forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatsmodels.py
586 lines (495 loc) · 24 KB
/
statsmodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
"""
The ``mlflow.statsmodels`` module provides an API for logging and loading statsmodels models.
This module exports statsmodels models with the following flavors:
statsmodels (native) format
This is the main flavor that can be loaded back into statsmodels, which relies on pickle
internally to serialize a model.
:py:mod:`mlflow.pyfunc`
Produced for use by generic pyfunc-based deployment tools and batch inference.
.. _statsmodels.base.model.Results:
https://www.statsmodels.org/stable/_modules/statsmodels/base/model.html#Results
"""
import logging
import os
import yaml
import mlflow
from mlflow import pyfunc
from mlflow.models import Model
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import ModelSignature
from mlflow.models.utils import ModelInputExample, _save_example
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.environment import (
_mlflow_conda_env,
_validate_env_arguments,
_process_pip_requirements,
_process_conda_env,
_CONDA_ENV_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_CONSTRAINTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_PythonEnv,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
from mlflow.utils.file_utils import write_to
from mlflow.utils.docstring_utils import format_docstring, LOG_MODEL_PARAM_DOCS
from mlflow.utils.model_utils import (
_get_flavor_configuration,
_validate_and_copy_code_paths,
_add_code_from_conf_to_system_path,
_validate_and_prepare_target_save_path,
)
from mlflow.exceptions import MlflowException
from mlflow.utils.autologging_utils import (
log_fn_args_as_params,
autologging_integration,
safe_patch,
get_autologging_config,
)
from mlflow.utils.validation import _is_numeric
import itertools
import inspect
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
FLAVOR_NAME = "statsmodels"
STATSMODELS_DATA_SUBPATH = "model.statsmodels"
_logger = logging.getLogger(__name__)
def get_default_pip_requirements():
"""
:return: A list of default pip requirements for MLflow Models produced by this flavor.
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment
that, at minimum, contains these requirements.
"""
return [_get_pinned_requirement("statsmodels")]
def get_default_conda_env():
"""
:return: The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
_model_size_threshold_for_emitting_warning = 100 * 1024 * 1024 # 100 MB
_save_model_called_from_autolog = False
@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
statsmodels_model,
path,
conda_env=None,
code_paths=None,
mlflow_model=None,
remove_data: bool = False,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
):
"""
Save a statsmodels model to a path on the local file system.
:param statsmodels_model: statsmodels model (an instance of `statsmodels.base.model.Results`_)
to be saved.
:param path: Local path where the model is to be saved.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
:param remove_data: bool. If False (default), then the instance is pickled without changes.
If True, then all arrays with length nobs are set to None before
pickling. See the remove_data method.
In some cases not all arrays will be set to None.
:param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
"""
import statsmodels
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
path = os.path.abspath(path)
_validate_and_prepare_target_save_path(path)
model_data_path = os.path.join(path, STATSMODELS_DATA_SUBPATH)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if mlflow_model is None:
mlflow_model = Model()
if signature is not None:
mlflow_model.signature = signature
if input_example is not None:
_save_example(mlflow_model, input_example, path)
if metadata is not None:
mlflow_model.metadata = metadata
# Save a statsmodels model
statsmodels_model.save(model_data_path, remove_data)
if _save_model_called_from_autolog and not remove_data:
saved_model_size = os.path.getsize(model_data_path)
if saved_model_size >= _model_size_threshold_for_emitting_warning:
_logger.warning(
"The fitted model is larger than "
f"{_model_size_threshold_for_emitting_warning // (1024 * 1024)} MB, "
f"saving it as artifacts is time consuming.\n"
"To reduce model size, use `mlflow.statsmodels.autolog(log_models=False)` and "
"manually log model by "
'`mlflow.statsmodels.log_model(model, remove_data=True, artifact_path="model")`'
)
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.statsmodels",
data=STATSMODELS_DATA_SUBPATH,
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
)
mlflow_model.add_flavor(
FLAVOR_NAME,
statsmodels_version=statsmodels.__version__,
data=STATSMODELS_DATA_SUBPATH,
code=code_dir_subpath,
)
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
if pip_requirements is None:
default_reqs = get_default_pip_requirements()
# To ensure `_load_pyfunc` can successfully load the model during the dependency
# inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
inferred_reqs = mlflow.models.infer_pip_requirements(
path,
FLAVOR_NAME,
fallback=default_reqs,
)
default_reqs = sorted(set(inferred_reqs).union(default_reqs))
else:
default_reqs = None
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs,
pip_requirements,
extra_pip_requirements,
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
# Save `constraints.txt` if necessary
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
# Save `requirements.txt`
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
statsmodels_model,
artifact_path,
conda_env=None,
code_paths=None,
registered_model_name=None,
remove_data: bool = False,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""
Log a statsmodels model as an MLflow artifact for the current run.
:param statsmodels_model: statsmodels model (an instance of `statsmodels.base.model.Results`_)
to be saved.
