-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathagent.py
278 lines (242 loc) · 11.5 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import numpy as np
import collections
import copy
import random
import torch.nn.functional as F
from torch.distributions import Categorical, Distribution
from utils.utils import *
import os
class DQN:
def __init__(self,
net,
optim,
mem_size,
replay_size,
gamma=0.99,
n_steps=10,
device='cpu',
):
self.device = device
self.predict_net = net.to(self.device)
# self.init_parameters()
self.optimizer = optim
# self.memory = collections.deque(maxlen=mem_size)
self.memory = ReplayBuffer(maxlen=mem_size)
self.replay_size = replay_size
self.gamma = gamma
self.n_steps = n_steps
def init_parameters(self):
for param in self.predict_net.parameters():
stdv = 1. / np.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def save(self, log_path, epoch, run_time):
torch.save(self.predict_net.state_dict(), os.path.join(log_path, 'DQN-' + run_time + f'-{epoch}.pth'))
def load(self, path):
models = torch.load(path)
self.predict_net.load_state_dict(models['predict_net'])
def update_memory(self, transitions):
for transition in transitions:
self.memory.append(transition)
def predict(self,x):
with torch.no_grad():
return self.predict_net(x)
def predict_q_value(self, x, test=False):
with torch.no_grad():
return self.predict_net(x, test)
def epsilon_greedy_policy(self, qvalues, epsilon):
actions = []
for i in range(qvalues.shape[0]):
if np.random.rand() < epsilon:
actions.append(np.random.randint(0, qvalues.shape[1]))
else:
actions.append(torch.argmax(qvalues[i]).item())
return actions
def softmax_explore_policy(self, qvalues):
values = 10 * qvalues
values = np.exp(values)
actions = []
for i in range(qvalues.shape[0]):
s = 0.0
for j in range(values.shape[1]):
s += values[i][j]
actions.append(np.random.choice(np.arange(qvalues.shape[1]), p=values[i]/s))
return actions
def replay(self):
if self.memory.size() >= self.replay_size:
# transitions = random.sample(self.memory,self.replay_size)
# Xs = np.array([x[0] for x in transitions])
# q_vals = self.predict_q_value(Xs)
# next_Xs = np.array([x[2] for x in transitions])
# action = [x[1] for x in transitions]
# action = torch.LongTensor(action).unsqueeze(1).to(self.device)
# reward = [x[3] for x in transitions]
# reward = torch.Tensor(reward).to(self.device)
# is_done = [x[4] for x in transitions]
# is_done = torch.BoolTensor(is_done).to(self.device)
Xs, action, next_Xs, reward, is_done = self.memory.n_step_replay(self.replay_size)
q_vals = self.predict_q_value(Xs).cpu()
next_q_vals = self.predict_q_value(next_Xs).cpu()
q_vals_action = torch.where(torch.tensor(is_done), torch.tensor(reward), torch.tensor(reward) + self.gamma * torch.max(next_q_vals, dim=-1).values)
q_vals.scatter_(-1, torch.tensor(action, dtype=torch.int64).unsqueeze(1), torch.tensor(q_vals_action.unsqueeze(1), dtype=q_vals.dtype))
q_val_pred = self.forward(Xs)
qloss = F.mse_loss(q_val_pred, q_vals.to(self.device)).requires_grad_()
return q_vals, qloss
return torch.tensor([0.], requires_grad=True).to(self.device), torch.tensor(0., requires_grad=True).to(self.device)
def forward(self, x):
return self.predict_net(x)
def learning(self):
self.optimizer.zero_grad()
# qvals, q_loss = self.replay()
qvals, q_loss = self.n_step_replay()
total_loss = q_loss
total_loss.backward()
self.optimizer.step()
return qvals.mean().cpu().item(), q_loss.cpu().item(),
def n_step_replay(self):
if self.memory.size() >= self.replay_size:
n_step = self.n_steps
states, actions, next_states, rewards, dones = self.memory.n_step_replay(self.replay_size, n_step)
gammas = np.ones(n_step + 1)
for i in range(1, n_step + 1):
gammas[i] = gammas[i-1] * self.gamma
q_vals = self.predict_q_value(states).cpu()
next_q_vals = torch.max(self.predict_q_value(next_states), -1).values.cpu()
returns = np.sum(rewards * gammas[:n_step], -1)
target_q = np.array(next_q_vals) * gammas[-1] + returns
target_q[dones] = returns[dones]
q_vals.scatter_(-1, torch.tensor(actions, dtype=torch.int64).unsqueeze(1), torch.tensor(target_q, dtype=q_vals.dtype).unsqueeze(1))
q_val_pred = self.forward(states)
qloss = F.mse_loss(q_val_pred, q_vals.to(self.device)).requires_grad_()
return q_vals, qloss
return torch.tensor([0.], requires_grad=True).to(self.device), torch.tensor(0., requires_grad=True).to(self.device)
class PPO:
def __init__(self,
actor,
critic,
optim,
gamma=0.99,
eps_clip=0.1,
max_grad_norm=0.1,
device='cpu',
):
self.device = device
self.actor = actor.to(self.device)
self.actor_softmax = torch.nn.Softmax().to(self.device)
self.critic = critic.to(self.device)
