-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandomgraph.c
468 lines (364 loc) · 11.1 KB
/
randomgraph.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
* File: randomgraph.c
* - implementation of some algorithms for generation
* of random graphs.
* - "randomgraph" called without arguments gives short
* usage information.
* Types of random graphs created are:
* > maximal planar
* > cubic Halin (= cubic tree + cycle through leafs)
* > dual of cubic Halin (= maximal planar with one
* vertex of degree |V|-1)
* > cubic
* The default type is maximal planar.
*
* Author: Hermann Stamm-Wilbrandt
* Institut fuer Informatik III
* Roemerstr. 164
* Bonn University
* D-53117 Bonn
* Germany
* email: hermann@holmium.informatik.uni-bonn.de
* phone: 0228-550-260 internal: x260 or x28, Fax: 0228-550-382
*
* For my safety:
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "basic.h"
#include "b_urn.h"
#include "ugraph.h"
#include "is_embedding.h"
UGRAPH(G)
UGRAPH(D)
b_urn(INNER)
b_urn(OUTER)
#include "randomgrapho.h"
/*****************************************************************************/
/*
* generates random cubic (multi-)graph by collecting
* 3 random perfect matchings
*/
void random_cubic_ugraph(int n)
{
int i;
vertex u,v;
if ((n%2==1) || (n<0))
err_handler(88,"number of vertices must be even and positive");
U_new(n);
G_new(n,3*n/2);
for(i=0; i<n; i++)
G_new_vertex();
for(i=0; i<3; i++)
{
forall_vertices(v,G) /* fill up urn with all vertices */
U_put(v);
while (! U_empty()) /* while there are some vertices left */
{
u=U_draw();
v=U_draw();
G_new_edge(u,v); /* build new perfect matching edge */
}
}
U_delete();
}
/*****************************************************************************/
/*
* generation of random cubic Halin graph
* (planar embedded tree with inner degree 3 and 1 cycle through all leaves)
*/
enum {nothing,outer,inner,updated};
void random_cubic_Halin_graph(int n)
{
vertex u,v,w;
edge e;
int i,leafs;
vertex_array N,Left,Right;
edge_array E;
if ((n%2==1) || (n<0))
err_handler(88,"number of vertices must be even and positive");
G_new(n,2*n);
N = G_new_vertex_array();
E = G_new_edge_array();
Left = G_new_vertex_array();
Right = G_new_vertex_array();
INNER_new(n);
OUTER_new(n);
for(i=0; i<n; i++)
N[G_new_vertex()]=nothing;
forall_vertices(v,G) /* initially left and right border of */
{ /* vertex v is itself */
Left[v]=v;
Right[v]=v;
INNER_put(v);
}
leafs=(n>>1)+1;
for(i=0; i<leafs; i++) /* put leaf-vertices in OUTER-urn */
{
v=INNER_draw();
N[v]=outer; /* label outer vertices */
OUTER_put(v);
}
while (! INNER_empty()) /* while there exist inner vertices */
{
v=INNER_draw(); /* get one inner ... */
N[v]=inner; /* label inner vertex */
u=OUTER_draw(); /* ... and two outer vertices */
w=OUTER_draw();
Left[v]=Left[u]; /* actualize borders of v */
Right[v]=Right[w];
E[G_new_edge(v,u)]=inner; /* add 2 inner and 1 outer edge */
E[G_new_edge(Right[u],Left[w])]=outer; /* in correct order */
E[G_new_edge(v,w)]=inner;
OUTER_put(v); /* now v is an outer vertex */
}
v=OUTER_draw(); /* take the last two outer vertices */
w=OUTER_draw();
