-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathlivedemo.cpp
516 lines (429 loc) · 26.5 KB
/
livedemo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#include "opencv2/opencv.hpp"
/** @file livedemo.cpp
* @brief This is the main "demo" offered in this repository, it will take a stream from a webcam or video file using OpenCV and run
* 2D pose estimation + MocapNET giving you a nice 3D visualization as well as an output .bvh file
* @author Ammar Qammaz (AmmarkoV)
*/
#include <stdio.h>
#include <unistd.h>
//-----------------------------------------------------------------
#include "../../JointEstimator2D/cameraControl.hpp"
#include "../../JointEstimator2D/jointEstimator2D.hpp"
#include "../../JointEstimator2D/visualization.hpp"
//-----------------------------------------------------------------
#include "../../MocapNET2/MocapNETLib2/mocapnet2.hpp"
#include "../../MocapNET2/MocapNETLib2/applicationLogic/parseCommandlineOptions.hpp"
#include "../../MocapNET2/MocapNETLib2/IO/commonSkeleton.hpp"
#include "../../MocapNET2/MocapNETLib2/IO/conversions.hpp"
#include "../../MocapNET2/MocapNETLib2/IO/bvh.hpp"
#include "../../MocapNET2/MocapNETLib2/IO/csvRead.hpp"
#include "../../MocapNET2/MocapNETLib2/IO/csvWrite.hpp"
#include "../../MocapNET2/MocapNETLib2/IO/skeletonAbstraction.hpp"
//-----------------------------------------------------------------
#include "../../MocapNET2/MocapNETLib2/visualization/visualization.hpp"
#include "../../MocapNET2/MocapNETLib2/visualization/map.hpp"
//-----------------------------------------------------------------
#include "../../MocapNET2/MocapNETLib2/tools.hpp"
using namespace cv;
#define NORMAL "\033[0m"
#define BLACK "\033[30m" /* Black */
#define RED "\033[31m" /* Red */
#define GREEN "\033[32m" /* Green */
#define YELLOW "\033[33m" /* Yellow */
int main(int argc, char *argv[])
{
struct MocapNET2Options options= {0};
struct MocapNET2 mnet= {0};
mnet.options = & options;
struct JointEstimator2D jointEstimator;
std::vector<float> inputValues;
std::vector<std::vector<float> > exactMocapNET2DOutput;
std::vector<std::vector<float> > output3DPositions;
std::vector<float> points3DFlatOutput;
struct skeletonSerialized resultAsSkeletonSerialized= {0};
float frameRateSummary = 0.0;
unsigned int frameSamples=0;
defaultMocapNET2Options(&options);
/*
* Force effortless IK configuration on Webcam Demo
*/
//Be unconstrained by default
options.constrainPositionRotation=0;
//Use IK ========
options.useInverseKinematics=1;
options.learningRate=0.01;
options.iterations=5;
options.epochs=30.0;
options.spring=1.0;
//==============
//640x480 should be a high framerate compatible resolution
//for most webcams, you can change this using --size X Y commandline parameter
options.width = 640;
options.height = 480;
loadOptionsFromCommandlineOptions(&options,argc,argv);
std::cerr<<"Trying to open source ("<<options.webcamSource<<") \n";
VideoCapture cap(options.webcamSource); // open the default camera
int itIsTheFirstFrame=1;
Mat singleImageFrame;
Mat frame;
Mat frameCentered;
if (
(strstr(options.webcamSource,".jpg")!=0) ||
(strstr(options.webcamSource,".png")!=0)
)
{
std::cerr<<"Source seems to be a single image ("<<options.webcamSource<<") \n";
options.frameLimit = 20; //let it warmup for a few frames..
options.inputIsSingleImage = 1;
options.doOutputFiltering = 0; //There is no motion to filter so skip this
singleImageFrame=imread(options.webcamSource);
singleImageFrame.copyTo(frame);
} else
if (strstr(options.webcamSource,"/dev/video")!=0)
{
std::cerr<<"Source seems to be a webcam ("<<options.webcamSource<<" @ "<<options.width<<","<<options.height<<") \n";
options.inputIsSingleImage = 0;
cap.set(cv::CAP_PROP_FRAME_WIDTH,options.width);
cap.set(cv::CAP_PROP_FRAME_HEIGHT,options.height);
}
//This needs to be grabbed to initialize window sizes either on video source, or on webcam source
//--------------------------------------------------------------------
if (!options.inputIsSingleImage)
{ cap >> frame; }
//--------------------------------------------------------------------
//We will accept the input resolution and force it
//on visualization..
