-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers.py
624 lines (501 loc) · 21.9 KB
/
transformers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
# Code modified based on https://github.com/AI-secure/semantic-randomized-smoothing
import transforms as transforms
from scipy.stats import norm
from scipy.stats import gamma as Gamma
import math
EPS = 1e-6
class AbstractTransformer:
def process(self, inputs):
raise NotImplementedError
def calc_radius(self, pABar: float) -> float:
return 0.0
class NoiseTransformer(AbstractTransformer):
def __init__(self, sigma):
super(NoiseTransformer, self).__init__()
self.sigma = sigma
self.noise_adder = transforms.Noise(self.sigma)
def process(self, inputs):
outs = self.noise_adder.batch_proc(inputs)
return outs
def calc_radius(self, pABar: float):
radius = self.sigma * norm.ppf(pABar)
return radius
class RotationNoiseTransformer(AbstractTransformer):
def __init__(self, sigma, canopy, rotation_angle=180.0):
super(RotationNoiseTransformer, self).__init__()
self.sigma = sigma
self.noise_adder = transforms.Noise(self.sigma)
self.rotation_adder = transforms.Rotation(canopy, rotation_angle)
self.round = 2
self.masking = True
def set_round(self, r=1):
self.round = r
def enable_masking(self, masking):
self.masking = masking
def process(self, inputs):
# two-round rotation for training & certifying
# for predicting, only one-round rotation
# then add Gaussian noise
outs = inputs
for r in range(self.round):
outs = self.rotation_adder.batch_proc(outs)
outs = self.noise_adder.batch_proc(outs)
if self.masking:
outs = self.rotation_adder.batch_masking(outs)
return outs
def calc_radius(self, pABar: float):
radius = self.sigma * norm.ppf(pABar)
return radius
class ResolvableProjectionTransformer(AbstractTransformer):
def __init__(self, sigma, canopy, axis):
super(ResolvableProjectionTransformer, self).__init__()
self.projection_adder = transforms.ResolvableProjection(canopy, sigma, axis)
self.sigma = sigma
self.axis = axis
def process(self, inputs, empirical=False, type=None):
outs = self.projection_adder.batch_proc(inputs, empirical, type)
return outs
def calc_radius(self, pABar: float):
radius = self.sigma * norm.ppf(pABar)
return radius
class DiffResolvableProjectionTransformer(AbstractTransformer):
def __init__(self, canopy, axis):
super(DiffResolvableProjectionTransformer, self).__init__()
self.projection_adder = transforms.DiffResolvableProjection(canopy, axis)
self.axis = axis
def process(self, inputs):
outs = self.projection_adder.batch_proc(inputs)
return outs
def calc_radius(self, pABar: float):
# return infinity because it's invalid
return 1e+99
class RotationTransformer(AbstractTransformer):
def __init__(self, canopy, rotation_angle=180.0):
super(RotationTransformer, self).__init__()
self.rotation_adder = transforms.Rotation(canopy, rotation_angle)
self.round = 2
def set_round(self, r=1):
self.round = r
def process(self, inputs):
# only two-round rotation for training & certifying
# for predicting, only one-round rotation
outs = inputs
for r in range(self.round):
outs = self.rotation_adder.batch_proc(outs)
return outs
def calc_radius(self, pABar: float):
# return infinity because it's invalid
return 1e+99
class TranslationTransformer(AbstractTransformer):
def __init__(self, sigma, canopy):
super(TranslationTransformer, self).__init__()
self.translation_adder = transforms.Translational(canopy, sigma)
self.sigma = sigma
def process(self, inputs):
outs = self.translation_adder.batch_proc(inputs)
return outs
def calc_radius(self, pABar: float):
radius = self.sigma * norm.ppf(pABar)
return radius
class BlackpadTranslationTransformer(TranslationTransformer):
def __init__(self, sigma, canopy):
super(TranslationTransformer, self).__init__()
self.translation_adder = transforms.BlackTranslational(canopy, sigma)
self.sigma = sigma
def calc_radius(self, pABar: float):
# return infinity because it's invalid
return 1e+99
class BrightnessTransformer(AbstractTransformer):
def __init__(self, sigma_k, sigma_b):
super(BrightnessTransformer, self).__init__()
self.sigma_k = sigma_k
self.sigma_b = sigma_b
self.scaler = transforms.BrightnessScale(sigma_k)
self.brighter = transforms.BrightnessShift(sigma_b)
self.k_l = self.k_r = 0
def process(self, inputs):
outs = self.scaler.batch_proc(self.brighter.batch_proc(inputs))
return outs
def set_brightness_scale(self, l, r):
self.k_l = math.log(l)
self.k_r = math.log(r)
def calc_radius(self, pABar: float):
return min(self.calc_b_bound(self.k_l, pABar), self.calc_b_bound(self.k_r, pABar))
def calc_b_bound(self, k: float, pABar: float):
if k >= 0.0:
