
Foreword

Welcome to Tonc, a guide to Game Boy Advance programming originally published in

2004.

You are reading a new, revamped version of it, powered by mdbook and now

maintained by the community.

WORK IN PROGRESS NOTICE

We recently finished the porting of this book. Improvements ongoing, if you

spot any problems please feel free to ask for help or get involved!

Contributing

This book is open source, released under the CC-BY-NC-SA license. Everyone is

welcome to help, provide feedback and propose additions or improvements. The git

repository is hosted at github.com/gbadev-org/tonc, where you can learn more about

how you can help, find detailed contribution guidelines and procedures, file Issues

and send Pull Requests.

More resources about GBA development can be found at gbadev.net. There is also a

Discord chat dedicated to the gbadev community.

Authors

Jasper “cearn” Vijn is the original author, creating and maintaining Tonc till 2013.

Tonc - GBA Programming in rot13

1 / 757

https://raw.githubusercontent.com/gbadev-org/tonc/master/LICENSE
https://github.com/gbadev-org/tonc
https://gbadev.net/
https://discord.gg/DDYbusKVyJ

exelotl, avivace, PinoBatch, copyrat90, LunarLambda, gwilymk, mtthgn, and djedditt

ported the contents to markdown and migrated the underlying rendering technology

to mdbook.

Using this document

In the top navigation bar, you will find a series of icons.

By clicking on the icon you will toggle an interactive table of contents to navigate the

document. You can also use → and ← keys on your keyboard to go to the following

and previous page.

The lets you choose among 6 different themes and color schemes to please your

reading experience, including the classic Tonc theme.

You can search anywhere by pressing s on your keyboard or clicking the icon.

The icon allows you to suggest an edit on the current page by directly opening the

source file in the git repository.

This document version was produced from git commit a44c1e (2024-04-23 13:38:04 +0200).

Tonc - GBA Programming in rot13

2 / 757

https://github.com/gbadev-org/tonc/tree/a44c1ea321c14638a7342ed48f1fb04305a5471e

Introduction

Organisation

Terminology and Notation

On errors, suggestions

Organisation

TONC consists of three components: a text section (the actual tutorial), an examples

repo with all the source code & makefiles of the various demos, and a library called

libtonc which holds all the useful/reusable code introduced throughout the tutorial.

Previously these were all distributed as zip files, but times have changed and now

they exist in separate git repositories. They will now be explained in more detail:

Tonc text

The text section, which you’re reading now, covers the principles of GBA programming

in detail. The focus here is not so much on how to get something done, but how things

actually work, and why it’s done the way it’s done. A�er that the how o�en comes

naturally. Every chapter has one of more demonstrations of the covered theory, and a

brief discussion of the demo itself.

Please, do not make the mistake of only reading the demo discussion: to properly

understand how things work you need to read the text in full. While there are optional

parts, and whole pages of boring text that seem to have little to do with actual GBA

coding, they are there for a reason, usually there’s extra conceptual information or

gotchas.

Tonc - GBA Programming in rot13

3 / 757

At first, the text part had only very little code in it, because I figured the demo code

would be at hand and flicking between them would not be annoying. Well, I’ve

realized that I figured wrong and am in the process of including more of the code into

these pages; maybe not quite enough to copy-paste and get a clean compile, but

enough to go with the explanations of the demos.

The main language will be C, and a smidgeon of assembly. These are the two main

languages used in GBA programming even though there are others around. Since the

basics of programming are independent of language, it should be possible to adapt

them for your chosen language easily.

GBA programming is done close to the hardware, so I hope you know your pointers,

hexadecimal numbers and boolean algebra/bit-operations. There’s also a fair amount

of math here, mostly vector and matrix stuff so I hope your linear algebra is up to

speed. Lastly, I am assuming your intellectual capacities exceed those of a random lab

monkey, so I won’t elaborate on what I consider trivial matters too much.

Aside from the introduction and appendices, the text is divided into 3 parts. First

there’s ‘basics’, which explains the absolute essentials for getting anything done. This

includes setting up the development environment, basic use of graphics and buttons.

It also contains text on what it means to do low level programming and programming

efficiently; items that in my view you’d better learn sooner rather than later. The

second part covers most of the other items of the GBA like special graphic effects,

timers and interrupts. The final section covers more advanced items that uses

elements from all chapters. This includes writing text (yes, that’s an advanced topic

on the GBA), mode 7 graphics and a chapter on ARM assembly.

