-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.js
115 lines (92 loc) · 2.63 KB
/
app.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
const bodyParser = require("body-parser");
const request = require("request");
const fileUpload = require("express-fileupload");
const express = require("express");
const app = express();
const port = process.env.PORT || 4000;
const hostname = "localhost";
let spawn = require("child_process").spawn;
app.use(
bodyParser.urlencoded({
extended: false
})
);
app.use(fileUpload());
app.use(bodyParser.json());
app.use(function (req, res, next) {
res.header("Access-Control-Allow-Origin", "*");
res.header(
"Access-Control-Allow-Headers",
"Origin, X-Requested-With, Content-Type, Accept"
);
next();
});
app.post("/predict/:minimumScore", (req, res) => {
if (Object.keys(req.files).length == 0) {
return res.status(400).send("No files were uploaded.");
}
let fileName = req.files.files.name;
let minimumScore = req.params.minimumScore
console.log(minimumScore);
req.files.files.mv("./predictData/" + fileName, function (err) {
if (err) return res.status(500).send(err);
res.send(req.files.files.name + " uploaded!");
});
let process = spawn("python", [
"./utility/emotionDetection/model.py",
"./predictData/" + fileName,
minimumScore
]);
process.stdout.on("data", function (data) {
console.log(data.toString());
});
});
let path = '/Users/Gear/Desktop/emotion_detection_server/result/'
app.get("/predict", (req, res) => {
res.sendFile(path + 'JSON/data.json');
});
app.get("/video", (req, res) => {
res.sendFile(path + 'video/output.avi')
});
app.post("/train", (req, res) => {
let epchoNumber = req.body.epochNumber;
console.log(epchoNumber);
let process = spawn("python", [
"./utility/emotionDetection/train.py",
epchoNumber
]);
process.stdout.on("data", function (data) {
// res.send(data);
console.log(data.toString());
});
res.sendStatus(200);
});
app.post("/upload/:emotion", (req, res) => {
if (Object.keys(req.files).length == 0) {
return res.status(400).send("No files were uploaded.");
}
req.files.files.mv(
"./utility/emotionDetection/images/" + req.params.emotion + "/" + req.files.files.name,
function (err) {
if (err) return res.status(500).send(err);
res.send(req.files.files.name + " uploaded!");
}
);
});
const url = "https://localhost:8080/";
function curl(method, body) {
console.log("method:" + method);
request.post({
url: url + method,
headers: HEADERS,
body: body
},
(err, res, body) => {
console.log("status = " + res.statusCode);
console.log(err);
}
);
}
app.listen(port, hostname, () => {
console.log(`Server running at http://${hostname}:${port}/`);
});