forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpmdarima.py
411 lines (344 loc) · 17.2 KB
/
pmdarima.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""
The ``mlflow.pmdarima`` module provides an API for logging and loading ``pmdarima`` models.
This module exports univariate ``pmdarima`` models in the following formats:
Pmdarima format
Serialized instance of a ``pmdarima`` model using pickle.
:py:mod:`mlflow.pyfunc`
Produced for use by generic pyfunc-based deployment tools and for batch auditing
of historical forecasts.
.. _Pmdarima:
http://alkaline-ml.com/pmdarima/
"""
import os
import logging
import pickle
import warnings
import pandas as pd
import yaml
from packaging.version import Version
import mlflow
from mlflow import pyfunc
from mlflow.exceptions import MlflowException
from mlflow.models import Model, ModelInputExample
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import ModelSignature
from mlflow.models.utils import _save_example
from mlflow.protos.databricks_pb2 import INVALID_PARAMETER_VALUE
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.model_utils import (
_get_flavor_configuration,
_validate_and_copy_code_paths,
_add_code_from_conf_to_system_path,
_validate_and_prepare_target_save_path,
)
from mlflow.utils.file_utils import write_to
from mlflow.utils.requirements_utils import _get_pinned_requirement
from mlflow.utils.environment import (
_mlflow_conda_env,
_validate_env_arguments,
_CONDA_ENV_FILE_NAME,
_process_pip_requirements,
_process_conda_env,
_CONSTRAINTS_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_PythonEnv,
)
from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS
FLAVOR_NAME = "pmdarima"
_MODEL_BINARY_KEY = "data"
_MODEL_BINARY_FILE_NAME = "model.pmd"
_MODEL_TYPE_KEY = "model_type"
_logger = logging.getLogger(__name__)
def get_default_pip_requirements():
"""
:return: A list of default pip requirements for MLflow Models produced by this flavor.
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment that,
at a minimum, contains these requirements.
"""
return [_get_pinned_requirement("pmdarima")]
def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
pmdarima_model,
path,
conda_env=None,
code_paths=None,
mlflow_model=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
):
"""
Save a pmdarima ``ARIMA`` model or ``Pipeline`` object to a path on the local file system.
:param pmdarima_model: pmdarima ``ARIMA`` or ``Pipeline`` model that has been ``fit`` on a
temporal series.
:param path: Local path destination for the serialized model (in pickle format) is to be saved.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
:param signature: :py:class:`Model Signature <mlflow.models.ModelSignature>` describes model
input and output :py:class:`Schema <mlflow.types.Schema>`. The model
signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
model = pmdarima.auto_arima(data)
predictions = model.predict(n_periods=30, return_conf_int=False)
signature = infer_signature(data, predictions)
.. Warning:: if utilizing confidence interval generation in the ``predict``
method of a ``pmdarima`` model (``return_conf_int=True``), the signature
will not be inferred due to the complex tuple return type when using the
native ``ARIMA.predict()`` API. ``infer_schema`` will function correctly
if using the ``pyfunc`` flavor of the model, though.
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a ``Pandas DataFrame`` and
then serialized to json using the ``Pandas`` split-oriented format.
Bytes are base64-encoded.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
"""
import pmdarima
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
path = os.path.abspath(path)
_validate_and_prepare_target_save_path(path)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if mlflow_model is None:
mlflow_model = Model()
if signature is not None:
mlflow_model.signature = signature
if input_example is not None:
_save_example(mlflow_model, input_example, path)
if metadata is not None:
mlflow_model.metadata = metadata
model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
_save_model(pmdarima_model, model_data_path)
model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.pmdarima",
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
**model_bin_kwargs,
)
flavor_conf = {
_MODEL_TYPE_KEY: pmdarima_model.__class__.__name__,
**model_bin_kwargs,
}
mlflow_model.add_flavor(
FLAVOR_NAME, pmdarima_version=pmdarima.__version__, code=code_dir_subpath, **flavor_conf
)
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
if pip_requirements is None:
default_reqs = get_default_pip_requirements()
inferred_reqs = mlflow.models.infer_pip_requirements(
path, FLAVOR_NAME, fallback=default_reqs
)
default_reqs = sorted(set(inferred_reqs).union(default_reqs))
else:
default_reqs = None
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs, pip_requirements, extra_pip_requirements
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
pmdarima_model,
artifact_path,
conda_env=None,
code_paths=None,
registered_model_name=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""
Log a ``pmdarima`` ``ARIMA`` or ``Pipeline`` object as an MLflow artifact for the current run.
:param pmdarima_model: pmdarima ``ARIMA`` or ``Pipeline`` model that has been ``fit`` on a
temporal series.
