-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbootstrap.py
executable file
·325 lines (311 loc) · 13.5 KB
/
bootstrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#! /usr/bin/env python
import pandas as pd
import istarmap
import argparse
import requests
import sys
import os
import stringdb_params as sdb
from io import StringIO
import time
import shutil
import multiprocessing as mp
from tqdm import tqdm
from itertools import repeat
import query_grn
import ppin
import get_ppi_eqtls
import find_snp_disease
import logger
def write_results(df, output_fp, logger):
out_dir = os.path.dirname(output_fp)
os.makedirs(out_dir, exist_ok=True)
logger.write('Writing output...')
df.to_csv(output_fp, sep='\t', index=False)
def parse_input(inputs):
'''Return a dataframe of gene input.'''
logger.write('Parsing input...')
df = pd.DataFrame()
if os.path.isfile(inputs[0]): # Input is file.
df = pd.read_csv(inputs[0], sep='\t')
df = df[['gene']].drop_duplicates()
else: # Input probably space-separated list of genes.
df = pd.DataFrame({'gene': [i.upper() for i in inputs]})
df = df[['gene']].drop_duplicates()
return df
def get_stringdb_versions():
return sum(pd.read_csv(os.path.join(os.path.dirname(__file__), 'data/string_api_urls.txt'),
sep='\t', usecols=['string_version']).values.tolist(), [])
def parse_args():
parser = argparse.ArgumentParser(
description='Identify multimorbid traits based on eQTL associations and protein-protein interactions.', formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'-g', '--genes', nargs='+',
help='''A space-separated list of gene symbols or filepath to a file
containing gene symbols in the 'gene' column.''' )
parser.add_argument(
'-s', '--snps', nargs='+',
help='''A space-separated list of SNP rsIDs or filepath to a file
containing SNP rsids in the 'snp' column.''' )
parser.add_argument(
'--trait',
help='''GWAS trait to query. Note: this flag is mutually exclusive with
the --snps and --pmid flags''')
parser.add_argument(
'--pmid',
help='''PubMed ID of the GWAS to query. Note: this flag is mutually exclusive with
the --snps and --trait flag''')
parser.add_argument(
'--grn-dir', required=True,
help='''Directory containing tissue gene regulatory network.
The subdirectories should contain significant_eqtls.txt for each chromosome.''')
parser.add_argument(
'--gwas', default=None,
help='''Filepath to GWAS associations.
Default: Associations from the GWAS Catalog
(https://www.ebi.ac.uk/gwas/api/search/downloads/full) ''')
parser.add_argument(
'-o', '--output-dir', required=True,
help='Directory to write results.')
parser.add_argument(
'-l', '--levels', default=1, type=int,
help='Path length (i.e. number of nodes) to query. Default = 1')
parser.add_argument(
'-p', '--ppin', default='string', choices=['string', 'proper'],
help='''The protein-protein-interaction database(s) to use.
Default: string''')
parser.add_argument(
'--string-score', default=0.7, type=float,
help='Cut-off score for STRING interactions. Default = 0.7')
parser.add_argument(
'--bootstrap', default=False, action='store_true',
help='Perform a bootstrap. Default = False')
parser.add_argument(
'--bootstraps', default=1000, type=int,
help='Number of bootstrap datasets. Default: 1000')
parser.add_argument(
'--keep-bootstraps', action='store_true', default=False,
help='Keep bootstrap results. Default: False ')
parser.add_argument(
'--non-spatial', action='store_true', default=False,
help='Include non-spatial eQTLs. Default = False')
parser.add_argument(
'--non-spatial-dir', default=os.path.join(os.path.dirname(__file__), 'data/GTEx/'),
help='Filepath to non-spatial eQTLs.')
parser.add_argument(
'--snp-ref-dir', default=os.path.join(os.path.dirname(__file__), 'data/snps/'),
help='Filepath to SNP BED databases.')
parser.add_argument(
'--gene-ref-dir', default=os.path.join(os.path.dirname(__file__), 'data/genes/'),
help='Filepath to gene BED.')
parser.add_argument(
'--ld', action='store_true', default=False,
help='Include LD SNPs in identifying eQTLs and GWAS traits. Default = False')
parser.add_argument(
'-c', '--correlation-threshold', default=0.8, type=int,
help='The r-squared correlation threshold to use.')
parser.add_argument(
'-w', '--window', default=5000, type=int,
help='The genomic window (+ or - in bases) within which proxies are searched. Default = 5000')
parser.add_argument(
'--population', default='EUR', choices=['EUR'],
help='The ancestral population in which the LD is calculated. Default = "EUR"')
parser.add_argument(
'--ld-dir', default=os.path.join(os.path.dirname(__file__), 'data/ld/dbs/super_pop/'),
help='Directory containing LD database.')
parser.add_argument(
'--string-version', choices = get_stringdb_versions(), action='append',
help='''Use this flag to specify the version of STRING database to use.