# self.init_parameters()
self.optimizer = optim
self.gamma = gamma
self.eps_clip = eps_clip
self.max_grad_norm = max_grad_norm
def init_parameters(self):
for param in self.actor.parameters():
stdv = 1. / np.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
for param in self.critic.parameters():
stdv = 1. / np.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def save(self, log_path, epoch, run_time):
torch.save({
'actor': self.actor.state_dict(),
'critic': self.critic.state_dict(),
},
os.path.join(log_path, 'PPO-' + run_time + f'-{epoch}.pth'))
def load(self, path):
models = torch.load(path, map_location=self.device)
self.actor.load_state_dict(models['actor'])
self.critic.load_state_dict(models['critic'])
def actor_forward(self, x, test=False, to_critic=False):
return self.actor(x, test, to_critic)
def actor_forward_without_grad(self, x, test=False):
with torch.no_grad():
return self.actor_forward(x, test)
def actor_sample(self, probs, fix_action=None):
# probs = self.actor_softmax(probs)
policy = Categorical(probs)
if fix_action is None:
actions = policy.sample()
else:
actions = fix_action
select_probs = policy.log_prob(actions)
return probs, select_probs, actions
def critic_forward(self, x):
bl_val = self.critic(x)
baseline_val_detached = bl_val.detach()
return baseline_val_detached, bl_val
def critic_forward_without_grad(self, x):
with torch.no_grad():
return self.critic_forward(x)
def learn(self, memory, k_epoch, logger, log_steps):
length = len(memory['rewards'])
old_states = memory['states'] # episode length * batch_size * state dim
old_logprobs = []
for tt in range(length):
old_logprobs.append(memory['logprobs'][tt])
old_logprobs = torch.cat(old_logprobs).view(-1)
actions = memory['actions']
old_value = None
for k in range(k_epoch):
if k == 0:
logprobs = []
bl_val_detached = []
bl_val = []
for tt in range(length):
logprobs.append(memory['logprobs'][tt])
bl_val_detached.append(memory['bl_val_detached'][tt])
bl_val.append(memory['bl_val'][tt])
else:
logprobs = []
bl_val_detached = []
bl_val = []
for tt in range(length):
logits, feature = self.actor_forward(old_states[tt], to_critic=True)
_, batch_log_likelyhood, batch_action = self.actor_sample(logits, actions[tt])
logprobs.append(batch_log_likelyhood)
baseline_val_detached, baseline_val = self.critic_forward(feature)
bl_val_detached.append(baseline_val_detached)
bl_val.append(baseline_val)
logprobs = torch.cat(logprobs).view(-1)
bl_val_detached = torch.cat(bl_val_detached).view(-1)
bl_val = torch.cat(bl_val).view(-1)
Reward = []
reward_reversed = memory['rewards'][::-1]
R = self.critic_forward(self.actor_forward(old_states[-1], to_critic=True)[1])[0].view(-1)
for r in range(len(reward_reversed)):
R = R * self.gamma + torch.tensor(reward_reversed[r], dtype=torch.float32).to(self.device)
Reward.append(R)
# Reward = torch.stack(Reward[::-1], 0) # n_step, bs
# Reward = Reward.view(-1)
Reward = torch.cat(Reward[::-1]).view(-1)
ratios = torch.exp(logprobs - old_logprobs.detach())
advantages = Reward - bl_val_detached
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages
reinforce_loss = -torch.min(surr1, surr2).mean()
if old_value is None:
baseline_loss = ((bl_val - Reward) ** 2).mean()
old_value = bl_val.detach()
else:
vpredclipped = old_value + torch.clamp(bl_val - old_value, - self.eps_clip, self.eps_clip)
v_max = torch.max(((bl_val - Reward) ** 2), ((vpredclipped - Reward) ** 2))
baseline_loss = v_max.mean()
approx_kl_divergence = (.5 * (old_logprobs.detach() - logprobs) ** 2).mean().detach()
approx_kl_divergence[torch.isinf(approx_kl_divergence)] = 0
loss = baseline_loss + reinforce_loss # - 1e-5 * entropy.mean()
self.optimizer.zero_grad()
loss.backward()
grad_norms = 0
if self.max_grad_norm > 0:
grad_norms = clip_grad_norms(self.optimizer.param_groups, self.max_grad_norm)
self.optimizer.step()
logger.write('train/Reward', log_steps, {'train/Reward': R.mean().cpu().item()})
logger.write('train/ratios', log_steps, {'train/ratios': ratios.mean().cpu().item()})
logger.write('train/baseline_loss', log_steps, {'train/baseline_loss': baseline_loss.cpu().item()})
logger.write('train/reinforce_loss', log_steps, {'train/reinforce_loss': reinforce_loss.cpu().item()})
logger.write('train/loss', log_steps, {'train/loss': loss.cpu().item()})
logger.write('train/kl', log_steps, {'train/kl': approx_kl_divergence})
if self.max_grad_norm > 0:
grad_norms, grad_norms_clipped = grad_norms
logger.write('train/actor_grad', log_steps, {'train/actor_grad': grad_norms[0]})
logger.write('train/critic_grad', log_steps, {'train/critic_grad': grad_norms[1]})
log_steps += 1