E[G_new_edge(v,w)]=inner; /* and add the last three edges */
if (N[v]==outer)
E[G_new_edge(Right[v],Left[w])]=outer;
E[G_new_edge(Right[w],Left[v])]=outer;
if (N[v]==inner)
E[G_new_edge(Right[v],Left[w])]=inner;
forall_vertices(v,G) /* all incidence lists of inner vertices are */
{ /* directed clockwise, thus reorder them! */
if (N[v]==inner) /* Size of G.incident_edges(v) always 3! */
{
e=G_first_incident_edge(v);
w=G_opposite(v,e);
if (N[w]==inner)
{
E[G_new_edge2(v,w,G_cyclic_incident_succ(e,v),G_cyclic_incident_succ(e,w),after,after)]
=inner;
N[w]=updated;
}
else
E[G_new_edge2(v,w,G_cyclic_incident_succ(e,v),e,after,after)]=inner;
G_delete_edge(e);
N[v]=updated;
}
}
G_delete_vertex_array(N);
G_delete_edge_array(E);
G_delete_vertex_array(Left);
G_delete_vertex_array(Right);
INNER_delete();
OUTER_delete();
G_compress(NULL,NULL);
}
/*****************************************************************************/
#define LEFT(e,v,Left,Right) ((G_source(e)==v) ? Left[e] : Right[e])
#define RIGHT(e,v,Left,Right) ((G_source(e)==v) ? Right[e] : Left[e])
#define LEFT_(e,v,Left,Right) ((G_source(e)==v) ? &Left[e] : &Right[e])
#define RIGHT_(e,v,Left,Right) ((G_source(e)==v) ? &Right[e] : &Left[e])
bool dual_left_face(edge e, vertex d, edge_array Left, edge_array Right)
{
vertex v=G_target(e);
edge f=G_cyclic_incident_pred(e,v);
Left[e]=d;
while (LEFT(f,v,Left,Right)==0)
{
*LEFT_(f,v,Left,Right)=d;
v = G_opposite(v,f);
f = G_cyclic_incident_pred(f,v);
}
return (e==f);
}
bool dual_right_face(edge e, vertex d, edge_array Left, edge_array Right)
{
vertex v=G_target(e);
edge f=G_cyclic_incident_succ(e,v);
Right[e]=d;
while (RIGHT(f,v,Left,Right)==0)
{
*RIGHT_(f,v,Left,Right)=d;
v = G_opposite(v,f);
f = G_cyclic_incident_succ(f,v);
}
return (e==f);
}
/*
* generates the topological embedding D dual to the topological embedding
* in the planar graph G. It returns true on success and false if G is not
* a topological embedding.
*/
bool dual_graph()
{
int n,m,f;
edge_array Left,Right;
edge e;
n = G_number_of_vertices();
m = G_number_of_edges();
if (m>3*n-6) return false;
Left = G_new_edge_array();
Right = G_new_edge_array();
f = m + 2 - n;
D_new(f,m);
forall_edges(e,G) { Left[e]=0; Right[e]=0; }
forall_edges(e,G)
{
if (Left[e]==0)
if (! dual_left_face(e,D_new_vertex(),Left,Right))
{
D_delete();
G_delete_edge_array(Left);
G_delete_edge_array(Right);
}
if (Right[e]==0)
if (! dual_right_face(e,D_new_vertex(),Left,Right))
{
D_delete();
G_delete_edge_array(Left);
G_delete_edge_array(Right);
}
}
forall_edges(e,G)
D_new_edge(Left[e],Right[e]);
G_delete_edge_array(Left);
G_delete_edge_array(Right);
return true;
}
/*****************************************************************************/
void make_non_planar(void)
{
edge e,f,g,h;
vertex u,v,w,x,y;
if ((G_number_of_edges()+6)!=3*G_number_of_vertices())
err_handler(77,"make_non_planar() called with non-maximal planar graph");
if (! is_embedding())
err_handler(77,"make_non_planar() called with non-embedding");
U_new(G_number_of_edges());
forall_edges(e,G) U_put(e);
e = U_draw();
U_delete();
u = G_source(e); if (G_degree(u)==3) u = G_target(e);