# Wrong!
# pBBar = 2.0 - 2.0 * norm.cdf(math.exp(k / 2.0) * norm.ppf(1.0 - pABar / 2.0))
pBBar = 2.0 - 2.0 * norm.cdf(math.exp(k) * norm.ppf(1.0 - pABar / 2.0))
else:
# Wrong!
# pBBar = 2.0 * norm.cdf(math.exp(k / 2.0) * norm.ppf(0.5 + pABar / 2.0)) - 1.0
pBBar = 2.0 * norm.cdf(math.exp(k) * norm.ppf(0.5 + pABar / 2.0)) - 1.0
if pBBar > 0.5:
if self.sigma_k == 0.0 and k == 0.0:
margin = norm.ppf(pBBar) ** 2
else:
margin = norm.ppf(pBBar) ** 2 - (k / self.sigma_k) ** 2
if margin > 0.0:
# origin, but I now think it's wrong because of eq.15
# return self.sigma_b * math.sqrt(margin)
# Thanks to the bug pointed out by Adel Bibi,
# we changed from ``return self.sigma_b * math.exp(-k) * math.sqrt(margin)'' to:
return self.sigma_b * min(math.exp(-k), 1.0) * math.sqrt(margin)
return 0.0
class ContrastTransformer(BrightnessTransformer):
def __init__(self, sigma_k, sigma_b):
super(ContrastTransformer, self).__init__(sigma_k, sigma_b)
def process(self, inputs):
outs = self.scaler.batch_proc(self.brighter.batch_proc(inputs))
return outs
def set_contrast_scale(self, l, r):
self.k_l = math.log(l)
self.k_r = math.log(r)
assert self.k_l <= 0.0 <= self.k_r
def calc_radius(self, pABar: float, EPS=1e-5):
if pABar <= 0.5:
return 0.0
# binary left side
l, r = self.k_l, 0.0
while r - l > EPS:
mid = (l + r) / 2.0
if self.calc_b_bound(mid, pABar) > EPS:
r = mid
else:
l = mid
k_lbound = math.exp(r)
# binary right side
l, r = 0.0, self.k_r
while r - l > EPS:
mid = (l + r) / 2.0
if self.calc_b_bound(mid, pABar) > EPS:
l = mid
else:
r = mid
k_rbound = math.exp(l)
print('l', k_lbound, 'r', k_rbound)
return min(1.0 - k_lbound, k_rbound - 1.0)
class ResizeTransformer(AbstractTransformer):
def __init__(self, canopy, sl, sr):
super(ResizeTransformer, self).__init__()
self.sl, self.sr = sl, sr
self.resizer = transforms.Resize(canopy, self.sl, self.sr)
def process(self, inputs):
outs = self.resizer.batch_proc(inputs)
return outs
def calc_radius(self, pABar: float):
# return infinity
return 1e+99
class ResizeNoiseTransformer(AbstractTransformer):
def __init__(self, canopy, sl, sr, sigma):
super(ResizeNoiseTransformer, self).__init__()
self.resize_adder = transforms.Resize(canopy, sl, sr)
self.noise_adder = transforms.Noise(sigma)
def process(self, inputs):
outs = self.noise_adder.batch_proc(self.resize_adder.batch_proc(inputs))
return outs
def calc_radius(self, pABar: float):
# return infinity
return 1e+99
class ResizeBrightnessNoiseTransformer(AbstractTransformer):
def __init__(self, sigma, b, canopy, sl, sr):
super(ResizeBrightnessNoiseTransformer, self).__init__()
self.resize_adder = transforms.Resize(canopy, sl, sr)
self.noise_adder = transforms.Noise(sigma)
self.brightness_adder = transforms.BrightnessShift(b)
self.sigma = sigma
self.b = b
def process(self, inputs):
outs = inputs
outs = self.resize_adder.batch_proc(outs)
outs = self.noise_adder.batch_proc(outs)
if abs(self.b) > EPS:
outs = self.brightness_adder.batch_proc(outs)
return outs
def set_brightness_shift(self, b_shift):
self.b_shift = b_shift
def calc_radius(self, pABar: float):
if abs(self.b) > EPS:
g = (self.b_shift ** 2.) / (self.b ** 2.)
