-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmonarch_mixer_sequence_mixer.py
142 lines (116 loc) · 4.53 KB
/
monarch_mixer_sequence_mixer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) 2023, Dan Fu and Simran Arora.
# Adapted from https://github.com/HazyResearch/safari/blob/main/src/models/sequence/hyena.py
import torch.nn as nn
from einops import rearrange
import opt_einsum as oe
contract = oe.contract
from hyena_utils import HyenaFilter
class MonarchMixerSequenceMixing(nn.Module):
def __init__(
self,
d_model,
l_max=128,
hyena_kernel_lr=None,
bidirectional=False,
hyena_lr_pos_emb=1e-5,
hyena_w=10,
hyena_w_mod=1,
hyena_wd=0.1,
hyena_emb_dim=3,
hyena_filter_dropout=0.0,
hyena_filter_order=16,
residual_long_conv=False,
**kwargs,
):
super().__init__()
self.d_model = d_model
self.l_max = l_max
self.kernel_lr = hyena_kernel_lr
self.channels = 1
self.bidirectional = bidirectional
self.residual_long_conv = residual_long_conv
self.NUM_PROJECTIONS = 3
print('-- Bidirectional:', self.bidirectional)
print("-- Using Long Conv Residual:", self.residual_long_conv)
print('-- Hyena w:', hyena_w)
print('-- Hyena w mod:', hyena_w_mod)
print(f"-- Hyena filter order: {hyena_filter_order}")
print(f"-- Hyena filter dropout: {hyena_filter_dropout}")
print(f"-- Hyena filter wd: {hyena_wd}")
print(f"-- Hyena filter emb dim: {hyena_emb_dim}")
print(f"-- Hyena filter lr: {hyena_kernel_lr}")
print(f"-- Hyena filter lr pos emb: {hyena_lr_pos_emb}")
self.filter_fn = HyenaFilter(
self.d_model,
order=hyena_filter_order,
seq_len=self.l_max,
dropout=hyena_filter_dropout,
bidirectional=self.bidirectional,
lr=hyena_kernel_lr,
lr_pos_emb=hyena_lr_pos_emb,
w=hyena_w, # frequency of periodic activations
w_mod=hyena_w_mod,
wd=hyena_wd, # weight decay of kernel parameters
emb_dim=hyena_emb_dim,
)
if self.residual_long_conv:
self.filter_fn2 = HyenaFilter(
self.d_model,
order=hyena_filter_order,
seq_len=self.l_max,
dropout=hyena_filter_dropout,
bidirectional=self.bidirectional,
lr=hyena_kernel_lr,
lr_pos_emb=hyena_lr_pos_emb,
w=hyena_w, # frequency of periodic activations
w_mod=hyena_w_mod,
wd=hyena_wd, # weight decay of kernel parameters
emb_dim=hyena_emb_dim,
)
# setup projections
self.in_linear = nn.Linear(d_model, 3 * d_model, bias=False)
self.out_linear = nn.Linear(d_model, d_model)
# setup short conv
total_width = self.d_model * self.NUM_PROJECTIONS
self.short_filter = nn.Conv1d(
in_channels=total_width,
out_channels=total_width,
kernel_size=3,
groups=total_width,
padding=2,
)
def forward(self, u, **kwargs):
# u is B L H
L = u.size(-2)
# in projection
u_orig = u
u = self.in_linear(u)
u = rearrange(u, "b l d -> b d l")
# short filter
uc = self.short_filter(u)[..., :L]
x1, x2, v = uc.split(self.d_model, dim=1)
k = self.filter_fn.filter(L, device=u.device)
k = rearrange(k, "c l d -> c d l")[0] # `c` is always 1 by default
if self.bidirectional:
k_rev = self.filter_fn.filter_rev(L, device=u.device)
k_rev = rearrange(k_rev, "c l d -> c d l")[0] # `c` is always 1 by default
else:
k_rev = None
v = v * x1
y = self.filter_fn(v, L, k_fwd=k, k_rev=k_rev, bias= self.filter_fn.bias[None, :, None])
if self.residual_long_conv:
k2 = self.filter_fn2.filter(L, device=u.device)
k2 = rearrange(k2, "c l d -> c d l")[0]
if self.bidirectional:
k2_rev = self.filter_fn2.filter_rev(L, device=u.device)
k2_rev = rearrange(k2_rev, "c l d -> c d l")[0] # `c` is always 1 by default
else:
k2_rev = None
yu = self.filter_fn2(u_orig.transpose(-1, -2), L, k_fwd=k2, k_rev=k2_rev, bias= self.filter_fn2.bias[None, :, None])
# post gating
y = y * x2
if self.residual_long_conv:
y = y + yu
y = y.transpose(-1, -2)
y = self.out_linear(y)
return y, None