The Markdown source for the text is all available on GitHub, so please feel free to

contribute if you find a typo or something that can be improved.

Tonc code (libtonc & examples)

The source code to all the demos mentioned in the text can be found in the libtonc-

examples repository. Like the text, the examples themselves are divided into 3 parts:

Tonc - GBA Programming in rot13

4 / 757

https://github.com/gbadev-org/tonc
https://github.com/gbadev-org/libtonc-examples
https://github.com/gbadev-org/libtonc-examples

basic, extended and advanced. There is also a lab directory with a few interesting

projects, but which might not be quite ready. Still interesting to look at, though.

The language we’ll be using is C with a dash of assembly (but not C++). I am working

under the assumption that you are familiar with this language. If not, go learn it first

because I’m not going to show you; this is not a C course. I do have some links to C

tutorials in the references.

Unlike some older GBA tutorials, tonc uses makefiles instead of batch scripts to build

the example projects, because they’re just Plain Better™. How to use these will be

explained in the next chapter, but if you just wanted to check out the pre-compiled

example ROMs, those are still available here: tonc-bin.zip.

The examples depend on libtonc, a library containing all the important #defines and

functions introduced throughout the tutorial. This also includes text writers for all

video modes, BIOS routines, a pretty advanced interrupt dispatcher, safe and fast

memory copy and fill routines and much more. Historically libtonc was included

alongside the examples, but nowadays it comes with devkitARM, so you don’t have to

download it yourself.

Statement of Purpose

I wrote Tonc for two reasons. Firstly, as a way to organize my own thoughts. You o�en

see things in a different light when you write things down and learn from that

experience. Secondly, there is a lot of very bad information in other tutorials out there

(the only exceptions I know of are the new PERN and Deku’s sound tutorial. Yes, I am

aware of how that sounds, but unfortunately it happens to be true. A number of

examples:

Only very basic information given, sometimes even incorrect info.

Strong focus on bitmap modes, which are hardly ever used for serious GBA

programming.

Bad programming habits. Adding code/data to projects by #including the files,

Using ancient toolchains, non-optimal compiler settings and data-types, and

Tonc - GBA Programming in rot13

5 / 757

http://www.coranac.com/files/tonc-bin.zip
https://github.com/gbadev-org/libtonc
http://www.drunkencoders.com/web.archive.org/web/20030413142151fw_/http_/www.thepernproject.com/English/tutorial.html
https://stuij.github.io/deku-sound-tutorial/

inefficient (sometimes very inefficient) code.

If you are new and have followed the other tutorials, everything will seem to work

fine, so what’s the problem? Well, that’s part of the problem actually. Everything will

seem fine, until you start bigger projects, at which time you’ll find hidden errors and

that slow code really bogs things down and you’ll have unlearn all the bad habits you

picked up and redo everything from the start. The GBA is one of the few platforms

where efficient coding still means something, and sometimes all it takes is a change of

datatype or compiler switch. These things are better done right from the start.

I’ve tried to go for completeness first, simplicity second. As a certain wild-haired

scientist once said: “Make things as simple as possible, but no simpler.” This means

things can seem a little technical at times, but that’s only because things are pretty

technical at times, and there’s no sense in pretending they’re not.

In short, Tonc is not “GBA Programming for Dummies”, never was, never will be.

There’s far too much of stuff for Dummies already anyway. If you consider yourself a

dummy (and I do mean dummy, not newbie), maybe Tonc isn’t the right place. If

you’re serious about learning GBA programming, however, accept no substitute.

