-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_skitti.py
314 lines (264 loc) · 13.6 KB
/
train_skitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import os
import random
import time
import argparse
import sys
import numpy as np
import torch
import torch.nn as nn
from torch.cuda import amp
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
from tqdm import tqdm
from utils.metric_util import per_class_iu, fast_hist_crop
from dataloader.pc_dataset import get_SemKITTI_label_name
from builder import data_builder, loss_builder, optim_builder
from network.largekernel_model import get_model_class
from easydict import EasyDict
import shutil
from utils.load_util import load_yaml
from utils.load_save_util import load_checkpoint_old, load_checkpoint_model_mask
from utils.erk_sparse_core import Masking, CosineDecay
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser(description='')
parser.add_argument('--config_path', default='./config/lk-semantickitti_erk_finetune.yaml')
parser.add_argument('--ip', default='127.0.0.1', type=str)
parser.add_argument('--port', default='3020', type=str)
args = parser.parse_args()
config_path = args.config_path
configs = load_yaml(config_path)
configs.update(vars(args)) # override the configuration using the value in args
configs = EasyDict(configs)
exp_dir_root = configs['model_params']['model_save_path'].split('/')
exp_dir_root = exp_dir_root[0] if len(exp_dir_root) > 1 else ''
exp_dir = './'+exp_dir_root+'/'
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
shutil.copy('train_skitti.py', str(exp_dir))
shutil.copy('dataloader/dataset2.py', str(exp_dir))
shutil.copy('dataloader/pc_dataset.py', str(exp_dir))
shutil.copy('dataloader/utils.py', str(exp_dir))
shutil.copy('builder/data_builder.py', str(exp_dir))
shutil.copy('network/largekernel_model.py', str(exp_dir))
shutil.copy('utils/erk_sparse_core.py', str(exp_dir))
shutil.copy('config/lk-semantickitti_erk_finetune.yaml', str(exp_dir))
def main(configs):
configs.nprocs = torch.cuda.device_count()
configs.train_params.distributed = True if configs.nprocs > 1 else False
if configs.train_params.distributed:
mp.spawn(main_worker, nprocs=configs.nprocs, args=(configs.nprocs, configs))
else:
main_worker(0, 1, configs)
def main_worker(local_rank, nprocs, configs):
torch.autograd.set_detect_anomaly(True)
dataset_config = configs['dataset_params']
model_config = configs['model_params']
train_hypers = configs['train_params']
sparse_config = configs['sparse_params']
train_hypers.local_rank = local_rank
train_hypers.world_size = nprocs
configs.train_params.world_size = nprocs
if train_hypers['distributed']:
init_method = 'tcp://' + args.ip + ':' + args.port
dist.init_process_group(backend='nccl', init_method=init_method, world_size=nprocs, rank=local_rank)
dataset_config.train_data_loader.batch_size = dataset_config.train_data_loader.batch_size // nprocs
pytorch_device = torch.device('cuda:' + str(local_rank))
torch.backends.cudnn.benchmark = True
torch.cuda.set_device(local_rank)
# seed
if ('seed' not in train_hypers) or (train_hypers.seed is None):
train_hypers.seed = torch.initial_seed() % (2 ** 32 - 1)
seed = train_hypers.seed + local_rank * dataset_config.train_data_loader.num_workers * train_hypers['max_num_epochs']
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
SemKITTI_label_name = get_SemKITTI_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1]
my_model = get_model_class(model_config['model_architecture'])(configs)
if train_hypers['distributed']:
my_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(my_model)
if os.path.exists(model_config['model_load_path']):
print('pre-train')
try:
my_model, pre_weight = load_checkpoint_model_mask(model_config['model_load_path'], my_model, pytorch_device)
except:
my_model = load_checkpoint_old(model_config['model_load_path'], my_model)
my_model.to(pytorch_device)
if train_hypers['distributed']:
train_hypers.local_rank = train_hypers.local_rank % torch.cuda.device_count()
my_model= DistributedDataParallel(my_model,device_ids=[train_hypers.local_rank],find_unused_parameters=False)
train_dataset_loader, val_dataset_loader, train_sampler = data_builder.build(dataset_config, train_hypers)
configs.train_params.total_steps = train_hypers['max_num_epochs'] * len(train_dataset_loader)
print(len(train_dataset_loader))
sparse_config['stop_sparse_epoch'] = sparse_config['stop_sparse_epoch'] * len(train_dataset_loader)
optimizer, scheduler = optim_builder.build(configs, my_model)
criterion = loss_builder.criterion(configs, pytorch_device)
scaler = amp.GradScaler(enabled=train_hypers['amp_enabled'])
if sparse_config['use_sparse']:
decay = CosineDecay(sparse_config['prune_rate'], int(configs.train_params.total_steps))
mask = Masking(optimizer, scaler,
spatial_partition = model_config['spatial_group_partition'],
prune_mode=sparse_config['prune'], prune_rate_decay=decay,
growth_mode=sparse_config['growth'], redistribution_mode=sparse_config['redistribution'],
fp16=train_hypers['amp_enabled'], update_frequency=sparse_config['update_frequency'],
sparsity=sparse_config['sparsity'], sparse_init=sparse_config['sparse_init'],
device=train_hypers.local_rank, distributed=train_hypers['distributed'], stop_iter = sparse_config['stop_sparse_epoch'])