:param artifact_path: Run-relative artifact path.
:param conda_env: {{ conda_env }}
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
:param registered_model_name: If given, create a model version under
``registered_model_name``, also creating a registered model if one
with the given name does not exist.
:param remove_data: bool. If False (default), then the instance is pickled without changes.
If True, then all arrays with length nobs are set to None before
pickling. See the remove_data method.
In some cases not all arrays will be set to None.
:param signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>`
describes model input and output :py:class:`Schema <mlflow.types.Schema>`.
The model signature can be :py:func:`inferred <mlflow.models.infer_signature>`
from datasets with valid model input (e.g. the training dataset with target
column omitted) and valid model output (e.g. model predictions generated on
the training dataset), for example:
.. code-block:: python
from mlflow.models.signature import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
:param input_example: Input example provides one or several instances of valid
model input. The example can be used as a hint of what data to feed the
model. The given example will be converted to a Pandas DataFrame and then
serialized to json using the Pandas split-oriented format. Bytes are
base64-encoded.
:param await_registration_for: Number of seconds to wait for the model version to finish
being created and is in ``READY`` status. By default, the function
waits for five minutes. Specify 0 or None to skip waiting.
:param pip_requirements: {{ pip_requirements }}
:param extra_pip_requirements: {{ extra_pip_requirements }}
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file.
.. Note:: Experimental: This parameter may change or be removed in a future
release without warning.
:return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
metadata of the logged model.
"""
return Model.log(
artifact_path=artifact_path,
flavor=mlflow.statsmodels,
registered_model_name=registered_model_name,
statsmodels_model=statsmodels_model,
conda_env=conda_env,
code_paths=code_paths,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
remove_data=remove_data,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
**kwargs,
)
def _load_model(path):
import statsmodels.iolib.api as smio
return smio.load_pickle(path)
def _load_pyfunc(path):
"""
Load PyFunc implementation. Called by ``pyfunc.load_model``.
:param path: Local filesystem path to the MLflow Model with the ``statsmodels`` flavor.
"""
return _StatsmodelsModelWrapper(_load_model(path))
def load_model(model_uri, dst_path=None):
"""
Load a statsmodels model from a local file or a run.
:param model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
:param dst_path: The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.
:return: A statsmodels model (an instance of `statsmodels.base.model.Results`_).
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
statsmodels_model_file_path = os.path.join(
local_model_path, flavor_conf.get("data", STATSMODELS_DATA_SUBPATH)
)
return _load_model(path=statsmodels_model_file_path)
class _StatsmodelsModelWrapper:
def __init__(self, statsmodels_model):
self.statsmodels_model = statsmodels_model
def predict(self, dataframe):
from statsmodels.tsa.base.tsa_model import TimeSeriesModel
model = self.statsmodels_model.model
if isinstance(model, TimeSeriesModel):
# Assume the inference dataframe has columns "start" and "end", and just one row
# TODO: move this to a specific mlflow.statsmodels.tsa flavor? Time series models
# often expect slightly different arguments to make predictions
if dataframe.shape[0] != 1 or not (
"start" in dataframe.columns and "end" in dataframe.columns
):
raise MlflowException(
"prediction dataframes for a TimeSeriesModel must have exactly one row"
+ " and include columns called start and end"
)
start_date = dataframe["start"][0]
end_date = dataframe["end"][0]
return self.statsmodels_model.predict(start=start_date, end=end_date)
else:
return self.statsmodels_model.predict(dataframe)
class AutologHelpers:
# Autologging should be done only in the fit function called by the user, but not
# inside other internal fit functions
should_autolog = True
# Currently we only autolog basic metrics
_autolog_metric_allowlist = [
"aic",
"bic",
"centered_tss",
"condition_number",
"df_model",
"df_resid",
"ess",
"f_pvalue",
"fvalue",
"llf",
"mse_model",
"mse_resid",
"mse_total",
"rsquared",
"rsquared_adj",
"scale",
"ssr",
"uncentered_tss",
]
def _get_autolog_metrics(fitted_model):
result_metrics = {}
failed_evaluating_metrics = set()
for metric in _autolog_metric_allowlist:
try:
if hasattr(fitted_model, metric):
metric_value = getattr(fitted_model, metric)
if _is_numeric(metric_value):
result_metrics[metric] = metric_value
except Exception:
failed_evaluating_metrics.add(metric)
if len(failed_evaluating_metrics) > 0:
_logger.warning(
f"Failed to autolog metrics: {', '.join(sorted(failed_evaluating_metrics))}."
)
return result_metrics
@autologging_integration(FLAVOR_NAME)
def autolog(
log_models=True,
disable=False,
exclusive=False,
disable_for_unsupported_versions=False,
silent=False,
registered_model_name=None,
): # pylint: disable=unused-argument
"""
Enables (or disables) and configures automatic logging from statsmodels to MLflow.
