-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathoptions.py
291 lines (257 loc) · 18.8 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import argparse
from utils import checkattr
##-------------------------------------------------------------------------------------------------------------------##
# Where to store the data / results / models / plots
store = "./store"
##-------------------------------------------------------------------------------------------------------------------##
####################
## Define options ##
####################
def define_args(filename, description):
parser = argparse.ArgumentParser('./{}.py'.format(filename), description=description)
return parser
def add_general_options(parser, single_task=False, only_fc=True, **kwargs):
parser.add_argument('--no-save', action='store_false', dest='save', help="don't save trained models")
if single_task and (not only_fc):
parser.add_argument('--convE-stag', type=str, metavar='STAG', default='none',help="tag for saving convE-layers")
parser.add_argument('--fcE-stag', type=str, metavar='STAG', default='none', help="tag for saving fcE-layers")
parser.add_argument('--full-stag', type=str, metavar='STAG', default='none', help="tag for saving full model")
parser.add_argument('--full-ltag', type=str, metavar='LTAG', default='none', help="tag for loading full model")
parser.add_argument('--test', action='store_false', dest='train', help='evaluate previously saved model')
if not single_task:
parser.add_argument('--get-stamp', action='store_true', help='print param-stamp & exit')
parser.add_argument('--seed', type=int, default=0, help='random seed (for each random-module used)')
parser.add_argument('--no-gpus', action='store_false', dest='cuda', help="don't use GPUs")
parser.add_argument('--data-dir', type=str, default='{}/datasets'.format(store), dest='d_dir',
help="default: %(default)s")
parser.add_argument('--model-dir', type=str, default='{}/models'.format(store), dest='m_dir',
help="default: %(default)s")
if not single_task:
parser.add_argument('--plot-dir', type=str, default='{}/plots'.format(store), dest='p_dir',
help="default: %(default)s")
parser.add_argument('--results-dir', type=str, default='{}/results'.format(store), dest='r_dir',
help="default: %(default)s")
return parser
def add_eval_options(parser, single_task=False, generative=False, **kwargs):
# evaluation parameters
eval = parser.add_argument_group('Evaluation Parameters')
if (not single_task):
eval.add_argument('--metrics', action='store_true', help="calculate additional metrics (e.g., BWT, forgetting)")
eval.add_argument('--pdf', action='store_true', help="generate pdf with plots for individual experiment(s)")
eval.add_argument('--visdom', action='store_true', help="use visdom for on-the-fly plots")
if not single_task:
eval.add_argument('--log-per-task', action='store_true', help="set all visdom-logs to [iters]")
eval.add_argument('--loss-log', type=int, default=500, metavar="N", help="# iters after which to plot loss")
if generative:
eval.add_argument('--sample-log', type=int, metavar="N", help="# iters after which to plot samples")
eval.add_argument('--sample-n', type=int, default=64, help="# images to show")
eval.add_argument('--no-samples', action='store_true', help="don't plot generated images")
eval.add_argument('--acc-log', type=int, default=None if single_task else 500, metavar="N",
help="# iters after which to plot accuracy")
eval.add_argument('--acc-n', type=int, default=1024, help="# samples for evaluating accuracy (visdom-plots)")
return parser
def add_task_options(parser, only_fc=False, single_task=False, **kwargs):
# benchmark parameters
task_params = parser.add_argument_group('Benchmark Parameters')
task_choices = ['MNIST'] if only_fc else ['CIFAR100', 'CIFAR10', 'MNIST', 'CORe50']
task_default = 'MNIST'
task_params.add_argument('--experiment', type=str, default=task_default, choices=task_choices)
task_params.add_argument('--offline', action='store_true', help="always train on all data so far")
if not single_task:
task_params.add_argument('--tasks', type=int, default=None, help='number of tasks')
if not single_task:
task_params.add_argument('--iters', type=int, help="# of iterations to optimize main model")
task_params.add_argument('--single-epochs', action='store_true',
help='single pass over data (replaces "--iters")')
else:
iter_epochs = task_params.add_mutually_exclusive_group(required=False)
iter_epochs.add_argument('--epochs', type=int, default=10, metavar='N',
help='# of epochs (default: %(default)d)')
iter_epochs.add_argument('--iters', type=int, metavar='N', help='# of iterations (replaces "--epochs")')
task_params.add_argument('--batch', type=int, default=256 if single_task else None, help="batch-size")
if not only_fc:
task_params.add_argument('--pre-convE', action='store_true', help="use pretrained convE-layers")
task_params.add_argument('--convE-ltag', type=str, metavar='LTAG', default='s100N',
help="tag for loading convE-layers")
if not only_fc:
task_params.add_argument('--augment', action='store_true',
help="augment training data (random crop & horizontal flip)")
task_params.add_argument('--no-norm', action='store_false', dest='normalize',
help="don't normalize images (only for CIFAR)")
return parser
def add_model_options(parser, only_fc=False, single_task=False, generative=False, **kwargs):
# model architecture parameters
model = parser.add_argument_group('Parameters Main Model')
if not only_fc:
# -conv-layers
model.add_argument('--conv-type', type=str, default="standard", choices=["standard", "resNet"])
model.add_argument('--n-blocks', type=int, default=2, help="# blocks per conv-layer (only for 'resNet')")
model.add_argument('--depth', type=int, default=5 if single_task else None,
help="# of convolutional layers (0 = only fc-layers)")
model.add_argument('--reducing-layers', type=int, dest='rl',help="# of layers with stride (=image-size halved)")
model.add_argument('--channels', type=int, default=16, help="# of channels 1st conv-layer (doubled every 'rl')")
model.add_argument('--conv-bn', type=str, default="yes", help="use batch-norm in the conv-layers (yes|no)")
model.add_argument('--conv-nl', type=str, default="relu", choices=["relu", "leakyrelu"])
model.add_argument('--global-pooling', action='store_true', dest='gp', help="ave global pool after conv-layers")
# -fully-connected-layers
model.add_argument('--fc-layers', type=int, default=3, dest='fc_lay', help="# of fully-connected layers")
model.add_argument('--fc-units', type=int, default=2000 if single_task else None, metavar="N",
help="# of units in first fc-layers")
model.add_argument('--fc-drop', type=float, default=0., help="dropout probability for fc-units")
model.add_argument('--fc-bn', type=str, default="no", help="use batch-norm in the fc-layers (no|yes)")
model.add_argument('--fc-nl', type=str, default="relu", choices=["relu", "leakyrelu", "none"])
model.add_argument('--h-dim', type=int, metavar="N", help='# of hidden units final layer (default: fc-units)')
# NOTE: number of units per fc-layer linearly declinces from [fc_units] to [h_dim].
if generative:
model.add_argument('--z-dim', type=int, default=100, help='size of latent representation (def=100)')
model.add_argument('--prior', type=str, default="standard", choices=["standard", "vampprior", "GMM"])
model.add_argument('--n-modes', type=int, default=1, help="how many modes for prior? (def=1)")
if not only_fc:
model.add_argument('--deconv-type', type=str, default="standard", choices=["standard", "resNet"])
return parser
def add_slda_options(parser, **kwargs):
# parameters specific for Streaming LDA
slda = parser.add_argument_group('SLDA Parameters')
slda.add_argument('--slda', action='store_true', help="use SLDA")
slda.add_argument('--covariance', type=str, choices=["identity", "fixed", "streaming", "pure_streaming"],
default="streaming", help="what covariance matrix to use?")
return parser
def add_train_options(parser, only_fc=False, single_task=False, generative=False, **kwargs):
# training settings / initialization
train_params = parser.add_argument_group('Training Parameters')
train_params.add_argument('--neg-samples', type=str, default='all-so-far',
choices=["all-so-far", "all", "current", "single-from-batch"],
help="how to select negative samples?")
