Skip to content

Files

Latest commit

 

History

History

portability

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
  1. run random train-test split first run below to save the random splitted train test data(submit job to run this)

     python generate_train_test.py
    

    then run the inference:

     python IN_dataGenerator_random.py IN_training 1 0 --De 20 --Do 24 --hidden 60
    
  2. run the conversion from pytorch to onnx, and use onnx to inference set up environemnt:

     module load conda/2021-06-28
     conda activate base
    

    run model:

     python pytorch2onnx.py
     python pytorch_onnx_inference.py
    

    also include a notebook contain overall process onnx.ipynb

  3. run the conversion from onnx to tensorrt, and use tensorrt to inference

     module load conda/2021-11-30
     conda activate base
     python tensorrt_inference.py
    
  4. use singularity container start the container: if you are first time use this container, need to build the instance first. After build the instance, use singularity shell --bind to connect the path of dataset:

         singularity instance start  --nv ./trt_torch_new.sif tensorrt
         singularity shell --bind //grand/RAPINS/ruike/new_hbb/test://home/ruike/merge_IN/notebook_code/test_hbb //home/ruike/trt_torch_new.sif ls //home/ruike/merge_IN/notebook_code/test_hbb
         pip install -U scikit-learn
         ...
    
  5. throughput & gpu throughput plot the plots are saved in throughput_gpu_use.ipynb file