Terminology and Notation

I’m a physicist by training which means that I know my math and its notational

conventions. I use both quite o�en in Tonc, as well as a number of html-tag

conventions. To make sure we’re all on the same page here’s a list:

Type notation example

bit n in a foo foo {n} REG_DISPCNT{4} (active page bit)

code <code> tag sx

command/file <tt> tag vid.h
matrix bold, uppercase P

Tonc - GBA Programming in rot13

6 / 757

memory hex + code 0400:002eh

new term bold, italic charblock

variable italics x

vector bold, lowercase v

I also use some non-ASCII symbols that may not show up properly depending on how

old your browser is. These are:

symbol description

α, β, γ Greek letters

≈ approximately

½ one half

¼ one quarter

¾ three quarters

≥ greater or equal

↔ double-sided arrow

∈ is in (an interval)

⟨ ⟩ ‘bra’ & ‘ket’

→ right arrow

² superscript 2

× times

I also make liberal use of shorthand for primitive C types like char and int and

such. These are typedefs that better indicate the size of the variable that’s used. Since

this is very important in console programming, they’re quite common. Anyway, here’s

a list.

base type alt name unsigned signed volatile

char byte u8 s8 vu8 / vs8

short halfword u16 s16 vu16 / vs16

Tonc - GBA Programming in rot13

7 / 757

int word u32 s32 vu32 / vs32

Finally, there are a number of different notations for hex that I will switch between,

depending on the situation. The C notation (‘0x’ prefix, 0x0400) is common for normal

numbers, but I’ll also use the assembly affix at times (‘h’, 0400:0000h). The colon here

is merely for ease of reading. It’s hard to tell the number of zeros without it.

Register names and descriptions

Getting the GBA to do things o�en involves the use of the so-called IO registers.

Certain bits at certain addresses of memory can be used as switches for the various

effects that the GBA is capable of. Each register is aliased as a normal variable, and

you need to set/clear bits using bit operations. We’ll get to where these registers are

and what bit does what later; right now I want to show you how I will present these,

and refer to them in the text.

Each register (or register-like address) is mapped to a dereferenced pointer, usually

16bits long. For example, the display status register is

Every time I introduce a register I will give an overview of the bits like this:

REG_DISPSTAT @ 0400�0004h

F E D C B A 9 8 7 6 5 4 3 2 1 0
VcT - VcI HbI VbI VcS HbS VbS

The table lists the register’s name (REG_DISPSTAT , its address (0400:0000h) and the

individual bits or bitfields. Sometimes, bits or entire registers are read- or write-only.

Read-only is indicated with a red overbar (as used here). Write-only uses a blue

underbar. A�er it will be a list that describes the various bits, and also gives the

#define or #defines I use for that bit:

bits name define description

#define REG_DISPSTAT *(u16*)0x04000004

Tonc - GBA Programming in rot13

8 / 757

0 VbS DSTAT_IN_VBL VBlank status, read only. Will be set inside

VBlank, clear in VDraw.

other fields

8-

F

VcT DSTAT_VCT# VCount trigger value. If the current

scanline is at this value, bit 2 is set and an

interrupt is fired if requested.

The full list of REG_DISPSTAT can be found here. The #defines are usually specific to

tonc, by the way. Each site and API has its own terminology here. This is possible

because it’s not the names that are important, but the numbers they stand for. That

goes for the names of the registers themselves too, of course. One last point on the

#defines: some of the ones listed have a hash (‘#’) affix. This is a shorthand notation to

indicate that that field has foo _SHIFT and foo _MASK #defines, and a foo () macro.

For example, the display register has an 8-bit trigger VCount field, which has

‘DSTAT_VCT#’ listed in the define column. This means that the following three things

exist in the tonc headers:

Lastly, as shorthand for a specific bit in a register, I will use accolades. The number

will be a hexadecimal number. For example, REG_DISPCNT{0} is the VBlank status bit

(VbS above), and REG_DISPCNT{8-F} would be the whole byte for the VCount trigger.

On errors, suggestions

As much as we (cearn and the gbadev.net community) have tried to weed out things

like spelling/grammar errors and broken links, it’s surely possible some have slipped

by. If you find some, please raise an issue (or even better, make a pull request) on the

GitHub repo. Of course, if things are unclear or *gasp* incorrect, or if you have

#define DSTAT_VCT_MASK 0xFF00
#define DSTAT_VCT_SHIFT 8
#define DSTAT_VCT(_n) ((_n)<<DSTAT_VCT_SHIFT)

Tonc - GBA Programming in rot13

9 / 757

https://github.com/gbadev-org/tonc

suggestions, we’d like to know that as well! You can also reach us on Discord / IRC or

the Forums.

And, of course:

This distribution is provided as is, without warranty of any kind. I cannot be held

liable for any damage arising out of the use or inability to use this distribution.