#--> The above command controls which output units will be set to "active" (the active classes can also
# be thought of as 'negative samples', see Li et al., 2020, https://arxiv.org/abs/2011.12216):
# - "all-so-far": the output units of all classes seen so far are set to active
# - "all": always the output units of all classes are set to active
# - "current": only output units of the classes in the current 'task' (or 'episode') are set to active
# - "single-from-batch": only a single other output unit (randomly selected from current batch) is set to active
train_params.add_argument('--lr', type=float, default=0.0001 if single_task else None, help="learning rate")
if not single_task:
train_params.add_argument('--optimizer', type=str, choices=['adam', 'adam_reset', 'sgd'], default='adam')
train_params.add_argument('--init-weight', type=str, default='standard', choices=['standard', 'xavier'])
train_params.add_argument('--init-bias', type=str, default='standard', choices=['standard', 'constant'])
if not single_task:
train_params.add_argument('--reinit', action='store_true', help='reinitialize networks before each new task')
if not only_fc:
train_params.add_argument('--freeze-convE', action='store_true', help="freeze convE-layers")
train_params.add_argument('--freeze-fcE', action='store_true', help='freeze fcE-layers')
if not single_task:
train_params.add_argument('--freeze-after-first', action='store_true',
help='freeze specified layers only after 1st epoch')
if generative:
train_params.add_argument('--recon-loss', type=str, choices=['MSE', 'BCE'])
train_params.add_argument('--hidden', action='store_true', help='conv layers are fixed feature extractor')
train_params.add_argument('--train-on-first', action='store_true', help="train feature extractor on first task")
return parser
def add_replay_options(parser, **kwargs):
replay = parser.add_argument_group('Replay Parameters')
replay_choices = ['generative', 'none', 'current']
replay.add_argument('--replay', type=str, default='none', choices=replay_choices)
replay.add_argument('--distill', action='store_true', help="use distillation for replay")
replay.add_argument('--temp', type=float, default=2., dest='temp', help="temperature for distillation")
# -options specific for 'brain-inspired replay'
replay.add_argument('--brain-inspired', action='store_true', help="select defaults for brain-inspired replay")
replay.add_argument('--feedback', action="store_true", help="equip main model with feedback connections")
replay.add_argument('--pred-weight', type=float, default=1., dest='pl', help="(FB) weight of prediction loss (def=1)")
replay.add_argument('--classify', type=str, default="beforeZ", choices=['beforeZ', 'fromZ'])
replay.add_argument('--per-class', action='store_true', help="if selected, each class has own modes")
replay.add_argument('--dg-gates', action='store_true', help="use class-specific gates in decoder")
replay.add_argument('--dg-prop', type=float, help="decoder-gates: masking-prop")
return parser
def add_regularization_options(parser, **kwargs):
cl = parser.add_argument_group('Options relating to EWC / SI')
cl.add_argument('--ewc', action='store_true', help="use 'EWC' (Kirkpatrick et al, 2017)")
cl.add_argument('--lambda', type=float, dest="ewc_lambda",help="--> EWC: regularisation strength")
cl.add_argument('--online', action='store_true', help="--> EWC: perform 'online EWC'")
cl.add_argument('--gamma', type=float, help="--> EWC: forgetting coefficient (for 'online EWC')")
cl.add_argument('--fisher-n', type=int, default=1000, help="--> EWC: sample size estimating Fisher Information")
cl.add_argument('--si', action='store_true', help="use 'Synaptic Intelligence' (Zenke, Poole et al, 2017)")
cl.add_argument('--c', type=float, dest="si_c", help="--> SI: regularisation strength")
cl.add_argument('--epsilon', type=float, default=0.1, dest="epsilon", help="--> SI: dampening parameter")
cl.add_argument('--omega-max', type=float, help="--> SI: max penalty for any parameter")
cl.add_argument('--reg-only-hidden', action='store_true', help="use EWC and/or SI only on hidden layers")
return parser
def add_bias_correcting_options(parser, **kwargs):
bc = parser.add_argument_group('Options for bias-correcting')
bc.add_argument('--cwr', action='store_true', help="use 'CWR' (Lomonaco and Maltoni, 2017)")
bc.add_argument('--cwr-plus', action='store_true', help="use 'CWR+' (Maltoni and Lomonaco, 2019)")
return parser
##-------------------------------------------------------------------------------------------------------------------##
def add_options_for_comparison(parser, **kwargs):
cl = parser.add_argument_group('Parameters for SI / CWR / AR1')