options.width = frame.size().width;
options.height = frame.size().height;
options.visWidth = frame.size().width;
options.visHeight = frame.size().height;
//-----------------------------------------------------
//We might want to load a special bvh file based on our options..!
loadOptionsAfterBVHLoadFromCommandlineOptions(&options,argc,argv);
//If the initialization didnt happen inside the previous call lets do it now
if (!options.hasInit)
{
if (initializeBVHConverter(0,options.visWidth,options.visHeight,0))
{
fprintf(stderr,"BVH code initalization successfull..\n");
options.hasInit=1;
}
}
//--------------------------------------------------------------------------
//Switch to realtime priority before opening tensorflow stuff..
requestRealtimePriority();
if (loadJointEstimator2D(
&jointEstimator,
options.
jointEstimatorUsed,
1,
options.useCPUOnlyFor2DEstimator
))
{
if ( loadMocapNET2(&mnet,"Live Demo") )
{
//------------------------------
mnet.learningRate=options.learningRate;
mnet.iterations=options.iterations;
mnet.epochs=options.epochs;
mnet.spring=options.spring;
//------------------------------
cv::Mat viewMat = Mat(Size(jointEstimator.inputWidth2DJointDetector,jointEstimator.inputHeight2DJointDetector),CV_8UC3, Scalar(0,0,0));
struct Skeletons2DDetected skeleton2DEstimations= {0};
if (options.visualize)
{
//cv::namedWindow("Video Input Feed",1);
//cv::moveWindow("Video Input Feed",0,368);
cv::namedWindow("3D Points Output",1);
cv::moveWindow("3D Points Output",0,0);
cv::namedWindow("Skeletons",1);
cv::moveWindow("Skeletons",1920-jointEstimator.inputWidth2DJointDetector-50,100);
}
unsigned int frameID=0;
unsigned int skippedFramesInARow=0;
std::vector<float> result;
std::vector<float> previousResult;
float totalTime=0.0;
unsigned int totalSamples=0;
std::vector<std::vector<float> > bvhFrames;
struct skeletonSerialized skeleton= {0};
while ( (options.frameLimit==0) || (frameID<options.frameLimit) )
{
options.loopStartTime = GetTickCountMicrosecondsMN();
if (options.inputIsSingleImage) { singleImageFrame.copyTo(frame); } else
if (itIsTheFirstFrame) { itIsTheFirstFrame=0; } else
{ cap >> frame; }
//If we are running in a low-end computer and need to keep in sync with a live video feed we can frame-skip
if (options.frameSkip)
{
for (int i=0; i<options.frameSkip; i++)
{
cap >> frame;
}
}
frame.copyTo(frameCentered);
if ( (frameCentered.size().width>0) && (frameCentered.size().height>0) )
{
if (
!cropAndResizeCVMatToMatchSkeleton(
&jointEstimator,
frameCentered,
&skeleton2DEstimations
)
)
{
fprintf(stderr,"Failed to crop input video\n");
}
//imshow("Video Input Feed", frameCentered);
frameCentered.copyTo(viewMat);
// viewMat.setTo(Scalar(0,0,0));
//Tensorflow works with Floating point input so we need to convert our buffer..
frameCentered.convertTo(frameCentered,CV_32FC3);
//At this point we are ready to execute the neural network
long startTime2D = GetTickCountMicrosecondsMN();
//We count the framerate of our acquisition
options.fpsAcquisition = convertStartEndTimeFromMicrosecondsToFPS(options.loopStartTime,startTime2D);
std::vector<std::vector<float> > heatmaps = getHeatmaps(
&jointEstimator,
frameCentered.data,
jointEstimator.inputWidth2DJointDetector,
jointEstimator.inputHeight2DJointDetector
);
if (heatmaps.size()>0)
{
//This will spam with small heatmap windows
//visualizeHeatmaps(&jointEstimator,heatmaps,frameID);
estimate2DSkeletonsFromHeatmaps(&jointEstimator,&skeleton2DEstimations,heatmaps);
long endTime2D = GetTickCountMicrosecondsMN();
options.fps2DEstimator = convertStartEndTimeFromMicrosecondsToFPS(startTime2D,endTime2D);
if (options.visualize)
{
dj_drawExtractedSkeletons(
viewMat,
&skeleton2DEstimations,
jointEstimator.inputWidth2DJointDetector,
jointEstimator.inputHeight2DJointDetector
);
}
float percentageOf2DPointsMissing = percentOf2DPointsMissing(&skeleton2DEstimations);
if ( percentageOf2DPointsMissing < 50.0 ) //only work when less than 50% of information missing..
