-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path__init__.py
291 lines (245 loc) · 7.04 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""Read an LSR image."""
from __future__ import annotations
import io
import json
import zipfile
from deprecation import deprecated
from PIL import Image
def jsonLoadsFromArchive(x):
return json.loads(x.read_text(encoding="utf-8"))
class LSRImage:
"""LSRImage contains data on the overall size, the layers and the name of the lsr image."""
def __init__(self, size: tuple[int, int], name: str, layers: list[LSRLayer] | None = None) -> None:
self.size = size
self.layers = layers if layers is not None else []
self.name = name
def flatten(self) -> Image.Image:
"""Flatten all of the layers."""
return flattenAll(
[LSRImageData(layer.flatten(), "", offsets=layer.offsets()) for layer in self.layers],
self.size,
)
class LSRLayer:
"""LSRLayer contains data on the layer such as the list of images, the name,
the size and the centre offset.
"""
def __init__(
self,
images: list[LSRImageData],
name: str,
size: tuple[int, int],
center: tuple[int, int],
) -> None:
self.images = images
self.name = name
self.size = size
self.center = center
def offsets(self) -> tuple[int, int]:
"""Calculate the x, y offset for the top left corner.
Returns
-------
tuple[int, int]: tuple for x, y offset
"""
return (
int(self.center[0] - self.size[0] / 2),
int(self.center[1] - self.size[1] / 2),
)
# return 0, 0
def flatten(self) -> Image.Image:
"""Flatten all of the layers."""
return flattenAll(self.images, self.size)
class LSRImageData:
"""LSRImageData stores the PIL Image along with the name, scale of the image and the idiom."""
def __init__(
self,
image: Image.Image,
name: str,
scale: str = "1x",
idiom: str = "universal",
offsets: tuple[int, int] = (0, 0),
) -> None:
self.image = image
self.name = name
self.scale = int(scale.replace("x", ""))
self.idiom = idiom
self.offsets = offsets
def scaledImage(self):
"""Get the scaled image.
Returns
-------
Image.Image: The image to scale
"""
width, height = self.image.size
return self.image.resize((width * self.scale, height * self.scale))
def read(filename: str) -> LSRImage:
"""Read an lsr file.
Args:
----
filename (str): the path to the file
Returns:
-------
LSRImage: An lsr image representation
"""
with zipfile.ZipFile(filename, "r") as zipref:
zippath = zipfile.Path(zipref)
contents = jsonLoadsFromArchive(zippath / "Contents.json")
layers = contents["layers"]
lsrLayers = []
for layer in layers:
lsrImageData = []
layerContents = jsonLoadsFromArchive(
zippath / layer["filename"] / "Contents.json",
)["properties"]
layerImagesList = jsonLoadsFromArchive(
zippath / layer["filename"] / "Content.imageset/Contents.json",
)["images"]
for image in layerImagesList:
with zipref.open(
layer["filename"] + "/Content.imageset/" + image["filename"]
) as layerImage:
lsrImageData.append(
LSRImageData(
Image.open(layerImage).convert("RGBA"),
image["filename"].replace(".png", ""),
image.get("scale", "1x"),
image.get("idiom", "universal"),
)
)
lsrLayers.append(
LSRLayer(
lsrImageData[::-1],
layer["filename"].replace(".imagestacklayer", ""),
(
layerContents["frame-size"]["width"],
layerContents["frame-size"]["height"],
),
(
layerContents["frame-center"]["x"],
layerContents["frame-center"]["y"],
),
)
)
return LSRImage(
(
contents["properties"]["canvasSize"]["width"],
contents["properties"]["canvasSize"]["height"],
),
filename.replace(".lsr", ""),
lsrLayers[::-1],
)
def write(filename: str, lsrImage: LSRImage) -> None:
"""Write an lsr image to disk.
Args:
----
filename (str): filename and extension
lsrImage (LSRImage): the lsr image representation to save
"""
_info = {"version": 1, "author": "pylsr"}
with zipfile.ZipFile(filename, "w") as zipref:
layers = [{"filename": layer.name + ".imagestacklayer"} for layer in lsrImage.layers[::-1]]
zipref.writestr(
"Contents.json",
json.dumps(
{
"info": _info,
"layers": layers,
"properties": {
"canvasSize": {
"width": lsrImage.size[0],
"height": lsrImage.size[1],
}
},
}
),
)
for layer in lsrImage.layers[::-1]:
zipref.writestr(
layer.name + ".imagestacklayer/Contents.json",
json.dumps(
{
"info": _info,
"properties": {
"frame-size": {
"width": layer.size[0],
"height": layer.size[1],
},
"frame-center": {
"x": layer.center[0],
"y": layer.center[1],
},
},
}
),
)
images = [
{
"idiom": image.idiom,
"filename": image.name + ".png",
"scale": str(image.scale) + "x",
}
for image in layer.images[::-1]
]
zipref.writestr(
layer.name + ".imagestacklayer/Content.imageset/Contents.json",
json.dumps({"info": _info, "images": images}),
)
for image in layer.images[::-1]:
imgByteArr = io.BytesIO()
image.image.save(imgByteArr, format="PNG")
imgByteArr.seek(0)
zipref.writestr(
layer.name + ".imagestacklayer/Content.imageset/" + image.name + ".png",
imgByteArr.read(),
)
def flattenTwoLayers(
layer: LSRImageData,
imageDimensions: tuple[int, int],
flattenedSoFar: Image.Image | None = None,
) -> Image.Image:
"""Flatten two layers of an image.
Args:
----
layer (LSRImageData): lsrimagedata
imageDimensions (tuple[int, int]): a tuple of the image dimensions
flattenedSoFar (Image.Image, optional): Render of what has already been
flattened. Defaults to None.
Returns:
-------
Image.Image: Flattened image
"""
foregroundRender = renderImageOffset(layer.scaledImage(), imageDimensions, layer.offsets)
if flattenedSoFar is None:
return foregroundRender
return Image.alpha_composite(flattenedSoFar, foregroundRender)
def flattenAll(layers: list[LSRImageData], imageDimensions: tuple[int, int]) -> Image.Image:
"""Flatten a list of layers and groups.
Args:
----
layers (list[LSRImageData]): A list of layers and groups
imageDimensions (tuple[int, int]): size of the image
been flattened. Defaults to None.
Returns:
-------
Image.Image: Flattened image
"""
flattenedSoFar = flattenTwoLayers(layers[0], imageDimensions)
for layer in range(1, len(layers)):
flattenedSoFar = flattenTwoLayers(
layers[layer], imageDimensions, flattenedSoFar=flattenedSoFar
)
return flattenedSoFar
@deprecated(deprecated_in="2022", removed_in="2023", details="Use renderImageOffset")
def rasterImageOffset(
image: Image.Image, size: tuple[int, int], offsets: tuple[int, int] = (0, 0)
) -> Image.Image:
"""Render an image with offset to a given size. (deprecated, use renderImageOffset)."""
return renderImageOffset(image, size, offsets)
def renderImageOffset(
image: Image.Image, size: tuple[int, int], offsets: tuple[int, int] = (0, 0)
) -> Image.Image:
"""Render an image with offset to a given size."""
imageOffset = Image.new("RGBA", size)
imageOffset.paste(
image.convert("RGBA"), (int(offsets[0]), int(offsets[1])), image.convert("RGBA")
)
return imageOffset