Code has been tested on emulator and real hardware as well as I could, but I

can’t guarantee 100% correctness. Both text and code may be modified at any

time. Check in once in a while to see if anything’s changed. There is also a log in

the appendices.

OK that’s it. Have fun.

– Jasper Vijn (jakvijn at gmail dot com) and the gbadev.net community

Tonc - GBA Programming in rot13

10 / 757

https://gbadev.net/resources.html#community
https://forum.gbadev.net/

1. GBA Hardware

Meet the GBA

GBA specs and capabilities

Memory Sections

Meet the GBA

The Nintendo Game Boy Advance (GBA) is a portable games console. As if you didn’t

know already. The CPU is a 32-bit ARM7tdmi chip running at 16.78 MHz. It has a

number of distinct memory areas (like work RAM, IO and video memory) which we

will look into shortly. The games are stored on Game Paks, consisting of ROM for code

and data, and fairly o�en some RAM for saving game info. The GBA has a 240x160 LCD

screen capable of displaying 32768 colors (15 bits).

Unfortunately, the screen is not back-lit, which made a lot of people very angry and

has generally been regarded as a bad move. So, in 2003 Nintendo launched the GBA

SP, a sort of GBA 2.0, which features a fold-up screen reminiscent of the old Game &

Watch games (remember those? You do? Boy, you are old! (For the record, I still have

mine too �))). Then came the final GBA version, the Game Boy Micro, a very, very

small GBA which easily fits in everyone’s pockets. The differences the GBA, GBA-SP

and Micro are mainly cosmetic, though, they’re the same thing from a programming

point of view.

The original Game Boy took the world by storm in 1989. Not bad for a monochrome

handheld console, eh? Later the Game Boy Color was released which finally put some

color on the aging machine, but it was still very much a simple Game Boy. The true

successor was the GBA, released in 2001. The GBA is backward compatible with the

Game Boy, so you can play all the old GB games as well.

Tonc - GBA Programming in rot13

11 / 757

In terms of capabilities the GBA is a lot like the Super NES (SNES): 15-bit color,

multiple background layers and hardware rotation and scaling. And shoulder buttons,

of course. A cynic might look at the enormous amount of SNES ports and say that the

GBA is a SNES, only portable. This is true, but you can hardly call that a bad thing.

Fig 1.1: original GBA.

Fig 1.2: GBA-SP.

GBA specs and capabilities

Below is a list of the specifications and capabilities of the GBA. This is not a full list,

but these are the most important things you need to know.

Video

240x160 pixel, 15-bit color LCD screen. The original GBA screen was not

backlit, but the SP’s and Micro’s are.

Tonc - GBA Programming in rot13

12 / 757

3 bitmap modes and 3 tilemap modes and sprites.

4 individual tilemap layers (backgrounds) and 128 sprites (objects).

Affine transformations (rotate/scale/shear) on 2 backgrounds and 32

objects.

Special graphic effects: mosaic, additive blend, fade to white/black.

Sound

6 channels total

4 tone generators from the original Game Boy: 2 square wave, 1 general

wave and one noise generator.

2 ‘DirectSound’ channels for playing samples and music.

Miscellaneous

10 buttons (or keys): 4-way directional pad, Select/Start, fire buttons A/B,

shoulder buttons L/R.

14 hardware interrupts.

4-player multiplayer mode via a multiboot cable.

Optional infrared, solar and gyroscopic interfaces. Other interfaces have

also been made by some.

Main programming platforms: C/C++ and assembly, though there are tools

for Pascal, Forth, Lua and others as well. Easy to start with, yet hard to truly

master.

From a programming point of view, the GBA (or any other console for that matter) is

totally different from a PC. There is no operating system, no messing with drivers and

hardware incompatibilities; it’s bits as far as the eye can see. Well, PCs are also just

bits, but that’s several layers down; on consoles it’s just you, the CPU and memory.

Basically, it’s the Real Programmer’s dream.

To get anything done, you use memory-mapped IO. Specific areas of memory are

mapped directly to hardware functions. In the first demo, for example, we will write

the number 0x0403 to memory address 0400:0000h . This tells the GBA to enable

background 2 and set the graphics mode to 3. What this actually means is, of course,

what this tutorial is for �) .

