-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmers_dataset.py
39 lines (34 loc) · 1.38 KB
/
kmers_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from itertools import product
import pandas as pd
from collections import defaultdict
import os
import csv
class kmers_dataset:
def __init__(self, k_mers, output_folder, genome_folder):
self.k_mers = k_mers
self.output_folder = output_folder
self.genome_folder = genome_folder
def create_csv_headers(self):
letters =['A', 'C', 'G', 'T']
header_list = [''.join(i) for i in product(letters, repeat = self.k_mers)]
header_list.insert(0, 'Genome_Name')
return(header_list)
def create_dataset(self, header_list):
self.header_list = header_list
# initializing dictationary
d_con = defaultdict(list)
for entry in os.scandir(self.output_folder):
genome_name = str(os.path.basename(entry))[:-4]
d = pd.read_csv(entry, header= None, sep='\t', index_col=0).to_dict()
d_temp = d[1]
d_temp['Genome_Name'] = genome_name
for i in self.header_list:
try:
d_con[i].append(d_temp[i])
except:
d_con[i].append(0)
#create dataframe from dictationary
df = pd.DataFrame.from_dict(d_con)
#create kmers dataset - csv file
df.to_csv('{0}/{1}/kmers_dataset.csv'.format(self.genome_folder, self.k_mers), index=False)
print(d_con)