Skip to content

Commit 4657be9

Browse files
authored
Merge pull request #104 from FedML-AI/dev
change FedML into TensorOpera AI
2 parents dce6379 + 85e3b9e commit 4657be9

25 files changed

+47
-47
lines changed

docs/federate/cli.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ fedml version
2626

2727
```
2828

29-
## 1. Login to the FedML MLOps platform (fedml.ai)
29+
## 1. Login to the TensorOpera AI platform (fedml.ai)
3030
login as client with local pip mode:
3131
```
3232
fedml login userid(or API Key)
@@ -52,19 +52,19 @@ login as edge server with docker mode:
5252
fedml login userid(or API Key) -s --docker --docker-rank rank_index
5353
```
5454

55-
### 1.1. Examples for Logging in to the FedML MLOps platform (fedml.ai)
55+
### 1.1. Examples for Logging in to the TensorOpera AI platform (fedml.ai)
5656

5757
```
5858
fedml login 90
59-
Notes: this will login the production environment for FedML MLOps platform
59+
Notes: this will login the production environment for TensorOpera AI platform
6060
```
6161

6262
```
6363
fedml login 90 --docker --docker-rank 1
64-
Notes: this will login the production environment with docker mode for FedML MLOps platform
64+
Notes: this will login the production environment with docker mode for TensorOpera AI platform
6565
```
6666

67-
## 2. Build the client and server package in the FedML MLOps platform (fedml.ai)
67+
## 2. Build the client and server package in the TensorOpera AI platform (fedml.ai)
6868

6969
```
7070
fedml build -t client(or server) -sf source_folder -ep entry_point_file -cf config_folder -df destination_package_folder --ignore ignore_file_and_directory(concat with ,)

docs/federate/cross-device/tutorial.md

+10-10
Original file line numberDiff line numberDiff line change
@@ -67,12 +67,12 @@ Next show you the step-by-step user experiment of using FedML Beehive.
6767

6868
![./../_static/image/launch_android_app.png](./../_static/image/launch_android_app.png)
6969

70-
## 2. Bind FedML Android App to FedML MLOps Platform
70+
## 2. Bind FedML Android App to TensorOpera AI Platform
7171

72-
This section guides you through 1) installing Android Apk, 2) binding your Android smartphone devices to FedML MLOps Platform, and 3) set the data path for training.
72+
This section guides you through 1) installing Android Apk, 2) binding your Android smartphone devices to TensorOpera AI Platform, and 3) set the data path for training.
7373

74-
### 2.1 Connect Android App with FedML MLOps Platform
75-
After installing FedML Android App ([https://github.com/FedML-AI/FedML/tree/master/android/app](https://github.com/FedML-AI/FedML/tree/master/android/app)), please go to the MLOps platform ([https://open.fedml.ai](https://open.fedml.ai)) - Beehive and switch to the `Edge Devices` page, you can see a list of **My Edge Devices** at the bottom, as well as a QR code and **Account Key** at the top right.
74+
### 2.1 Connect Android App with TensorOpera AI Platform
75+
After installing FedML Android App ([https://github.com/FedML-AI/FedML/tree/master/android/app](https://github.com/FedML-AI/FedML/tree/master/android/app)), please go to the MLOps platform ([https://TensorOpera.ai](https://TensorOpera.ai)) - Beehive and switch to the `Edge Devices` page, you can see a list of **My Edge Devices** at the bottom, as well as a QR code and **Account Key** at the top right.
7676

7777
![./../_static/image/beehive-device.png](./../_static/image/beehive-device.png)
7878

@@ -122,11 +122,11 @@ To set data path on your device, click the top green bar. Set it as the path to
122122

123123
#### 3. **Deploy FL Server**
124124

125-
- Create an account at FedML MLOps Platform ([https://open.fedml.ai](https://open.fedml.ai))
125+
- Create an account at TensorOpera AI Platform ([https://TensorOpera.ai](https://TensorOpera.ai))
126126

127127
- Run local test fo
128128

129-
- Build Python Server Package and Upload to FedML MLOps Platform ("Create Application")
129+
- Build Python Server Package and Upload to TensorOpera AI Platform ("Create Application")
130130