else:
g = 0.
if norm.ppf(pABar) ** 2. - g >= 0.:
radius = self.sigma * math.sqrt(norm.ppf(pABar) ** 2. - g)
else:
radius = 0.
return radius
class GaussianTransformer(AbstractTransformer):
# uniform distribution over [0, sigma**2]
def __init__(self, sigma):
super(GaussianTransformer, self).__init__()
self.gaussian_adder = transforms.Gaussian(sigma)
def process(self, inputs):
outs = self.gaussian_adder.batch_proc(inputs)
# I don't know why previously we do this for two times
# outs = self.gaussian_adder.batch_proc(self.gaussian_adder.batch_proc(inputs))
return outs
def calc_radius(self, pABar: float):
if pABar >= 0.5:
return self.gaussian_adder.sigma2 * (pABar - 0.5)
else:
return 0.0
class ExpGaussianTransformer(AbstractTransformer):
def __init__(self, sigma):
# using Exp(1/sigma) as the smoothing distribution
super(ExpGaussianTransformer, self).__init__()
self.gaussian_adder = transforms.ExpGaussian(sigma)
def process(self, inputs):
outs = self.gaussian_adder.batch_proc(inputs)
# I don't know why previously we do this for two times
# outs = self.gaussian_adder.batch_proc(self.gaussian_adder.batch_proc(inputs))
return outs
def calc_radius(self, pABar: float):
if pABar >= 0.5:
return (-self.gaussian_adder.sigma * math.log(2.0 - 2.0 * pABar))
else:
return 0.0
class FoldGaussianTransformer(AbstractTransformer):
def __init__(self, sigma):
# using |N(0, sigma^2)| as the smoothing distribution
super(FoldGaussianTransformer, self).__init__()
self.gaussian_adder = transforms.FoldGaussian(sigma)
def process(self, inputs):
outs = self.gaussian_adder.batch_proc(inputs)
return outs
def calc_radius(self, pABar: float):
if pABar >= 0.5:
return self.gaussian_adder.sigma * (norm.ppf(0.5 + 0.5 * pABar) - norm.ppf(0.75))
else:
return 0.0
class RotationBrightnessNoiseTransformer(AbstractTransformer):
def __init__(self, sigma, b, canopy, rotation_angle=180.0):
super(RotationBrightnessNoiseTransformer, self).__init__()
self.sigma = sigma
self.b = b
self.noise_adder = transforms.Noise(self.sigma)
self.brightness_adder = transforms.BrightnessShift(self.b)
self.rotation_adder = transforms.Rotation(canopy, rotation_angle)
self.round = 2
self.masking = True
def set_round(self, r=1):
self.round = r
def enable_masking(self, masking):
self.masking = masking
def process(self, inputs):
# one-round rotation
# then add Gaussian noise
outs = inputs
for r in range(self.round):
outs = self.rotation_adder.batch_proc(outs)
outs = self.noise_adder.batch_proc(outs)
if abs(self.b) > EPS:
outs = self.brightness_adder.batch_proc(outs)
if self.masking:
outs = self.rotation_adder.batch_masking(outs)
return outs
def set_brightness_shift(self, b):
self.b_shift = b
def calc_radius(self, pABar: float):
if abs(self.b) > EPS:
g = (self.b_shift ** 2.) / (self.b ** 2.)
else:
g = 0.
if norm.ppf(pABar) ** 2. - g >= 0.:
radius = self.sigma * math.sqrt(norm.ppf(pABar) ** 2. - g)
else:
radius = 0.