try:
mask.add_module(my_model, pre_weight)
except:
mask.add_module(my_model)
# training
epoch = 0
best_val_miou = 0
my_model.train()
global_iter = 0
check_iter = train_hypers['eval_every_n_steps']
train_sampler.set_epoch(0)
sche_epoch_update = True
while epoch < train_hypers['max_num_epochs']:
loss_list = []
torch.cuda.empty_cache()
my_model.train()
if train_hypers.local_rank == 0:
pbar = tqdm(total=len(train_dataset_loader), ncols=80)
pbar.set_description('Epoch %i' % epoch)
else:
pbar = None
train_sampler.set_epoch(epoch)
time.sleep(10)
# for i in range(5):
for i_iter, (train_data_dict) in enumerate(train_dataset_loader):
torch.cuda.empty_cache()
if global_iter % check_iter == 0 and global_iter != 0:
my_model.eval()
hist_list = []
val_loss_list = []
total_time = 0
with torch.no_grad():
for i_iter_val, (val_data_dict) in enumerate(
val_dataset_loader):
val_data_dict['points'] = val_data_dict['points'].to(pytorch_device)
val_data_dict['normal'] = val_data_dict['normal'].to(pytorch_device)
val_data_dict['batch_idx'] = val_data_dict['batch_idx'].to(pytorch_device)
val_data_dict['labels'] = val_data_dict['labels'].to(pytorch_device)
torch.cuda.synchronize()
start = time.time()
val_data_dict = my_model(val_data_dict)
torch.cuda.synchronize()
end = time.time()
total_time += (end-start)
predict_labels = torch.argmax(val_data_dict['logits'], dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
val_pt_labs = val_data_dict['labels'].cpu().detach().numpy()
hist_list.append(fast_hist_crop(predict_labels, val_pt_labs, unique_label))
if train_hypers.local_rank == 0:
print('inference speed:', total_time / 4071)
iou = per_class_iu(sum(hist_list))
print('Validation per class iou: ')
for class_name, class_iou in zip(unique_label_str, iou):
print('%s : %.2f%%' % (class_name, class_iou * 100))
val_miou = np.nanmean(iou) * 100
if best_val_miou < val_miou:
best_val_miou = val_miou
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
if sparse_config['use_sparse']:
save_dict = {'checkpoint':my_model.module.state_dict(),'mask':mask.masks}
else:
save_dict = {'checkpoint':my_model.module.state_dict()}
except:
if sparse_config['use_sparse']:
save_dict = {'checkpoint':my_model.state_dict(),'mask':mask.masks}
else:
save_dict = {'checkpoint':my_model.state_dict()}
torch.save(save_dict, model_config['model_save_path'][:-3] + str(train_hypers.local_rank)+ model_config['model_save_path'][-3:],
_use_new_zipfile_serialization=False)
print('Saved: ' + model_config['model_save_path'][:-3] + str(train_hypers.local_rank)+ model_config['model_save_path'][-3:])
print('Current val miou is %.3f while the best val miou is %.3f' %
(val_miou, best_val_miou))
my_model.train()
torch.cuda.empty_cache()
time.sleep(10)
if train_hypers['distributed']:
dist.barrier()
loss_list = []
train_data_dict['points'] = train_data_dict['points'].to(pytorch_device)
train_data_dict['normal'] = train_data_dict['normal'].to(pytorch_device)
train_data_dict['batch_idx'] = train_data_dict['batch_idx'].to(pytorch_device)
train_data_dict['labels'] = train_data_dict['labels'].to(pytorch_device)
with amp.autocast(enabled=train_hypers['amp_enabled']):
# forward + backward + optimize
train_data_dict = my_model(train_data_dict)
loss = criterion(train_data_dict)
loss_list.append(loss.item())
if sparse_config['use_sparse']:
if train_hypers['amp_enabled']:
mask.optimizer.zero_grad()
with torch.autograd.detect_anomaly():
mask.scaler.scale(loss).backward()
mask.scaler.unscale_(mask.optimizer)
torch.nn.utils.clip_grad_norm_(parameters=my_model.parameters(), max_norm=0.1)
mask.scaler.step(mask.optimizer)
mask.step()
mask.scaler.update()
scale = mask.scaler.get_scale()
skip_lr_sched = (scale != mask.scaler.get_scale())
if not skip_lr_sched:
scheduler.step()
else:
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(parameters=my_model.parameters(), max_norm=0.25)
mask.step()
if not sche_epoch_update:
scheduler.step()
else:
if train_hypers['amp_enabled']:
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(parameters=my_model.parameters(), max_norm=0.25)
scaler.step(optimizer)
scaler.update()
scale = scaler.get_scale()
skip_lr_sched = (scale != scaler.get_scale())
if not skip_lr_sched:
scheduler.step()
else:
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(parameters=my_model.parameters(), max_norm=0.25)
optimizer.step()
scheduler.step()
if torch.isnan(loss).any():
# continue
for name, param in my_model.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
print("nan gradient found")
print("name:", name)
quit()
if train_hypers.local_rank == 0:
pbar.set_postfix({'loss':'{0:1.2f}'.format(loss.item()), 'lr':'{0:1.8f}'.format(optimizer.param_groups[0]['lr'])})
pbar.update(1)
global_iter += 1
if train_hypers.local_rank == 0:
if global_iter % check_iter == 0:
if len(loss_list) > 0:
print('epoch %d iter %5d, loss: %.3f\n' %
(epoch, i_iter, np.mean(loss_list)))
else:
print('loss error')
if global_iter % check_iter == 0:
loss_list = []
if sche_epoch_update:
scheduler.step()
torch.cuda.empty_cache()
if train_hypers.local_rank == 0:
pbar.close()
epoch += 1
if __name__ == '__main__':
print(' '.join(sys.argv))
print(configs)
main(configs)