131131
Our example code is provided at:
132132
[https://github.com/FedML-AI/FedML/tree/master/python/examples/federate/quick_start/beehive]https://github.com/FedML-AI/FedML/tree/master/python/examples/federate/quick_start/beehive)
@@ -143,11 +143,11 @@ bash build_mlops_pkg.sh
143143
```
144144
After correct execution, you can find the package `server-package.zip` under `mlops` folder.
145145

146-
3) Then you need to upload the `server-package.zip` package to FedML MLOps Platform as the UI shown below.
146+
3) Then you need to upload the `server-package.zip` package to TensorOpera AI Platform as the UI shown below.
147147

148148
![./../_static/image/android-pkg-uploading.png](./../_static/image/android-pkg-uploading.png)
149149

150-
- Launch the training by using FedML MLOps ([https://open.fedml.ai](https://open.fedml.ai))
150+
- Launch the training by using TensorOpera AI Platform ([https://TensorOpera.ai](https://TensorOpera.ai))
151151

152152
Steps at MLOps: create group -> create project -> create run -> select application (the one we uploaded server package for Android) -> start run
153153

@@ -188,7 +188,7 @@ or
188188
<meta-data android:name="fedml_account" android:resource="@string/fed_ml_account" />
189189
```
190190

191-
You can find your account ID at FedML Open Platform (https://open.fedml.ai):
191+
You can find your account ID at FedML Open Platform (https://TensorOpera.ai):
192192
![account](./../_static/image/beehive_account.png)
193193

194194
4. initial FedML Android SDK on your `Application` class.
@@ -234,7 +234,7 @@ This is the message flow to interact between FedML Android SDK and your host APP
234234

235235
- ai.fedml.edge.request.RequestManager
236236

237-
This is used to connect your Android SDK with FedML Open Platform (https://open.fedml.ai), which helps you to simplify the deployment, edge collaborative training, experimental tracking, and more.
237+
This is used to connect your Android SDK with TensorOpera AI Platform (https://TensorOpera.ai), which helps you to simplify the deployment, edge collaborative training, experimental tracking, and more.
238238

239239
You can import them in your Java/Android projects as follows. See [https://github.com/FedML-AI/FedML/blob/master/android/fedmlsdk_demo/src/main/java/ai/fedml/edgedemo/ui/main/MainFragment.java](https://github.com/FedML-AI/FedML/blob/master/android/fedmlsdk_demo/src/main/java/ai/fedml/edgedemo/ui/main/MainFragment.java) as an example.
240240
```

docs/federate/cross-silo/example/mqtt_s3_fedavg_attack_mnist_lr_example.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -343,9 +343,9 @@ if __name__ == "__main__":
343343
```
344344

345345

346-
## A Better User-experience with FedML MLOps (fedml.ai)
346+
## A Better User-experience with TensorOpera AI (fedml.ai)
347347
To reduce the difficulty and complexity of these CLI commands. We recommend you to use our MLOps (fedml.ai).
348-
FedML MLOps provides:
348+
TensorOpera AI provides:
349349
- Install Client Agent and Login
350350
- Inviting Collaborators and group management
351351
- Project Management

docs/federate/cross-silo/example/mqtt_s3_fedavg_defense_mnist_lr_example.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -283,9 +283,9 @@ if __name__ == "__main__":
283283
```
284284

285285

286-
## A Better User-experience with FedML MLOps (fedml.ai)
286+
## A Better User-experience with TensorOpera AI (fedml.ai)
287287
To reduce the difficulty and complexity of these CLI commands. We recommend you to use our MLOps (fedml.ai).
288-
FedML MLOps provides:
288+
TensorOpera AI provides:
289289
- Install Client Agent and Login
290290
- Inviting Collaborators and group management
291291
- Project Management

docs/federate/cross-silo/example/mqtt_s3_fedavg_hierarchical_mnist_lr_example.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -425,9 +425,9 @@ if __name__ == "__main__":
425425
426426
![img.png](cross_silo_hi_arch_refactored.png)
427427
428-
## A Better User-experience with FedML MLOps (fedml.ai)
428+
## A Better User-experience with TensorOpera AI (fedml.ai)
429429
To reduce the difficulty and complexity of these CLI commands. We recommend you to use our MLOps (fedml.ai).
430-
FedML MLOps provides:
430+
TensorOpera AI provides:
431431
- Install Client Agent and Login
432432
- Inviting Collaborators and group management
433433
- Project Management

docs/federate/cross-silo/example/mqtt_s3_fedavg_mnist_lr_example.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -270,9 +270,9 @@ if __name__ == "__main__":
270270
```
271271

