-
Notifications
You must be signed in to change notification settings - Fork 368
/
Copy pathelmo_example.py
78 lines (66 loc) · 3.49 KB
/
elmo_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
"""
Example from training to saving.
"""
import argparse
import os
import numpy as np
from anago.utils import load_data_and_labels, load_glove, filter_embeddings
from anago.models import ELModel
from anago.preprocessing import ELMoTransformer
from anago.trainer import Trainer
def main(args):
print('Loading dataset...')
x_train, y_train = load_data_and_labels(args.train_data)
x_valid, y_valid = load_data_and_labels(args.valid_data)
x_test, y_test = load_data_and_labels(args.test_data)
x_train = np.r_[x_train, x_valid]
y_train = np.r_[y_train, y_valid]
print('Transforming datasets...')
p = ELMoTransformer()
p.fit(x_train, y_train)
print('Loading word embeddings...')
embeddings = load_glove(EMBEDDING_PATH)
embeddings = filter_embeddings(embeddings, p._word_vocab.vocab, 100)
print('Building a model.')
model = ELModel(char_embedding_dim=args.char_emb_size,
word_embedding_dim=args.word_emb_size,
char_lstm_size=args.char_lstm_units,
word_lstm_size=args.word_lstm_units,
char_vocab_size=p.char_vocab_size,
word_vocab_size=p.word_vocab_size,
num_labels=p.label_size,
embeddings=embeddings,
dropout=args.dropout)
model, loss = model.build()
model.compile(loss=loss, optimizer='adam')
print('Training the model...')
trainer = Trainer(model, preprocessor=p)
trainer.train(x_train, y_train, x_test, y_test)
print('Saving the model...')
model.save(args.weights_file, args.params_file)
# p.save(args.preprocessor_file)
if __name__ == '__main__':
DATA_DIR = os.path.join(os.path.dirname(__file__), '../data/conll2003/en/ner')
EMBEDDING_PATH = os.path.join(os.path.dirname(__file__), '../data/glove.6B/glove.6B.100d.txt')
parser = argparse.ArgumentParser(description='Training a model')
parser.add_argument('--train_data', default=os.path.join(DATA_DIR, 'train.txt'), help='training data')
parser.add_argument('--valid_data', default=os.path.join(DATA_DIR, 'valid.txt'), help='validation data')
parser.add_argument('--test_data', default=os.path.join(DATA_DIR, 'test.txt'), help='test data')
parser.add_argument('--weights_file', default='weights.h5', help='weights file')
parser.add_argument('--params_file', default='params.json', help='parameter file')
parser.add_argument('--preprocessor_file', default='preprocessor.json')
# Training parameters
parser.add_argument('--optimizer', default='adam', help='optimizer')
parser.add_argument('--max_epoch', type=int, default=15, help='max epoch')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--checkpoint_path', default=None, help='checkpoint path')
parser.add_argument('--log_dir', default=None, help='log directory')
parser.add_argument('--early_stopping', action='store_true', help='early stopping')
# Model parameters
parser.add_argument('--char_emb_size', type=int, default=25, help='character embedding size')
parser.add_argument('--word_emb_size', type=int, default=100, help='word embedding size')
parser.add_argument('--char_lstm_units', type=int, default=25, help='num of character lstm units')
parser.add_argument('--word_lstm_units', type=int, default=100, help='num of word lstm units')
parser.add_argument('--dropout', type=float, default=0.5, help='dropout rate')
args = parser.parse_args()
main(args)