{
skippedFramesInARow=0;
//We want to go from the original normalized values of skeleton2DEstimations to the original
//Resolution we grabbed our initial frame @ before cropping..
restore2DJointsToInputFrameCoordinates(&jointEstimator,&skeleton2DEstimations);
//Now that our points have their initial size let's perform a conversion to the internal
//serialized skeleton data structure that will prepare them for use in MocapNET
convertSkeletons2DDetectedToSkeletonsSerialized(
&skeleton,
&skeleton2DEstimations,
frameID,
jointEstimator.crop.frameWidth,
jointEstimator.crop.frameHeight
);
takeCareOfScalingInputAndAddingNoiseAccordingToOptions(&options,&skeleton);
unsigned int feetAreMissing=areFeetMissing(&skeleton);
long startTime = GetTickCountMicrosecondsMN();
//--------------------------------------------------------
previousResult = result;
result = runMocapNET2(
&mnet,
&skeleton,
( (options.doLowerBody) && (!feetAreMissing) ),
options.doHands,
options.doFace,
options.doGestureDetection,
options.useInverseKinematics,
options.doOutputFiltering
);
bvhFrames.push_back(result);
//--------------------------------------------------------
long endTime = GetTickCountMicrosecondsMN();
options.fpsMocapNET = convertStartEndTimeFromMicrosecondsToFPS(startTime,endTime);
frameRateSummary += options.fpsMocapNET;
++frameSamples;
//--------------------------------------------------------
options.numberOfMissingJoints = upperbodyCountMissingNSDMElements(mnet.upperBody.NSDM,0 /*Dont spam */);
//Don't spam with missing joints..
//fprintf(stderr,"Number of missing joints for UpperBody %u\n",options.numberOfMissingJoints);
//Convert BVH frame to 2D points to show on screen
exactMocapNET2DOutput = convertBVHFrameTo2DPoints(result);//,MocapNETTrainingWidth,MocapNETTrainingHeight);
if (options.saveCSV3DFile)
{
//Convert BVH frame to 3D points to output on a file
points3DFlatOutput=convertBVHFrameToFlat3DPoints(result);//,MocapNETTrainingWidth,MocapNETTrainingHeight);
output3DPositions.push_back(points3DFlatOutput); //3d Input
}
resultAsSkeletonSerialized.skeletonHeaderElements = skeleton.skeletonHeaderElements;
resultAsSkeletonSerialized.skeletonBodyElements = skeleton.skeletonBodyElements;
if (
convertMocapNET2OutputToSkeletonSerialized(
&mnet,
&resultAsSkeletonSerialized,
exactMocapNET2DOutput,
frameID,
MocapNETTrainingWidth,
MocapNETTrainingHeight
)
)
{
//TODO : Compare resultAsSkeletonSerialized and skeleton
doReprojectionCheck(&skeleton,&resultAsSkeletonSerialized);
}
}
else
{
if (skippedFramesInARow%30==0)
{ fprintf(stderr,"."); }
++skippedFramesInARow;
}
if (options.visualize)
{
visualizationCommander(
&mnet,
&options,
&skeleton,
&frame,
result,
exactMocapNET2DOutput,
frameID,
1// We will do the waitKey call ourselves
);
if ( (viewMat.size().width >0) && (viewMat.size().height>0) )
{ imshow("Skeletons", viewMat); } else
{ std::cerr<<"Invalid skeleton visualization frame.. \n"; }
}
}
}
else
{
std::cerr<<"Broken frame.. \n";
++options.brokenFrames;
if (options.brokenFrames>10)
{
std::cerr<<"Too many broken frames.. \n";
break;
}
}
options.loopEndTime = GetTickCountMicrosecondsMN();
options.totalLoopFPS = convertStartEndTimeFromMicrosecondsToFPS(options.loopStartTime,options.loopEndTime);
//------------------------------------------------------
// These final calls add delays to frame processing so
// they are not counted in loop time
//------------------------------------------------------
//Frames should increment even when visualization is off..