272272

273-
## A Better User-experience with FedML MLOps (fedml.ai)
273+
## A Better User-experience with TensorOpera AI (fedml.ai)
274274
To reduce the difficulty and complexity of these CLI commands. We recommend you to use our MLOps (fedml.ai).
275-
FedML MLOps provides:
275+
TensorOpera AI provides:
276276
- Install Client Agent and Login
277277
- Inviting Collaborators and group management
278278
- Project Management

docs/federate/cross-silo/overview.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ where different data silos may have different numbers of GPUs or even multiple n
2929
![./../_static/image/cross-silo-hi.png](./../_static/image/cross-silo-hi.png)
3030

3131
FedML Octopus addresses this challenge by enabling a distributed training paradigm (PyTorch DDP, distributed data parallel) to run inside each data-silo, and further orchestrate different silos with asynchronous or synchronous federated optimization method.
32-
As a result, FedML Octopus can support this scenario in a flexible, secure, and efficient manner. FedML MLOps platform also simplifies its real-world deployment.
32+
As a result, FedML Octopus can support this scenario in a flexible, secure, and efficient manner. TensorOpera AI platform also simplifies its real-world deployment.
3333

3434

3535
Please read the detailed [examples and tutorial](./example/example.md) for details.

docs/federate/cross-silo/user_guide.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ https://www.youtube.com/embed/Xgm0XEaMlVQ
99

1010
**Write Once, Run Anywhere: Seamlessly Migrate Your Local Development to the Real-world Edge-cloud Deployment**
1111

12-
- How Does FedML MLOps Platform Work?
12+
- How Does TensorOpera AI Platform Work?
1313
- Local Development and Building MLOps Packages
1414
- Create Application and Upload Local Packages
1515
- Install FedML Agent: fedml login $account_id
@@ -18,7 +18,7 @@ https://www.youtube.com/embed/Xgm0XEaMlVQ
1818
- Experimental Tracking via Simplified Project Management
1919
- FedML OTA (Over-the-Air) upgrade mechanism
2020

21-
### How Does FedML MLOps Platform Work?
21+
### How Does TensorOpera AI Platform Work?
2222