Logs the following:
- allowlisted metrics returned by method `fit` of any subclass of
statsmodels.base.model.Model, the allowlisted metrics including: {autolog_metric_allowlist}
- trained model.
- an html artifact which shows the model summary.
:param log_models: If ``True``, trained models are logged as MLflow model artifacts.
If ``False``, trained models are not logged.
Input examples and model signatures, which are attributes of MLflow models,
are also omitted when ``log_models`` is ``False``.
:param disable: If ``True``, disables the statsmodels autologging integration. If ``False``,
enables the statsmodels autologging integration.
:param exclusive: If ``True``, autologged content is not logged to user-created fluent runs.
If ``False``, autologged content is logged to the active fluent run,
which may be user-created.
:param disable_for_unsupported_versions: If ``True``, disable autologging for versions of
statsmodels that have not been tested against this version of the MLflow
client or are incompatible.
:param silent: If ``True``, suppress all event logs and warnings from MLflow during statsmodels
autologging. If ``False``, show all events and warnings during statsmodels
autologging.
:param registered_model_name: If given, each time a model is trained, it is registered as a
new model version of the registered model with this name.
The registered model is created if it does not already exist.
"""
import statsmodels
# Autologging depends on the exploration of the models class tree within the
# `statsmodels.base.models` module. In order to load / access this module, the
# `statsmodels.api` module must be imported
import statsmodels.api # pylint: disable=unused-import
def find_subclasses(klass):
"""
Recursively return a (non-nested) list of the class object and all its subclasses
:param klass: the class whose class subtree we want to retrieve
:return: a list of classes that includes the argument in the first position
"""
subclasses = klass.__subclasses__()
if subclasses:
subclass_lists = [find_subclasses(c) for c in subclasses]
chain = itertools.chain.from_iterable(subclass_lists)
result = [klass] + list(chain)
return result
else:
return [klass]
def overrides(klass, function_name):
"""
Returns True when the class passed as first argument overrides the function_name
Based on https://stackoverflow.com/a/62303206/5726057
:param klass: the class we are inspecting
:param function_name: a string with the name of the method we want to check overriding
:return:
"""
try:
superclass = inspect.getmro(klass)[1]
overridden = getattr(klass, function_name) is not getattr(superclass, function_name)
return overridden
except (IndexError, AttributeError):
return False
def patch_class_tree(klass):
"""
Patches all subclasses that override any auto-loggable method via monkey patching using
the gorilla package, taking the argument as the tree root in the class hierarchy. Every
auto-loggable method found in any of the subclasses is replaced by the patched version.
:param klass: root in the class hierarchy to be analyzed and patched recursively
"""
# TODO: add more autologgable methods here (e.g. fit_regularized, from_formula, etc)
# See https://www.statsmodels.org/dev/api.html
autolog_supported_func = {"fit": wrapper_fit}
glob_subclasses = set(find_subclasses(klass))
# Create a patch for every method that needs to be patched, i.e. those
# which actually override an autologgable method
patches_list = [
# Link the patched function with the original via a local variable in the closure
# to allow invoking superclass methods in the context of the subclass, and not
# losing the trace of the true original method
(clazz, method_name, wrapper_func)
for clazz in glob_subclasses
for (method_name, wrapper_func) in autolog_supported_func.items()
if overrides(clazz, method_name)
]
for clazz, method_name, patch_impl in patches_list:
safe_patch(FLAVOR_NAME, clazz, method_name, patch_impl, manage_run=True)
def wrapper_fit(original, self, *args, **kwargs):
should_autolog = False
if AutologHelpers.should_autolog:
AutologHelpers.should_autolog = False
should_autolog = True
try:
if should_autolog:
# This may generate warnings due to collisions in already-logged param names
log_fn_args_as_params(original, args, kwargs)
# training model
model = original(self, *args, **kwargs)
if should_autolog:
# Log the model
if get_autologging_config(FLAVOR_NAME, "log_models", True):
global _save_model_called_from_autolog
_save_model_called_from_autolog = True
registered_model_name = get_autologging_config(
FLAVOR_NAME, "registered_model_name", None
)
try:
log_model(
model,
artifact_path="model",
registered_model_name=registered_model_name,
)
finally:
_save_model_called_from_autolog = False
# Log the most common metrics
if isinstance(model, statsmodels.base.wrapper.ResultsWrapper):
metrics_dict = _get_autolog_metrics(model)
mlflow.log_metrics(metrics_dict)
model_summary = model.summary().as_text()
mlflow.log_text(model_summary, "model_summary.txt")
return model
finally:
# Clean the shared flag for future calls in case it had been set here ...
if should_autolog:
AutologHelpers.should_autolog = True
patch_class_tree(statsmodels.base.model.Model)
if autolog.__doc__ is not None:
autolog.__doc__ = autolog.__doc__.format(
autolog_metric_allowlist=", ".join(_autolog_metric_allowlist)
)