-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseam_carving.py
182 lines (147 loc) · 4.88 KB
/
seam_carving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import time
from functools import wraps
import cv2 as cv
import numpy as np
def fn_timer(function):
@wraps(function)
def function_timer(*args, **kwargs):
t0 = time.time()
result = function(*args, **kwargs)
t1 = time.time()
print("Total time running %s: %s seconds" % (function.__name__,
str(t1 - t0)))
return result
return function_timer
# @fn_timer
def sobel_energy(img):
blurred = cv.GaussianBlur(img, (3, 3), 0, 0)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
dx = cv.Sobel(
gray,
cv.CV_64F,
1,
0,
ksize=3)
dy = cv.Sobel(
gray,
cv.CV_64F,
0,
1,
ksize=3)
return cv.add(np.absolute(dx), np.absolute(dy))
# @fn_timer
def canny_energy(img):
blurred = cv.GaussianBlur(img, (5, 5), 0, 0)
gray = cv.cvtColor(blurred, cv.COLOR_BGR2GRAY)
energy = cv.Canny(gray, 10, 30)
energy = cv.GaussianBlur(energy, (3, 3), 0, 0)
return energy
# @fn_timer
def get_energy(img):
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
height, width = gray.shape
energies = np.zeros((height, width), np.float16)
gray = np.insert(gray, height, 0, axis=0)
gray = np.insert(gray, width, 0, axis=1)
for x in range(height):
energies[x] += np.fabs(gray[x, :-1] - gray[x, 1:])
energies[x] += np.fabs(gray[x] - gray[x + 1])[:-1]
return energies[:-1, :-1]
# @fn_timer
def cumulate(energy):
height, width = energy.shape
energy = energy.astype("float64")
energy = np.insert(energy, width, 1e6, axis=1)
energy = np.insert(energy, 0, 1e6, axis=1)
height, width = energy.shape
# energy[0, :] = 0
for i in range(0, height - 1):
x1 = energy[i, 0:-2]
x2 = energy[i, 1:-1]
x3 = energy[i, 2:]
xmin = np.append([x1], [x2, x3], axis=0)
xmin = np.transpose(xmin)
xmin = xmin.min(1)
energy[i + 1, 1:-1] += xmin
return energy[:, 1:-1]
def vertical_seam(energies):
height, width = energies.shape[:2]
previous = 0
seam = []
for i in range(height - 1, -1, -1):
row = energies[i, :]
if i == height - 1:
previous = np.argmin(row)
else:
left = row[previous - 1] if previous - 1 >= 0 else 1e6
middle = row[previous]
right = row[previous + 1] if previous + 1 < width else 1e6
previous = previous + np.argmin([left, middle, right]) - 1
seam.append([previous, i])
return seam
def draw_seam(img, seam):
cv.polylines(img, np.int32([np.asarray(seam)]), False, (255, 255, 0))
cv.imshow('seam', img)
cv.waitKey(1)
# cv.waitKey(0)
def draw_horizontal_seam(img, seam):
cv.polylines(img, np.int32([np.asarray(seam)]), False, (0, 255, 255))
img = cv.transpose(img)
cv.imshow('seam', img)
cv.waitKey(1)
# cv.waitKey(0)
def remove_seam(img, seam):
height, width, bands = img.shape
removed = np.zeros((height, width - 1, bands), np.uint8)
for x, y in seam:
removed[y, 0:x] = img[y, 0:x]
removed[y, x:width - 1] = img[y, x + 1:width]
return removed
def resize(img, width=None, height=None):
result = img
for i in range(width):
energies = cumulate(sobel_energy(result))
# energies = cumulate(canny_energy(result))
# energies = cumulate(get_energy(result))
seam = vertical_seam(energies)
draw_seam(result, seam)
result = remove_seam(result, seam)
result = cv.transpose(result)
for i in range(height):
energies = cumulate(sobel_energy(result))
# energies = cumulate(canny_energy(result))
# energies = cumulate(get_energy(result))
seam = vertical_seam(energies)
draw_horizontal_seam(result, seam)
result = remove_seam(result, seam)
result = np.transpose(result, (1, 0, 2))
cv.imwrite('resized.jpg', result)
cv.imshow('seam', result)
@fn_timer
def run(img):
img_height, img_width = img.shape[:2]
resize(
img,
width=int(float(img_width) / 3),
# height=int(float(img_height) / 5)
height=0
)
if __name__ == '__main__':
img = cv.imread('img/t.jpg')
cv.namedWindow('origin', cv.WINDOW_NORMAL)
cv.imshow('origin', img)
cv.namedWindow('seam', cv.WINDOW_NORMAL)
# cv.namedWindow('1', cv.WINDOW_NORMAL)
# cv.imshow('1', canny_energy(img))
# cv.namedWindow('11', cv.WINDOW_NORMAL)
# cv.imshow('11', cumulate(canny_energy(img)).astype("uint8")) # 能量图
# cv.namedWindow('sobel energy', cv.WINDOW_NORMAL)
# cv.imshow('sobel energy', sobel_energy(img).astype("uint8"))
# cv.namedWindow('22', cv.WINDOW_NORMAL)
# cv.imshow('22', cumulate(sobel_energy(img)).astype("uint8"))
run(img)
while (1):
k = cv.waitKey(0) & 0xFF
if k == 27:
break
cv.destroyAllWindows()