
# lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def add_noise(x):
dim = x.shape[-1]
noise = torch.normal(torch.zeros(dim), 0.075)
if x.is_cuda: noise = noise.cuda()
x.data += noise
global tri
global patience
prev_loss = 10000
best_model = None
lr = args.lr
for epoch in range(start_epoch, args.epochs):
totloss = 0; losses = []
start_time = time.time()
tacc = TokenAcc()
# if epoch == 10:
# break
for i, (xs, ys, xlen, ylen) in enumerate(train_loader):
# breaking point
# if i == 3:
# break
x = Variable(torch.FloatTensor(xs))
x = torch.squeeze(x,1).transpose(1,2)
if args.cuda: x = x.cuda()
if args.noise: add_noise(x)
ys = np.hstack([ys[i, :j] for i, j in enumerate(ylen)])
y = Variable(torch.IntTensor(ys)).cuda()
xl = Variable(torch.IntTensor(xlen)).cuda(); yl = Variable(torch.IntTensor(ylen)).cuda()
model.train()
optimizer.zero_grad()
out = model(x)[0]
out = F.log_softmax(out, dim=2)
# print(f" log_probs:{out.shape} , target: {y.shape}, xlen: {xl.shape}, ylen: {yl.shape}")
loss = criterion(out.transpose(0,1).contiguous(), y, xl, yl)
# loss = F.ctc_loss(out.transpose(0,1).contiguous(), y, xl, yl)
loss.backward()
loss = float(loss.data) * len(xlen) # batch size
totloss += loss; losses.append(loss)
tacc.update(out.data.cpu().numpy(), xlen, ys)
if args.gradclip: grad_norm = nn.utils.clip_grad_norm(model.parameters(), 200)
optimizer.step()
tb.log_value('train_loss', loss/len(xlen), epoch * len(train_loader) + i)
tb.log_value('cv_loss', loss/len(xlen), epoch * len(dev_loader) + i)
writer.add_scalar('cv_loss', loss/len(xlen), epoch * len(dev_loader) + i)
writer.add_scalar('Loss/validation', loss/len(xlen), epoch)
if args.gradclip: tb.log_value('train_grad_norm', grad_norm, tri)
tri += 1
# print(f"epoch {epoch} loss {loss}")
if i % args.log_interval == 0 and i > 0:
loss = totloss /args.batch_size/ args.log_interval
logging.info('[Epoch %d Batch %d] loss %.2f, CER %.2f'%(epoch, i, loss, tacc.get()))
totloss = 0
losses = sum(losses) /len(train_loader)
val_l, cer = eval(epoch)
logging.info('[Epoch %d] time cost %.2fs, train loss %.2f, CER %.2f; cv loss %.2f, CER %.2f; lr %.3e'%(
epoch, time.time()-start_time, losses, tacc.getAll(), val_l, cer, lr
))
# Save checkpoint
checkpoint = {"epoch": epoch + 1, "state_dict": model.state_dict(), "optimizer": optimizer.state_dict()}
if val_l < prev_loss:
prev_loss = val_l
best_model = '{}/params_epoch{:02d}_tr{:.2f}_cv{:.2f}'.format(args.out, epoch, losses, val_l)
# torch.save(model.state_dict(), best_model)
else:
patience -= 1
torch.save(model.state_dict(), '{}/params_epoch{:02d}_tr{:.2f}_cv{:.2f}_rejected'.format(args.out, epoch, losses, val_l))
# model.load_state_dict(torch.load(best_model))
checkpoint = torch.load(best_model)
model.load_state_dict(checkpoint['state_dict'])
if args.cuda: model.cuda()
if args.schedule:
lr /= 2
adjust_learning_rate(optimizer, lr)
save_checkpoint(checkpoint, best_model)
# if the model is being rejected for 10 times, halt the training.
if patience == 0:
break
if __name__ == '__main__':
train()