Available versions: '''+', '.join(get_stringdb_versions()) + '.', metavar='')
return parser.parse_args()
def parse_snps(snp_arg, trait_arg, pmid_arg, gwas, grn, output_dir,
non_spatial, non_spatial_dir, snp_ref_dir, gene_ref_dir,
ld, corr_thresh, window, population, ld_dir, logger):
if (snp_arg and trait_arg) or (snp_arg and pmid_arg) or (trait_arg and pmid_arg):
sys.exit('Only one of --snps, --trait, or --pmid is required.\nExiting.')
snps = pd.DataFrame()
logger.write('Parsing SNP input...')
if snp_arg:
if os.path.isfile(snp_arg[0]):
df = pd.read_csv(snp_arg[0], sep='\t', header=None, names=['snp'])
df = df[df['snp'] != 'snp']
df['snp'] = df['snp'].str.strip()
snps = df['snp'].drop_duplicates()
else:
df = pd.DataFrame({'snp': snp_arg})
snps = df['snp'].drop_duplicates()
elif trait_arg:
snps = query_grn.extract_trait_snps(trait_arg, gwas, logger)
elif pmid_arg:
snps = query_grn.extract_pmid_snps(pmid_arg, gwas, logger)
eqtls = query_grn.get_eqtls(snps, grn, output_dir,
non_spatial, non_spatial_dir, snp_ref_dir, gene_ref_dir,
ld, corr_thresh, window, population, ld_dir, logger)
return snps, eqtls
def parse_genes(genes_args, logger):
logger.write('Parsing gene input...')
df = pd.DataFrame()
if os.path.isfile(genes_args[0]):
df = pd.read_csv(genes_args[0], sep='\t')
df = df[['gene']].drop_duplicates()
else:
df = pd.DataFrame({'gene': [i.upper() for i in genes_args]})
df = df[['gene']].drop_duplicates()
return df
def join_path(*args):
fp = ''
for arg in args:
fp = os.path.join(fp, arg)
return fp
def pipeline(genes, gwas, output_dir, args, logger, bootstrap=False):
# PPIN
gene_list = []
graph = pd.DataFrame()
if not bootstrap:
logger.write('Identifying protein interactions...')
gene_list = ppin.make_ppin(
genes, args.levels, output_dir, args.ppin, args.string_version, args.string_score,
logger, bootstrap=bootstrap)
if sum([len(level) for level in gene_list]) == 0:
return pd.DataFrame()
# PPIN eQTLs
if not bootstrap:
logger.write('Identifying gene eQTLs...')
query_grn.get_gene_eqtls(
gene_list, grn, output_dir,
args.non_spatial, args.non_spatial_dir, args.snp_ref_dir, args.gene_ref_dir,
logger, bootstrap=bootstrap)
# Traits
if not bootstrap:
logger.write('Identifying GWAS traits...')
sig_res = find_snp_disease.find_disease(
gwas, output_dir, output_dir, args.ld, args.correlation_threshold,
args.window, args.population, args.ld_dir, logger, bootstrap=bootstrap)
return sig_res
def prep_bootstrap(sim, gene_num, sims_dir, res_dict, grn_genes, gwas, args):
sim_res = None
sim_output_dir = join_path(sims_dir, sim)
fp = os.path.join(sim_output_dir,'significant_enrichment.txt')
if os.path.isfile(fp):
sim_res = pd.read_csv(fp, sep = '\t')
else:
sim_genes = pd.DataFrame(
{'gene': grn_genes.sample(gene_num, random_state=int(sim)).tolist()})
sim_res = pipeline(sim_genes, gwas, sim_output_dir, args, logger, bootstrap=True)
if not sim_res is None:
for i, row in sim_res.iterrows():
k = row['level'] + '__' + row['trait']
try:
res_dict[k] += 1
except:
pass
def bootstrap_genes(sig_res, genes, gwas, num_sims, grn, args):
logger.write('Preparing simulations...')
