forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcatboost.py
367 lines (307 loc) · 14.8 KB
/
catboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"""
The ``mlflow.catboost`` module provides an API for logging and loading CatBoost models.
This module exports CatBoost models with the following flavors:
CatBoost (native) format
This is the main flavor that can be loaded back into CatBoost.
:py:mod:`mlflow.pyfunc`
Produced for use by generic pyfunc-based deployment tools and batch inference.
.. _CatBoost:
https://catboost.ai/docs/concepts/python-reference_catboost.html
.. _CatBoost.save_model:
https://catboost.ai/docs/concepts/python-reference_catboost_save_model.html
.. _CatBoostClassifier:
https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html
.. _CatBoostRanker:
https://catboost.ai/docs/concepts/python-reference_catboostranker.html
.. _CatBoostRegressor:
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html
"""
import os
import yaml
import mlflow
from mlflow import pyfunc
from mlflow.models import Model, ModelInputExample
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import ModelSignature
from mlflow.models.utils import _save_example
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.environment import (
_mlflow_conda_env,
_validate_env_arguments,
_process_pip_requirements,
_process_conda_env,
_CONDA_ENV_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_CONSTRAINTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_PythonEnv,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
from mlflow.utils.file_utils import write_to
from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS
from mlflow.utils.model_utils import (
_get_flavor_configuration,
_validate_and_copy_code_paths,
_add_code_from_conf_to_system_path,
_validate_and_prepare_target_save_path,
)
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
FLAVOR_NAME = "catboost"
_MODEL_TYPE_KEY = "model_type"
_SAVE_FORMAT_KEY = "save_format"
_MODEL_BINARY_KEY = "data"
_MODEL_BINARY_FILE_NAME = "model.cb"
def get_default_pip_requirements():
"""
:return: A list of default pip requirements for MLflow Models produced by this flavor.
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment
that, at minimum, contains these requirements.
"""
return [_get_pinned_requirement("catboost")]
def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
cb_model,
path,
conda_env=None,
code_paths=None,
mlflow_model=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""
Save a CatBoost model to a path on the local file system.
:param cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
`CatBoostRanker`_, or `CatBoostRegressor`_) to be saved.
:param path: Local path where the model is to be saved.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
:param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:param kwargs: kwargs to pass to `CatBoost.save_model`_ method.
"""
import catboost as cb
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
path = os.path.abspath(path)
_validate_and_prepare_target_save_path(path)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if mlflow_model is None:
mlflow_model = Model()
if signature is not None:
mlflow_model.signature = signature
if input_example is not None:
_save_example(mlflow_model, input_example, path)
if metadata is not None:
mlflow_model.metadata = metadata
model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
cb_model.save_model(model_data_path, **kwargs)
model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.catboost",
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
**model_bin_kwargs,
)
flavor_conf = {
_MODEL_TYPE_KEY: cb_model.__class__.__name__,
_SAVE_FORMAT_KEY: kwargs.get("format", "cbm"),
**model_bin_kwargs,
}
mlflow_model.add_flavor(
FLAVOR_NAME, catboost_version=cb.__version__, code=code_dir_subpath, **flavor_conf
)
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
if pip_requirements is None:
default_reqs = get_default_pip_requirements()
# To ensure `_load_pyfunc` can successfully load the model during the dependency
# inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
inferred_reqs = mlflow.models.infer_pip_requirements(
path,
FLAVOR_NAME,
fallback=default_reqs,
)
default_reqs = sorted(set(inferred_reqs).union(default_reqs))
else:
default_reqs = None
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs,
pip_requirements,
extra_pip_requirements,
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
# Save `constraints.txt` if necessary
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
# Save `requirements.txt`
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
cb_model,
artifact_path,
conda_env=None,
code_paths=None,
registered_model_name=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""
Log a CatBoost model as an MLflow artifact for the current run.
:param cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
`CatBoostRanker`_, or `CatBoostRegressor`_) to be saved.
:param artifact_path: Run-relative artifact path.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param registered_model_name: This argument may change or be removed in a
future release without warning. If given, create a model
version under ``registered_model_name``, also creating a
registered model if one with the given name does not exist.
:param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.
:param await_registration_for: Number of seconds to wait for the model version to finish
being created and is in ``READY`` status. By default, the function
waits for five minutes. Specify 0 or None to skip waiting.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:param kwargs: kwargs to pass to `CatBoost.save_model`_ method.
:return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
metadata of the logged model.
"""
return Model.log(
artifact_path=artifact_path,
flavor=mlflow.catboost,
registered_model_name=registered_model_name,
cb_model=cb_model,
conda_env=conda_env,
code_paths=code_paths,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
**kwargs,
)
def _init_model(model_type):
from catboost import CatBoost, CatBoostClassifier, CatBoostRegressor
model_types = {c.__name__: c for c in [CatBoost, CatBoostClassifier, CatBoostRegressor]}
try:
from catboost import CatBoostRanker
model_types[CatBoostRanker.__name__] = CatBoostRanker
except ImportError:
pass
if model_type not in model_types:
raise TypeError(
"Invalid model type: '{}'. Must be one of {}".format(
model_type, list(model_types.keys())
)
)
return model_types[model_type]()
def _load_model(path, model_type, save_format):
model = _init_model(model_type)
model.load_model(os.path.abspath(path), save_format)
return model
def _load_pyfunc(path):
"""
Load PyFunc implementation. Called by ``pyfunc.load_model``.
:param path: Local filesystem path to the MLflow Model with the ``catboost`` flavor.
"""
flavor_conf = _get_flavor_configuration(
model_path=os.path.dirname(path), flavor_name=FLAVOR_NAME
)
return _CatboostModelWrapper(
_load_model(path, flavor_conf.get(_MODEL_TYPE_KEY), flavor_conf.get(_SAVE_FORMAT_KEY))
)
def load_model(model_uri, dst_path=None):
"""
Load a CatBoost model from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
:param dst_path: The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.
:return: A CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_, `CatBoostRanker`_,
or `CatBoostRegressor`_)
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
cb_model_file_path = os.path.join(
local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME)
)
return _load_model(
cb_model_file_path, flavor_conf.get(_MODEL_TYPE_KEY), flavor_conf.get(_SAVE_FORMAT_KEY)
)
class _CatboostModelWrapper:
def __init__(self, cb_model):
self.cb_model = cb_model
def predict(self, dataframe):
return self.cb_model.predict(dataframe)
# TODO: Support autologging