2323
![image](../_static/image/mlops_workflow_new.png) \
2424
Figure 1: the workflow describing how MLOps works
@@ -157,7 +157,7 @@ login: edge_id = 266
157157
subscribe: flserver_agent/266/start_train
158158
subscribe: flserver_agent/266/stop_train
159159
subscribe: fl_client/flclient_agent_266/status
160-
Congratulations, you have logged into the FedML MLOps platform successfully!
160+
Congratulations, you have logged into the TensorOpera AI platform successfully!
161161
Your device id is @0xb6ff42da6a7e.MacOS. You may review the device in the MLOps edge device list.
162162
```
163163

docs/federate/getting_started.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -224,9 +224,9 @@ Hierarchical Federated Learning:
224224

225225
[https://tensoropera.ai](https://tensoropera.ai)
226226

227-
Currently, the project developed based on FedML Octopus (cross-silo) and Beehive (cross-device) can be smoothly deployed into the real-world system using FedML MLOps.
227+
Currently, the project developed based on FedML Octopus (cross-silo) and Beehive (cross-device) can be smoothly deployed into the real-world system using TensorOpera AI.
228228

229-
The FedML MLOps Platform simplifies the workflow of federated learning from anywhere and at any scale.
229+
The TensorOpera AI Platform simplifies the workflow of federated learning from anywhere and at any scale.
230230
It enables zero-code, lightweight, cross-platform, and provably secure federated learning.
231231
It enables machine learning from decentralized data at various users/silos/edge nodes, without the need to centralize any data to the cloud, hence providing maximum privacy and efficiency.
232232

docs/launch/on-cloud/cloud-cluster.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -166,7 +166,7 @@ You can run as many consequent jobs as you like on your cluster now. It will que
166166
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 17.4kB/s]
167167

168168
You can track your run details at this URL:
169-
https://open.fedml.ai/train/project/run?projectId=1717276102352834560&runId=1717314053350756352
169+
https://TensorOpera.ai/train/project/run?projectId=1717276102352834560&runId=1717314053350756352
170170

171171
For querying the realtime status of your run, please run the following command.
172172
fedml run logs -rid 1717314053350756352
@@ -177,7 +177,7 @@ fedml run logs -rid 1717314053350756352
177177
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 11.8kB/s]
178178

179179
You can track your run details at this URL:
180-
https://open.fedml.ai/train/project/run?projectId=1717276102352834560&runId=1717314101526532096
180+
https://TensorOpera.ai/train/project/run?projectId=1717276102352834560&runId=1717314101526532096
181181

182182
For querying the realtime status of your run, please run the following command.
183183
fedml run logs -rid 1717314101526532096

docs/launch/on-prem/install.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ Requirement already satisfied: numpy>=1.21 in ./.pyenv/versions/fedml/lib/python
4646
.
4747
.
4848

49-
Congratulations, your device is connected to the FedML MLOps platform successfully!
49+
Congratulations, your device is connected to the TensorOpera AI platform successfully!
5050
Your FedML Edge ID is 201610, unique device ID is 0xffdc89fad658@Linux.Edge.Device
5151
```
5252

docs/launch/share-and-earn.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ Below is output of command when executed on a TensorOpera® GPU server:
3232
3333
(fedml) alay@a6000:~$
3434
35-
Congratulations, your device is connected to the FedML MLOps platform successfully!
35+
Congratulations, your device is connected to the TensorOpera AI platform successfully!
3636
Your FedML Edge ID is 1717367167533584384, unique device ID is 0xa11081eb21f1@Linux.Edge.GPU.Supplier
3737
3838
You may visit the following url to fill in more information with your device.

docs/open-source/api/api-deploy.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ sidebar_position: 3
1010
:::tip
1111
Before using some of the apis that require remote operation (e.g. `fedml.api.model_push()`),
1212
please use one of the following methods to login
13-
to FedML MLOps platform first:
13+
to TensorOpera AI platform first:
1414

1515
1. CLI: `fedml login $api_key`
1616

docs/open-source/api/api-launch.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ Simple launcher APIs for running any AI job across multiple public and/or decent
1111

1212
:::tip
1313
Before using some of the apis that require remote operation (e.g. `fedml.api.launch_job()`), please use one of the following methods to login
14-
to FedML MLOps platform first:
14+
to TensorOpera AI platform first:
1515

1616
1. CLI: `fedml login $api_key`
1717

docs/open-source/api/api-storage.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ Storage APIs help in managing all the data needs that is typically associated wi
1010

1111
:::tip
1212
Before using some of the apis that require remote operation (e.g. `fedml.api.launch_job()`), please use one of the following methods to login
13-
to FedML MLOps platform first:
13+
to TensorOpera AI platform first:
1414

1515
1. CLI: `fedml login $api_key`
1616

docs/open-source/cli/fedml-federate.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ computing:
6262
maximum_cost_per_hour: $3000 # max cost per hour for your job per gpu card
6363
#allow_cross_cloud_resources: true # true, false
6464
#device_type: CPU # options: GPU, CPU, hybrid
65-
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://open.fedml.ai/accelerator_resource_type
65+
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://TensorOpera.ai/accelerator_resource_type
6666
data_args:
6767
dataset_name: mnist
6868
dataset_path: ./dataset