gene_num = genes[genes['gene'].isin(grn['gene'])]['gene'].nunique()
sims_dir = join_path(args.output_dir, 'bootstrap')
manager = mp.Manager()
res_dict = manager.dict()
for _, row in sig_res.iterrows():
k = row['level'] + '__' + row['trait']
if not k in res_dict.keys():
res_dict[k] = 0
desc = 'Boostrapping'
bar_format = '{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt} {unit}'
sims = [str(i) for i in range(num_sims)]
if args.ld:
for sim in tqdm(
sims,
total=len(sims), desc=desc, bar_format=bar_format,
unit='simulations', ncols=80
):
#logger.write(sim)
prep_bootstrap(
sim, gene_num, sims_dir, res_dict,
grn['gene'].drop_duplicates(), gwas, args)
else:
with mp.Pool(4) as pool:
for _ in tqdm(
pool.istarmap(
prep_bootstrap,
zip(
sims,
repeat(gene_num),
repeat(sims_dir),
repeat(res_dict),
repeat(grn['gene'].drop_duplicates()),
repeat(gwas),
repeat(args))
),
total=len(sims), desc=desc, bar_format=bar_format,
unit='simulations', ncols=80
):
pass
sim_df = []
for k in res_dict:
ks = k.split('__')
sim_df.append([ks[0], ks[1], res_dict[k]])
if len(sim_df) == 0:
logger.write('Warning: No output for simulations.')
return
sim_df = pd.DataFrame(sim_df, columns=['level', 'trait', 'sim_count'])
# Using (count + 1) / (num_sims +1) See https://doi.org/10.1086/341527
sim_df['sim_pval'] = round((sim_df['sim_count'] + 1) / (num_sims + 1), 3)
res = (sig_res
.merge(sim_df, on=['level', 'trait'], how='left')
.fillna(0)
)
if not args.keep_bootstraps:
shutil.rmtree(sims_dir)
write_results(res,
join_path(args.output_dir, 'significant_enrichment_bootstrap.txt'),
logger)
if __name__=='__main__':
pd.options.mode.chained_assignment = None
args = parse_args()
if not args.genes and not args.snps and not args.trait and not args.pmid:
sys.exit('FATAL: One of --genes, --snps, --trait, or --pmid is required.\nExiting.')
start_time = time.time()
if args.genes and (args.snps or args.trait or args.pmid):
sys.exit('Only one of --genes, --snps, --trait, or --pmid is required.\nExiting.')
if args.ppin == 'string' and args.string_version is None:
sys.exit('\nMissing argument: --string-version. See "comorbid.y -h" for details.\nExiting.\n')
if args.string_version and args.ppin == 'proper':
sys.exit('\n--string-version can only be used when --ppin="string".\nExiting.\n')
os.makedirs(args.output_dir, exist_ok=True)
global logger
logger = logger.Logger(logfile=os.path.join(args.output_dir, 'comorbid.log'))
logger.write('SETTINGS\n========')
for arg in vars(args):
logger.write(f'{arg}:\t {getattr(args, arg)}')
if args.ppin == 'string' and args.string_version[0] == 'latest':
logger.write('STRINGdb version: {}'
.format(sdb.get_stringapi_info(args.string_version[0])[1]))
logger.write('\n')
grn = query_grn.parse_grn(args.grn_dir, logger)
gwas = query_grn.parse_gwas(args.gwas, logger)
snps = []
#genes = pd.DataFrame()
'''
if args.genes:
genes = parse_genes(args.genes, logger)
else:
snps, genes = parse_snps(
args.snps, args.trait, args.pmid, gwas, grn, args.output_dir,
args.non_spatial, args.non_spatial_dir, args.snp_ref_dir, args.gene_ref_dir,
args.ld, args.correlation_threshold, args.window, args.population, args.ld_dir,
logger)
if genes.empty:
logger.write('Exiting: No gene targets for SNPs found.')
sys.exit()
sig_res = pipeline(genes, gwas, args.output_dir, args, logger)
write_results(sig_res, os.path.join(args.output_dir, 'significant_enrichment.txt'), logger)
if sig_res.empty:
logger.write('Exiting: No results found.')
exit()
'''
sig_res = pd.read_csv(os.path.join(args.output_dir, 'significant_enrichment.txt'),
sep = '\t')
genes = pd.read_csv(os.path.join(args.output_dir, 'level0_genes.txt'))
bootstrap_genes(sig_res, genes, gwas, args.bootstraps, grn, args)
logger.write('Done.')
logger.write(f'Time elapsed: {(time.time() - start_time) / 60: .2f} minutes.')