return radius
class RotationBrightnessContrastNoiseTransformer(AbstractTransformer):
def set_brightness_scale(self, l, r):
self.logk_l = math.log(l)
self.logk_r = math.log(r)
def set_brightness_shift(self, b):
self.b_shift = b
def calc_radius(self, pABar: float):
return min(self.calc_r_bound(self.logk_l, self.b_shift, pABar), self.calc_r_bound(self.logk_r, self.b_shift, pABar))
def calc_r_bound(self, logk: float, b_shift: float, pABar: float):
if logk >= 0.0:
t = Gamma.ppf(1. - pABar, (self.input_dim + 1) / 2.0)
print(t, '=>', math.exp(2. * logk) * t)
pBBar = 1.0 - Gamma.cdf(math.exp(2. * logk) * t, (self.input_dim + 1) / 2.0)
else:
t = Gamma.ppf(pABar, (self.input_dim + 1) / 2.0)
print(t, '=>', math.exp(2. * logk) * t)
pBBar = Gamma.cdf(math.exp(2. * logk) * t, (self.input_dim + 1) / 2.0)
# print(f'pABar = {pABar}, pBBar = {pBBar}')
if pBBar > 0.5:
margin = norm.ppf(pBBar) ** 2
# print(f'margin = {margin}')
if self.sigma_k > EPS:
margin -= (logk / self.sigma_k) ** 2
else:
assert abs(logk) < EPS
# print(f'margin - k = {margin}')
if self.sigma_b > EPS:
margin -= (math.exp(logk) * b_shift / self.sigma_b) ** 2
else:
assert abs(b_shift) < EPS
# print(f'margin - b = {margin}')
if margin > 0.0:
print(f'remain r = { self.sigma_b * math.exp(-logk) * math.sqrt(margin) }')
return self.sigma_b * math.exp(-logk) * math.sqrt(margin)
return 0.0
def __init__(self, sigma, b, k, canopy, rotation_angle=180.0):
super(RotationBrightnessContrastNoiseTransformer, self).__init__()
self.sigma = sigma
self.sigma_b = b
self.sigma_k = k
self.noise_adder = transforms.Noise(self.sigma)
self.scaler = transforms.BrightnessScale(self.sigma_k)
self.brightness_adder = transforms.BrightnessShift(self.sigma_b)
self.rotation_adder = transforms.Rotation(canopy, rotation_angle)
self.input_dim = canopy.numel()
self.round = 2
self.masking = True
self.k_l = self.k_r = 0
def set_round(self, r=1):
self.round = r
def enable_masking(self, masking):
self.masking = masking
def process(self, inputs):
# two-round rotation for training & certifying
# for predicting, only one-round rotation
# then add Gaussian noise
outs = inputs
for r in range(self.round):
outs = self.rotation_adder.batch_proc(outs)
outs = self.brightness_adder.batch_proc(outs)
outs = self.noise_adder.batch_proc(outs)
outs = self.scaler.batch_proc(outs)
if self.masking:
outs = self.rotation_adder.batch_masking(outs)
return outs
class UniversalTransformer(AbstractTransformer):
"""
Just for model augmentation
The attacker first applies brightness, contrast change, then do blurring, then do translation, then do scaling,
then do rotation with masking, then add Gaussian noise
"""
def __init__(self, sigma, sigma_k, sigma_b, lamb, sigma_trans, sl, sr, rotation_angle, canopy):
super(UniversalTransformer, self).__init__()
self.sigma = sigma
self.sigma_k = sigma_k
self.sigma_b = sigma_b
self.scaler = transforms.BrightnessScale(sigma_k)
self.brighter = transforms.BrightnessShift(sigma_b)
self.gaussian_adder = transforms.ExpGaussian(lamb)
self.translation_adder = transforms.Translational(canopy, sigma_trans)
self.resize_adder = transforms.Resize(canopy, sl, sr)
self.rotation_adder = transforms.Rotation(canopy, rotation_angle)
self.noise_adder = transforms.Noise(self.sigma)
self.round = 1
self.masking = True
def set_round(self, r=1):
self.round = r
def enable_masking(self, masking):
self.masking = masking
def process(self, inputs):
outs = inputs
# brightness-contrast
outs = self.scaler.batch_proc(self.brighter.batch_proc(outs))
# Gaussian blurring
outs = self.gaussian_adder.batch_proc(outs)
# Translation
outs = self.translation_adder.batch_proc(outs)
# Scaling
outs = self.resize_adder.batch_proc(outs)
# Rotation
outs = self.rotation_adder.batch_proc(outs)
# Add Noise
outs = self.noise_adder.batch_proc(outs)
# Reapply black mask
outs = self.rotation_adder.batch_masking(outs)
return outs
def gen_transformer(args, canopy) -> AbstractTransformer:
if args.transtype == 'rotation-noise':
print(f'rotation-noise with noise {args.noise_sd}')
return RotationNoiseTransformer(args.noise_sd, canopy)