++frameID;
if (options.visualize)
{
char key = 0;
if (options.delay!=0)
{
key = waitKey(options.delay);
} else
{
key = waitKey(1);
}
if (key==27)
{
fprintf(stderr,GREEN "Received Escape key from UI, terminating the application.." NORMAL);
break;
}
}
if (options.delay!=0)
{
nsleep(options.delay*1000);
}
//------------------------------------------------------
} // End of grabber loop
if (options.bvhCenter)
{
for (unsigned int i=0; i<bvhFrames.size(); i++)
{
bvhFrames[i][0]=0;
bvhFrames[i][1]=0;
bvhFrames[i][2]=0;
}
}
if (options.dontBend)
{
for (unsigned int i=0; i<bvhFrames.size(); i++)
{
if (bvhFrames[i][3]>10) { bvhFrames[i][3]=10; } else
if (bvhFrames[i][3]<-10) { bvhFrames[i][3]=-10; }
}
}
//fix https://github.com/FORTH-ModelBasedTracker/MocapNET/issues/35
fixBVHHip(bvhFrames);
if ( writeBVHFile(options.outputPath,0,options.prependTPose,bvhFrames) )
{
fprintf(stderr,GREEN "Successfully wrote %lu frames to bvh file.. \n" NORMAL,bvhFrames.size());
}
else
{
fprintf(stderr,RED "Failed to write %lu frames to bvh file.. \n" NORMAL,bvhFrames.size());
}
if (options.saveCSV3DFile)
{
fprintf(stderr,"Will now write 3D output to out3DP.csv.. \n");
//----------------------------------------------------------------------------------------------------------------------------------
if ( writeCSVHeaderFromLabelsAndVectorOfVectors("out3DP.csv",MocapNET3DPositionalOutputArrayNames,MOCAPNET_3DPOINT_NUMBER,output3DPositions) )
{
fprintf(stderr,GREEN "Successfully wrote %lu frames to csv file.. \n" NORMAL,output3DPositions.size());
}
else
{
fprintf(stderr,RED "Failed to write %lu frames to bvh file.. \n" NORMAL,output3DPositions.size());
}
}
if ( (options.save3DVisualization) || (options.save2DVisualization) )
{
int highResEncoding=1;
char formatString[256];
if (highResEncoding)
{
snprintf(formatString,256,"ffmpeg -framerate %f -i vis%%05d.jpg -s 1200x720 -y -r %f -pix_fmt yuv420p -threads 8 livelastRun3DHiRes.mp4 && rm ./*.jpg",options.inputFramerate,options.inputFramerate);
} else
{
snprintf(formatString,256,"ffmpeg -framerate %f -i vis%%05d.jpg -y -r %f -threads 8 -crf 9 -pix_fmt yuv420p lastRun3D.webm && rm ./*.jpg",options.inputFramerate,options.inputFramerate);
}
int i=system(formatString);
if (i==0)
{
fprintf(stderr,"Successfully wrote video file.. \n");
}
else
{
fprintf(stderr,"Failed to write a video file.. \n");
}
}
unloadMocapNET2(&mnet);
} //3D pose estimator ok
} //2D joint estimator ok
//Offer a summary of system and the achieved framerate..!
if (frameSamples!=0)
{
fprintf(stderr,"\n\nMocapNET v%s execution summary :\n",MocapNETVersion);
fprintf(stderr,"__________________________________________\n");
//neuralNetworkPrintVersion();
printBVHCodeVersion();
fprintf(stderr,"CPU : %s \n",options.CPUName);
fprintf(stderr,"GPU : %s \n",options.GPUName);
fprintf(stderr,"Average framerate for %u samples was %0.2f fps \n",frameSamples,((float) frameRateSummary/frameSamples) );
//Offer some info on options of the run executed..
//-------------------------------------------------
if (options.doMultiThreadedIK)
{ fprintf(stderr,"Multi-threading was on\n"); }
//-------------------------------------------------
if (codeOptimizationsForIKEnabled())
{ fprintf(stderr,"Code optimizations where on\n"); }
//-------------------------------------------------
if (options.jointEstimatorUsed==JOINT_2D_ESTIMATOR_FORTH)
{ fprintf(stderr,"You can achieve better accuracy by using the homebrewed OpenPose 2D joint estimator using --openpose\n"); }
//-------------------------------------------------
if (options.jointEstimatorUsed==JOINT_2D_ESTIMATOR_OPENPOSE)
{ fprintf(stderr,"You can achieve faster framerates with the bundled FORTH 2D joint estimator using --forth\n"); }
//-------------------------------------------------
}
// the camera will be deinitialized automatically in VideoCapture destructor
return 0;
}