-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_functions.py
77 lines (57 loc) · 2.25 KB
/
helper_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
class Helper_Functions:
def __init__(self):
self.diseases = True
self.drugs = True
self.supplements = True
self.symptoms = True
self.mayo = True
self.webmd = True
self.number = 5
self.df = pd.read_csv("full_data.csv")
def customize_refresh(self):
self.df = pd.read_csv("full_data.csv")
def customize_disease(self, state):
self.diseases = state
if state == False:
self.df = self.df[self.df['type'] != 'disease']
def customize_drugs(self, state):
self.drugs = state
if state == False:
self.df = self.df[self.df['type'] != 'drug']
def customize_supplements(self, state):
self.supplements = state
if state == False:
self.df = self.df[self.df['type'] != 'supplement']
def customize_symptoms(self, state):
self.symptoms = state
if state == False:
self.df = self.df[self.df['type'] != 'symptom']
def customize_mayo(self, state):
self.mayo = state
if state == False:
self.df = self.df[self.df['website'] != 'Mayo Clinic']
def customize_webmd(self, state):
self.webmd = state
if state == False:
self.df = self.df[self.df['website'] != 'Webmd']
def customize_number(self, number):
self.number = number
def cosine_similarity_check(self, text):
try:
if text == "":
text = 'Abdominal aortic aneurysm'
vectorizer = CountVectorizer()
text_vector = vectorizer.fit_transform([text])
column_vector = vectorizer.transform(self.df['name'])
cosine_sim = cosine_similarity(text_vector, column_vector)
self.df['Cosine Similarity'] = cosine_sim[0]
dataframe_sorted = self.df.sort_values(by='Cosine Similarity', ascending=False)
if len(dataframe_sorted) < self.number:
return (True, dataframe_sorted)
else:
return (True, dataframe_sorted[:self.number])
except:
return (False, None)