-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
60 lines (44 loc) · 1.78 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import json
import argparse
import numpy as np
class CustomEvaluator:
def _load_json(self, fname):
with open(fname, encoding="utf-8") as f:
json_obj = json.load(f)
return json_obj
def _idcg(self, l):
return sum((1.0 / np.log(i + 2) for i in range(l)))
def __init__(self):
self._idcgs = [self._idcg(i) for i in range(101)]
def _ndcg(self, gt, rec):
dcg = 0.0
for i, r in enumerate(rec):
if r in gt:
dcg += 1.0 / np.log(i + 2)
return dcg / self._idcgs[len(gt[:100])]
def _eval(self, gt_fname, rec_fname):
gt_playlists = self._load_json(gt_fname)
gt_dict = {g["id"]: g for g in gt_playlists}
rec_playlists = self._load_json(rec_fname)
music_ndcg = 0.0
tag_ndcg = 0.0
for rec in rec_playlists:
gt = gt_dict[rec["id"]]
music_ndcg += self._ndcg(gt["songs"], rec["songs"][:100])
tag_ndcg += self._ndcg(gt["tags"], rec["tags"][:10])
music_ndcg = music_ndcg / len(rec_playlists)
tag_ndcg = tag_ndcg / len(rec_playlists)
score = music_ndcg * 0.85 + tag_ndcg * 0.15
return music_ndcg, tag_ndcg, score
def evaluate(self, gt_fname, rec_fname):
music_ndcg, tag_ndcg, score = self._eval(gt_fname, rec_fname)
print(f"Music nDCG: {music_ndcg:.6}")
print(f"Tag nDCG: {tag_ndcg:.6}")
print(f"Final Score: {score:.6}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--result', dest='result', required=True)
parser.add_argument('--answer', dest='answer', required=True)
args = parser.parse_args()
evaluator = CustomEvaluator()
evaluator.evaluate(args.answer, args.result)