docs/open-source/cli/fedml-model.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ Check your device id for master role and worker role.
8686
Welcome to FedML.ai!
8787
Start to login the current device to the TensorOpera AI Platform
8888
89-
Congratulations, your device is connected to the FedML MLOps platform successfully!
89+
Congratulations, your device is connected to the TensorOpera AI platform successfully!
9090
Your FedML Edge ID is xxx, unique device ID is xxx, master deploy ID is 31240, worker deploy ID is 31239
9191
```
9292
From above, we can know that the master ID is 31240, worker deploy ID is 31239

docs/open-source/cli/fedml-train.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ computing:
4141
maximum_cost_per_hour: $3000 # max cost per hour for your job per gpu card
4242
#allow_cross_cloud_resources: true # true, false
4343
#device_type: CPU # options: GPU, CPU, hybrid
44-
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://open.fedml.ai/accelerator_resource_type
44+
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://TensorOpera.ai/accelerator_resource_type
4545
4646
data_args:
4747
dataset_name: mnist

docs/open-source/installation/docker.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ ddocker run -v $LOCAL_WORKSPACE:$DOCKER_WORKSPACE --shm-size=64g --ulimit nofile
4646

4747
**(3) Run examples**
4848

49-
Now, you should now be inside the container. First, you need to log into the MLOps platform. The `USERID` placeholder used below refers to your user id in the FedML MLOps platform:
49+
Now, you should now be inside the container. First, you need to log into the MLOps platform. The `USERID` placeholder used below refers to your user id in the TensorOpera AI platform:
5050
```
5151
root@142ffce4cdf8:/#
5252
root@142ffce4cdf8:/# fedml login <USERID>

docs/open-source/installation/linux.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ The entire workflow is as follows:
3232
2. Deploy the fedml client: ```kubectl apply -f ./fedml-edge-client-server/deployment-client.yml```
3333
3. In the file fedml-edge-client-server/deployment-server.yml, modify the variable ACCOUNT_ID to your desired value
3434
4. Deploy the fedml server: ```kubectl apply -f ./fedml-edge-client-server/deployment-server.yml```
35-
5. Login the FedML MLOps platform (https://tensoropera.ai), the above deployed client and server will be found in the edge devices
35+
5. Login the TensorOpera AI platform (https://tensoropera.ai), the above deployed client and server will be found in the edge devices
3636
3737
If you want to scale up or scal down the pods to your desired count, you may run the following command:
3838

docs/share-and-earn/share-and-earn.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,7 @@ device_count = 0
8484
No GPU devices
8585

8686
======== Network Connection Checking ========
87-
The connection to https://open.fedml.ai is OK.
87+
The connection to https://TensorOpera.ai is OK.
8888

8989
The connection to S3 Object Storage is OK.
9090

@@ -124,7 +124,7 @@ Below is output of command when executed on a FedML® GPU server:
124124

125125
(fedml) alay@a6000:~$
126126

127-
Congratulations, your device is connected to the FedML MLOps platform successfully!
127+
Congratulations, your device is connected to the TensorOpera AI platform successfully!
128128
Your FedML Edge ID is 1717367167533584384, unique device ID is 0xa11081eb21f1@Linux.Edge.GPU.Supplier
129129

130130
You may visit the following url to fill in more information with your device.
0 Bytes
Binary file not shown.

docs/train/train-on-prem/train_on_cloud_cluster.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ You can run as many consequent jobs as you like on your cluster now. It will que
142142
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 17.4kB/s]
143143
144144
You can track your run details at this URL:
145-
https://open.fedml.ai/train/project/run?projectId=1717276102352834560&runId=1717314053350756352
145+
https://TensorOpera.ai/train/project/run?projectId=1717276102352834560&runId=1717314053350756352
146146
147147
For querying the realtime status of your run, please run the following command.
148148
fedml run logs -rid 1717314053350756352
@@ -153,7 +153,7 @@ fedml run logs -rid 1717314053350756352
153153
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 11.8kB/s]
154154
155155
You can track your run details at this URL:
156-
https://open.fedml.ai/train/project/run?projectId=1717276102352834560&runId=1717314101526532096
156+
https://TensorOpera.ai/train/project/run?projectId=1717276102352834560&runId=1717314101526532096
157157
158158
For querying the realtime status of your run, please run the following command.
159159
fedml run logs -rid 1717314101526532096

0 commit comments

Comments
 (0)