cl.add_argument('--fisher-n', type=int, default=1000, help="--> EWC: sample size estimating Fisher Information")
cl.add_argument('--lambda', type=float, dest="ewc_lambda",help="--> EWC: regularisation strength")
cl.add_argument('--c', type=float, dest="si_c", help="--> SI: regularisation strength")
cl.add_argument('--ar1-c', type=float, dest="ar1_c", help="--> AR1: regularisation strength for SI")
cl.add_argument('--bir-c', type=float, dest="bir_c", help="--> BI-R + SI: regularisation strength for SI")
cl.add_argument('--si-dg-prop', type=float, dest="si_dg_prop", help="--> BI-R + SI: gating prop")
cl.add_argument('--epsilon', type=float, default=0.1, dest="epsilon", help="--> SI: dampening parameter")
cl.add_argument('--omega-max', type=float, help="--> SI: max penalty for any parameter")
return parser
def add_options_for_param_search(parser, **kwargs):
cl = parser.add_argument_group('Parameters for SI / AR1 / Replay')
cl.add_argument('--fisher-n', type=int, default=1000, help="--> EWC: sample size estimating Fisher Information")
cl.add_argument('--epsilon', type=float, default=0.1, dest="epsilon", help="--> SI: dampening parameter")
cl.add_argument('--temp', type=float, default=2., dest='temp', help="temperature for distillation")
cl.add_argument('--pred-weight', type=float, default=1., dest='pl', help="(FB) weight of prediction loss (def=1)")
cl.add_argument('--classify', type=str, default="beforeZ", choices=['beforeZ', 'fromZ'])
return parser
##-------------------------------------------------------------------------------------------------------------------##
############################
## Check / modify options ##
############################
def set_defaults(args, set_hyper_params=True, single_task=False, no_boundaries=False, **kwargs):
# -if 'brain-inspired' is selected, select corresponding defaults
if checkattr(args, 'brain_inspired'):
if hasattr(args, "replay") and not args.replay=="generative":
raise Warning("To run with brain-inspired replay, select both '--brain-inspired' and '--replay=generative'")
args.feedback = True #--> replay-through-feedback
args.prior = 'GMM' #--> conditional replay
args.per_class = True #--> conditional replay
args.dg_gates = True #--> gating based on internal context (has hyper-param 'dg_prop')
args.hidden = True #--> internal replay
args.pre_convE = True #--> internal replay
args.distill = True #--> distillation
# -set default-values for certain arguments based on chosen experiment
args.normalize = args.normalize if args.experiment in ('CIFAR10', 'CIFAR100') else False
args.augment = args.augment if args.experiment in ('CIFAR10', 'CIFAR100') else False
if hasattr(args, "depth"):
args.depth = (5 if args.experiment in ('CIFAR10', 'CIFAR100') else 0) if args.depth is None else args.depth
if hasattr(args, 'recon_loss'):
args.recon_loss = ('BCE' if args.experiment=="MNIST" else 'MSE') if args.recon_loss is None else args.recon_loss
if not single_task:
args.tasks= (
5 if args.experiment in ('MNIST', 'CIFAR10', 'CORe50') else 10
) if args.tasks is None else args.tasks
if hasattr(args, 'iters'):
args.iters = 2000 if args.iters is None else args.iters
args.lr = (0.0001 if args.experiment=='CIFAR100' else 0.001) if args.lr is None else args.lr
args.batch = (128 if args.experiment=='MNIST' else 256) if args.batch is None else args.batch
args.fc_units = (
400 if args.experiment=='MNIST' else (2000 if args.experiment=='CIFAR100' else 1000)
) if args.fc_units is None else args.fc_units
# -set hyper-parameter values (typically found by grid-search) based on chosen experiment
if set_hyper_params and (not single_task) and (not no_boundaries):
if args.experiment=='MNIST':
args.si_c = 0.1 if args.si_c is None else args.si_c
args.ewc_lambda = 100000. if args.ewc_lambda is None else args.ewc_lambda
args.gamma = 1. if args.gamma is None else args.gamma
elif args.experiment=='CIFAR100':
args.si_c = 1. if args.si_c is None else args.si_c
args.ewc_lambda = 1. if args.ewc_lambda is None else args.ewc_lambda
args.gamma = 1 if args.gamma is None else args.gamma
# -for other unselected options, set default values (not specific to chosen experiment)
args.h_dim = args.fc_units if args.h_dim is None else args.h_dim
if hasattr(args, "rl"):
args.rl = args.depth-1 if args.rl is None else args.rl
# -if [log_per_task], reset all logs
if checkattr(args, 'log_per_task'):
args.acc_log = args.iters
args.loss_log = args.iters
return args
def check_for_errors(args, **kwargs):
if checkattr(args, "normalize") and hasattr(args, "recon_los") and args.recon_loss=="BCE":
raise ValueError("'BCE' is not a valid reconstruction loss with normalized images")