f = G_cyclic_incident_pred(e,u);
v = G_opposite(u,f);
g = G_cyclic_incident_succ(e,u);
w = G_opposite(u,g);
h = G_cyclic_incident_succ(g,u);
x = G_opposite(u,h);
y = G_opposite(u,e);
G_remove_edge(e);
G_old_edge2(x,y,e,h,G_cyclic_incident_pred(f,v),after,before);
forall_edges(f,G)
if ((f!=e) && (G_SAME(e,f)))
{
printf("parallel edge generated! (%d)\n",is_embedding());
G_print();
G_print_edge(e); printf(" "); G_print_edge(f); newline;
exit(1);
}
printf("modified to non-embedding! (%d)\n",is_embedding());
}
/*****************************************************************************/
enum { cubic, cubic_Halin, dual_of_cubic_Halin, maximal_planar };
int main(int argc, char *argv[])
{
int i,n,eremove=0,gen_type=maximal_planar;
bool file_out=false;
bool nonplanar=false;
char fname[100];
if (argc<2) err_handler(3,"Format: randomgraph n [-t type] [-o file.[u/bit/bit8/a]] \
[-s seed] [-no] [-r edges] [-n]\
( type in {cubic,cubic_Halin,maximal_planar,dual_of_cubic_Halin} ) ");
n = atoi(argv[1]);
for(i=2; i<argc; i++)
{
char arg[100];
strcpy(arg,argv[i]);
if (arg[0]!='-')
err_handler(77,"non option found");
else
switch (arg[1])
{
case 'n': if (arg[2]=='o') { fname[0]=0; file_out=false; }
else if (arg[2]=='\0') nonplanar=true;
break;
case 'o': strcpy(fname,argv[++i]); file_out=true;
break;
case 'r': eremove = atoi(argv[++i]); break;
case 's': srandom(atoi(argv[++i])); break;
case 't': strcpy(arg,argv[++i]);
if (strncmp(arg,"cubic",5)==0)
{
if (strlen(arg)==5)
gen_type=cubic;
else if (strncmp(arg,"cubic_Halin",11)==0)
gen_type=cubic_Halin;
else err_handler(77,"unknown gen_type");
}
else
if (strncmp(arg,"maximal_planar",14)==0)
gen_type=maximal_planar;
else if (strncmp(arg,"dual_of_cubic_Halin",19)==0)
gen_type=dual_of_cubic_Halin;
else err_handler(77,"unknown gen_type");
break;
default: err_handler(77,"unknown option");
}
}
switch (gen_type)
{
case cubic: random_cubic_ugraph(n); break;
case cubic_Halin: random_cubic_Halin_graph(n); break;
case maximal_planar: random_maximal_planar_graph(n);
if ((nonplanar) && (n>4))
make_non_planar();
break;
case dual_of_cubic_Halin: random_cubic_Halin_graph(2*n-4);
if (dual_graph()) UGRAPH_ASSIGN(G,D)
else err_handler(77,"cubic_Halin not embedded");
break;
default: err_handler(77,"wrong type");
}
if (eremove!=0)
{
U_new(G_number_of_edges());
Apply_forall_edges(e,G, U_put(e); )
while (eremove>0)
{
edge e=U_draw();
G_delete_edge(e);
eremove--;
}
U_delete();
}
if (! file_out)
G_print();
else
{
if (strlen(fname)>0)
if (! strstr(fname, ".a"))
G_write(fname);
else
{
FILE *target = fopen(fname,"w");
vertex v;
edge e;
if (! is_embedding()) {
err_handler(77,"not an embedding");
}
(void) fprintf(target, "[");
forall_vertices(v, G) {
if (v != G_first_vertex()) {
(void) fprintf(target, ",");
}
(void) fprintf(target, "[");
forall_incident_edges(e, v, G) {
if (e != G_first_incident_edge(v)) {
(void) fprintf(target, ",");
}
(void) fprintf(target, "%d", G_opposite(v, e)-1);
}
(void) fprintf(target, "]");
}
(void) fprintf(target, "]\n");
(void) fclose(target);
}
}
G_delete();
if (!getenv("NOSTAT")) statistics(); return 0;
}