You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
## 2. Bind FedML Android App to FedML MLOps Platform
70
+
## 2. Bind FedML Android App to TensorOpera AI Platform
71
71
72
-
This section guides you through 1) installing Android Apk, 2) binding your Android smartphone devices to FedML MLOps Platform, and 3) set the data path for training.
72
+
This section guides you through 1) installing Android Apk, 2) binding your Android smartphone devices to TensorOpera AI Platform, and 3) set the data path for training.
73
73
74
-
### 2.1 Connect Android App with FedML MLOps Platform
75
-
After installing FedML Android App ([https://github.com/FedML-AI/FedML/tree/master/android/app](https://github.com/FedML-AI/FedML/tree/master/android/app)), please go to the MLOps platform ([https://open.fedml.ai](https://open.fedml.ai)) - Beehive and switch to the `Edge Devices` page, you can see a list of **My Edge Devices** at the bottom, as well as a QR code and **Account Key** at the top right.
74
+
### 2.1 Connect Android App with TensorOpera AI Platform
75
+
After installing FedML Android App ([https://github.com/FedML-AI/FedML/tree/master/android/app](https://github.com/FedML-AI/FedML/tree/master/android/app)), please go to the MLOps platform ([https://TensorOpera.ai](https://TensorOpera.ai)) - Beehive and switch to the `Edge Devices` page, you can see a list of **My Edge Devices** at the bottom, as well as a QR code and **Account Key** at the top right.
4. initial FedML Android SDK on your `Application` class.
@@ -234,7 +234,7 @@ This is the message flow to interact between FedML Android SDK and your host APP
234
234
235
235
- ai.fedml.edge.request.RequestManager
236
236
237
-
This is used to connect your Android SDK with FedML Open Platform (https://open.fedml.ai), which helps you to simplify the deployment, edge collaborative training, experimental tracking, and more.
237
+
This is used to connect your Android SDK with TensorOpera AI Platform (https://TensorOpera.ai), which helps you to simplify the deployment, edge collaborative training, experimental tracking, and more.
238
238
239
239
You can import them in your Java/Android projects as follows. See [https://github.com/FedML-AI/FedML/blob/master/android/fedmlsdk_demo/src/main/java/ai/fedml/edgedemo/ui/main/MainFragment.java](https://github.com/FedML-AI/FedML/blob/master/android/fedmlsdk_demo/src/main/java/ai/fedml/edgedemo/ui/main/MainFragment.java) as an example.
FedML Octopus addresses this challenge by enabling a distributed training paradigm (PyTorch DDP, distributed data parallel) to run inside each data-silo, and further orchestrate different silos with asynchronous or synchronous federated optimization method.
32
-
As a result, FedML Octopus can support this scenario in a flexible, secure, and efficient manner. FedML MLOps platform also simplifies its real-world deployment.
32
+
As a result, FedML Octopus can support this scenario in a flexible, secure, and efficient manner. TensorOpera AI platform also simplifies its real-world deployment.
33
33
34
34
35
35
Please read the detailed [examples and tutorial](./example/example.md) for details.
Currently, the project developed based on FedML Octopus (cross-silo) and Beehive (cross-device) can be smoothly deployed into the real-world system using FedML MLOps.
227
+
Currently, the project developed based on FedML Octopus (cross-silo) and Beehive (cross-device) can be smoothly deployed into the real-world system using TensorOpera AI.
228
228
229
-
The FedML MLOps Platform simplifies the workflow of federated learning from anywhere and at any scale.
229
+
The TensorOpera AI Platform simplifies the workflow of federated learning from anywhere and at any scale.
230
230
It enables zero-code, lightweight, cross-platform, and provably secure federated learning.
231
231
It enables machine learning from decentralized data at various users/silos/edge nodes, without the need to centralize any data to the cloud, hence providing maximum privacy and efficiency.
Copy file name to clipboardexpand all lines: docs/launch/on-cloud/cloud-cluster.md
+2-2
Original file line number
Diff line number
Diff line change
@@ -166,7 +166,7 @@ You can run as many consequent jobs as you like on your cluster now. It will que
166
166
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 17.4kB/s]
For querying the realtime status of your run, please run the following command.
172
172
fedml run logs -rid 1717314053350756352
@@ -177,7 +177,7 @@ fedml run logs -rid 1717314053350756352
177
177
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 11.8kB/s]
Copy file name to clipboardexpand all lines: docs/open-source/cli/fedml-federate.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -62,7 +62,7 @@ computing:
62
62
maximum_cost_per_hour: $3000 # max cost per hour for your job per gpu card
63
63
#allow_cross_cloud_resources: true # true, false
64
64
#device_type: CPU # options: GPU, CPU, hybrid
65
-
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://open.fedml.ai/accelerator_resource_type
65
+
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://TensorOpera.ai/accelerator_resource_type
Copy file name to clipboardexpand all lines: docs/open-source/cli/fedml-train.md
+1-1
Original file line number
Diff line number
Diff line change
@@ -41,7 +41,7 @@ computing:
41
41
maximum_cost_per_hour: $3000 # max cost per hour for your job per gpu card
42
42
#allow_cross_cloud_resources: true # true, false
43
43
#device_type: CPU # options: GPU, CPU, hybrid
44
-
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://open.fedml.ai/accelerator_resource_type
44
+
resource_type: A100-80G # e.g., A100-80G, please check the resource type list by "fedml show-resource-type" or visiting URL: https://TensorOpera.ai/accelerator_resource_type
Now, you should now be inside the container. First, you need to log into the MLOps platform. The `USERID` placeholder used below refers to your user id in the FedML MLOps platform:
49
+
Now, you should now be inside the container. First, you need to log into the MLOps platform. The `USERID` placeholder used below refers to your user id in the TensorOpera AI platform:
Copy file name to clipboardexpand all lines: docs/train/train-on-prem/train_on_cloud_cluster.md
+2-2
Original file line number
Diff line number
Diff line change
@@ -142,7 +142,7 @@ You can run as many consequent jobs as you like on your cluster now. It will que
142
142
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 17.4kB/s]
For querying the realtime status of your run, please run the following command.
148
148
fedml run logs -rid 1717314053350756352
@@ -153,7 +153,7 @@ fedml run logs -rid 1717314053350756352
153
153
Submitting your job to TensorOpera AI Platform: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.92k/2.92k [00:00<00:00, 11.8kB/s]
0 commit comments