elif args.transtype == 'rotation':
print(f'rotation')
return RotationTransformer(canopy)
elif args.transtype == 'resolvable_tz':
print(f'resolvable_tz')
return ResolvableProjectionTransformer(args.noise_sd, canopy, "tz")
elif args.transtype == 'resolvable_tx':
print(f'resolvable_tx')
return ResolvableProjectionTransformer(args.noise_sd, canopy, "tx")
elif args.transtype == 'resolvable_ty':
print(f'resolvable_ty')
return ResolvableProjectionTransformer(args.noise_sd, canopy, "ty")
elif args.transtype == 'resolvable_rz':
print(f'resolvable_rz')
return ResolvableProjectionTransformer(args.noise_sd, canopy, "rz")
elif args.transtype == 'resolvable_rx':
print(f'resolvable_rx')
return ResolvableProjectionTransformer(args.noise_sd, canopy, "rx")
elif args.transtype == 'resolvable_ry':
print(f'resolvable_ry')
return ResolvableProjectionTransformer(args.noise_sd, canopy, "ry")
elif args.transtype == 'noise':
print(f'noise {args.noise_sd}')
return NoiseTransformer(args.noise_sd)
elif args.transtype == 'strict-rotation-noise':
print(f'strict rotation angle in +-{args.rotation_angle} and noise in {args.noise_sd}')
rnt = RotationNoiseTransformer(args.noise_sd, canopy, args.rotation_angle)
rnt.set_round(1)
return rnt
elif args.transtype == 'translation':
print(f'translation with noise {args.noise_sd}')
return TranslationTransformer(args.noise_sd, canopy)
elif args.transtype == 'brightness':
print(f'brightness with k noise {args.noise_k} and b noise {args.noise_b}')
return BrightnessTransformer(args.noise_k, args.noise_b)
elif args.transtype == 'contrast':
print(f'contrast with k noise {args.noise_k} and b noise {args.noise_b}')
return ContrastTransformer(args.noise_k, args.noise_b)
elif args.transtype == 'resize':
print(f'resize from ratio {args.sl} to {args.sr} with noise {args.noise_sd}')
return ResizeNoiseTransformer(canopy, args.sl, args.sr, args.noise_sd)
elif args.transtype == 'expgaussian':
print(f'gaussian with exponential noise from 0 to {args.noise_sd}')
return ExpGaussianTransformer(args.noise_sd)
elif args.transtype == 'gaussian':
print(f'gaussian with uniform noise from 0 to {args.noise_sd ** 2}')
return GaussianTransformer(args.noise_sd)
elif args.transtype == 'foldgaussian':
print(f'gaussian with folded gaussian noise with noise sigma {args.noise_sd}')
return FoldGaussianTransformer(args.noise_sd)
elif args.transtype == 'btranslation':
print(f'black-padding translation with noise {args.noise_sd}')
return BlackpadTranslationTransformer(args.noise_sd, canopy)
elif args.transtype == 'rotation-brightness':
print(f'strict rotation angle in +-{args.rotation_angle} and noise in {args.noise_sd} with b noise {args.noise_b}')
rnt = RotationBrightnessNoiseTransformer(args.noise_sd, args.noise_b, canopy, args.rotation_angle)
rnt.set_round(1)
return rnt
elif args.transtype == 'rotation-brightness-contrast':
print(f'strict rotation angle in +-{args.rotation_angle} and noise in {args.noise_sd} with b noise {args.noise_b} k noise {args.noise_k}')
rnt = RotationBrightnessContrastNoiseTransformer(args.noise_sd, args.noise_b, args.noise_k, canopy, args.rotation_angle)
rnt.set_round(1)
return rnt
elif args.transtype == 'resize-brightness':
print(f'resize from ratio {args.sl} to {args.sr} with noise {args.noise_sd} and b noise {args.noise_b}')
rnt = ResizeBrightnessNoiseTransformer(args.noise_sd, args.noise_b, canopy, args.sl, args.sr)
return rnt
elif args.transtype == 'universal':
print(f"""universal transformation:
Gaussian noise = {args.noise_sd}
contrast and brightness noise = ({args.noise_k}, {args.noise_b})
Gaussian blur in exponential noise = {args.blur_lamb}
Translation noise = {args.sigma_trans}
Scaling ratio from [{args.sl}, {args.sr}]
Rotation angle uniformly from {args.rotation_angle}
""")
rnt = UniversalTransformer(args.noise_sd, args.noise_k, args.noise_b, args.blur_lamb, args.sigma_trans,
args.sl, args.sr, args.rotation_angle, canopy)
return rnt
else:
# return AbstractTransformer()
print(f'noise {args.noise_sd}')
return NoiseTransformer(args.noise_sd)
raise NotImplementedError