:param artifact_path: Run-relative artifact path to save the model instance to.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param registered_model_name: This argument may change or be removed in a
future release without warning. If given, create a model
version under ``registered_model_name``, also creating a
registered model if one with the given name does not exist.
:param signature: :py:class:`Model Signature <mlflow.models.ModelSignature>` describes model
input and output :py:class:`Schema <mlflow.types.Schema>`. The model
signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
model = pmdarima.auto_arima(data)
predictions = model.predict(n_periods=30, return_conf_int=False)
signature = infer_signature(data, predictions)
.. Warning:: if utilizing confidence interval generation in the ``predict``
method of a ``pmdarima`` model (``return_conf_int=True``), the signature
will not be inferred due to the complex tuple return type when using the
native ``ARIMA.predict()`` API. ``infer_schema`` will function correctly
if using the ``pyfunc`` flavor of the model, though.
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a ``Pandas DataFrame`` and
then serialized to json using the ``Pandas`` split-oriented format.
Bytes are base64-encoded.
:param await_registration_for: Number of seconds to wait for the model version
to finish being created and is in ``READY`` status.
By default, the function waits for five minutes.
Specify 0 or None to skip waiting.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:param kwargs: Additional arguments for :py:class:`mlflow.models.model.Model`
:return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
metadata of the logged model.
"""
return Model.log(
artifact_path=artifact_path,
flavor=mlflow.pmdarima,
registered_model_name=registered_model_name,
pmdarima_model=pmdarima_model,
conda_env=conda_env,
code_paths=code_paths,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
**kwargs,
)
def load_model(model_uri, dst_path=None):
"""
Load a ``pmdarima`` ``ARIMA`` model or ``Pipeline`` object from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
- ``mlflow-artifacts:/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
:param dst_path: The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.
:return: A ``pmdarima`` model instance
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
pmdarima_model_file_path = os.path.join(
local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME)
)
return _load_model(pmdarima_model_file_path)
def _save_model(model, path):
with open(path, "wb") as f:
pickle.dump(model, f)
def _load_model(path):
with open(path, "rb") as pickled_model:
model = pickle.load(pickled_model)
return model
def _load_pyfunc(path):
return _PmdarimaModelWrapper(_load_model(path))
class _PmdarimaModelWrapper:
def __init__(self, pmdarima_model):
import pmdarima
self.pmdarima_model = pmdarima_model
self._pmdarima_version = pmdarima.__version__
def predict(self, dataframe) -> pd.DataFrame:
df_schema = dataframe.columns.values.tolist()
if len(dataframe) > 1:
raise MlflowException(
f"The provided prediction pd.DataFrame contains {len(dataframe)} rows. "
"Only 1 row should be supplied.",
error_code=INVALID_PARAMETER_VALUE,
)
attrs = dataframe.to_dict(orient="index").get(0)
n_periods = attrs.get("n_periods", None)
if not n_periods:
raise MlflowException(
f"The provided prediction configuration pd.DataFrame columns ({df_schema}) do not "
"contain the required column `n_periods` for specifying future prediction periods "
"to generate.",
error_code=INVALID_PARAMETER_VALUE,
)
if not isinstance(n_periods, int):
raise MlflowException(
f"The provided `n_periods` value {n_periods} must be an integer."
f"provided type: {type(n_periods)}",
error_code=INVALID_PARAMETER_VALUE,
)
# NB Any model that is trained with exogenous regressor elements will need to provide
# `X` entries as a 2D array structure to the predict method.
exogenous_regressor = attrs.get("X", None)
if exogenous_regressor and Version(self._pmdarima_version) < Version("1.8.0"):
warnings.warn(
"An exogenous regressor element was provided in column 'X'. This is "
"supported only in pmdarima version >= 1.8.0. Installed version: "
f"{self._pmdarima_version}"
)
return_conf_int = attrs.get("return_conf_int", False)
alpha = attrs.get("alpha", 0.05)
if not isinstance(n_periods, int):
raise MlflowException(
"The prediction DataFrame must contain a column `n_periods` with "
"an integer value for number of future periods to predict.",
error_code=INVALID_PARAMETER_VALUE,
)
if Version(self._pmdarima_version) >= Version("1.8.0"):
raw_predictions = self.pmdarima_model.predict(
n_periods=n_periods,
X=exogenous_regressor,
return_conf_int=return_conf_int,
alpha=alpha,
)
else:
raw_predictions = self.pmdarima_model.predict(
n_periods=n_periods,
return_conf_int=return_conf_int,
alpha=alpha,
)
if return_conf_int:
ci_low, ci_high = list(zip(*raw_predictions[1]))
predictions = pd.DataFrame.from_dict(
{"yhat": raw_predictions[0], "yhat_lower": ci_low, "yhat_upper": ci_high}
)
else:
predictions = pd.DataFrame.from_dict({"yhat": raw_predictions})
return predictions