-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
72 lines (61 loc) · 2.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# coding=utf-8
import numpy as np
import theano
import theano.tensor as T
from theano.compile.nanguardmode import NanGuardMode
# Deep Market with Deep Instrumental Variable
from model.DeepMarket import DeepConvolutionMarket
from model.DeepMarket import Convolution1dMaxPooingLayer
# Utility
import cPickle as pkl
def main(batch_size=300, n_epoch=10000):
# We add noise in our data to prevent some trobbles......
weather = pkl.load(open('./data/weather.pkl', 'rb'))
price = pkl.load(open('./data/price.pkl', 'rb'))
volumn = pkl.load(open('./data/volumn.pkl', 'rb'))
weather = weather - weather.mean(0)
price = (price - price.mean(0)) / price.std(0)
volumn = (volumn - volumn.mean(0)) / volumn.std(0)
weather_data = theano.shared(weather, borrow=True)
weather_shape = (batch_size,) + \
weather_data.get_value(borrow=True).shape[1:]
n_batch = weather_shape[0] / batch_size
price_data = theano.shared(
price.astype(theano.config.floatX).reshape((price.shape[0], 1)),
borrow=True)
volumn_data = theano.shared(
volumn.astype(theano.config.floatX).reshape((volumn.shape[0], 1)),
borrow=True)
price = T.matrix('price')
volumn = T.matrix('volumn')
weather = T.tensor4('weather')
model = DeepConvolutionMarket(price, volumn, weather, weather_shape,
layers=[Convolution1dMaxPooingLayer]*4,
filter_shapes=[[3, 6, 1, 15], [2, 3, 1, 15],
[2, 2, 1, 5], [1, 2, 1, 4]])
model.building_feedforward()
lr = T.fscalar("lr")
index = T.iscalar('idx')
cost, updates = model.training_2SLS(lr)
print "building the computional graph"
train = theano.function([index, lr], cost, updates=updates,
givens={
price: price_data[index*batch_size:(index+1)*batch_size],
volumn: volumn_data[index*batch_size:(index+1)*batch_size],
weather: weather_data[index*batch_size:(index+1)*batch_size]}
,mode=NanGuardMode(nan_is_error=True, inf_is_error=True, big_is_error=True))
print "building done"
record_cost = []
lr0 = 1e-5
for epoch in range(n_epoch):
hist_cost = []
for idx in range(n_batch):
hist_cost.extend([train(idx, lr0/(epoch+1))])
record_cost += [np.mean(hist_cost)]
print "epoch {0}: training cost {1}".format(epoch, np.mean(hist_cost))
if epoch % 100 == 0:
pkl.dump({'model': model, 'cost': record_cost},
open('./model/trained_model/deepmarket_4layers.not.model',
'wb'))
if __name__ == "__main__":
main()