Tonc - GBA Programming in rot13

13 / 757

http://www.catb.org/~esr/jargon/html/R/Real-Programmer.html

CPU

As said, the GBA runs on a ARM7tdmi RISC chip at 16.78 MHz (224 cycles/second). It is

a 32-bit chip that can run on two different instruction sets. First, there’s is ARM code,

which is a set of 32-bit instructions. Then there’s Thumb, which uses 16-bit

instructions. Thumb instructions are a subset of the ARM instruction set; since the

instructions are shorter, the code can be smaller, but their power is also reduced. It is

recommended that normal code be Thumb code in ROM, and for time-critical code to

be ARM code and put in IWRAM. Since all tonc-demos are still rather simple, most (but

not all) code is Thumb code.

For more information on the CPU, go to www.arm.com or to the assembly chapter

Memory Sections

This section lists the various memory areas. It’s basically a summary of the GBATEK

section on memory.

area start end length
port-

size
description

System

ROM
0000:0000 0000:03FF 16 KB

32

bit

Bios memory.

You can execute

it, but not read it

(i.o.w, touch,

don't look)

EWRAM 0200:0000h 0203:FFFFh 256

KB

16

bit

External work

RAM. Is available

for your code

and data. If

you're using a

multiboot cable,

this is where the

Tonc - GBA Programming in rot13

14 / 757

http://www.arm.com/
https://problemkaputt.de/gbatek.htm

area start end length
port-

size
description

downloaded

code goes and

execution starts

(normally

execution starts

at ROM). Due to

the 16-bit port,

you want this

section's code to

be Thumb code.

IWRAM 0300:0000h 0300:7FFFh 32 KB
32

bit

This is also

available for

code and data.

The 32-bit bus

and the fact it's

embedded in the

CPU make this

the fastest

memory section.

The 32-bit bus

means that ARM

instructions can

be loded at once,

so put your ARM

code here.

IO RAM 0400:0000h 0400:03FFh 1 KB 32

bit

Memory-mapped

IO registers.

These have

nothing to do

with the CPU

registers you use

in assembly so

the name can be

Tonc - GBA Programming in rot13

15 / 757

area start end length
port-

size
description

a bit confusing.

Don't blame me

for that. This

section is where

you control

graphics, sound,

buttons and

other features.

PAL

RAM
0500:0000h 0500:03FFh 1 KB

16

bit

Memory for two

palettes

contaning 256

entries of 15-bit

colors each. The

first is for

backgrounds, the

second for

sprites.

VRAM 0600:0000h 0601:7FFFh 96 KB
16

bit

Video RAM. This

is where the data

used for

backgrounds and

sprites are

stored. The

interpretation of

this data

depends on a

number of

things, including

video mode and

background and

sprite settings.

Tonc - GBA Programming in rot13

16 / 757

area start end length
port-

size
description

OAM 0700:0000h 0700:03FFh 1 KB
32

bit

Object Attribute

Memory. This is

where you

control the

sprites.

PAK

ROM
0800:0000h var var

16

bit

Game Pak ROM.

This is where the

game is located

and execution

starts, except

when you're

running from a

multiboot cable.

This size is

variable, but the

limit is 32 MB. It's

a 16-bit bus, so

Thumb code is

preferable over

ARM code here.

Cart

RAM

0E00:0000h var var 8 bit This is where

saved data is

stored. Cart RAM

can be in the

form of SRAM,

Flash ROM or

EEPROM.

Programatically

they all do the

same thing: store

data. The total

size is variable,

Tonc - GBA Programming in rot13

17 / 757

area start end length
port-

size
description

but 64 KB is a

good indication.

The various RAM sections (apart from Cart RAM) are zeroed at start-up by BIOS. The

areas you will deal with them most are IO, PAL, VRAM and OAM. For simple games and

demos it will usually suffice to load your graphics data into PAL and VRAM at the start

use IO and OAM to take care of the actual interaction. The layout of these two sections

is quite complex and almost impossible to figure out on your own (almost, because

emulator builders obviously have done just that). With this in mind, reference sheets

like GBATEK and the CowBite Spec are unmissable documents. In theory this is all you

need to get you started, but in practice using one or more tutorials (such as this one)

with example code will save a lot of headaches.

Tonc - GBA Programming in rot13

18 / 757

https://problemkaputt.de/gbatek.htm
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm

2. Setting up a development environment

Introduction

Choosing a text editor

Installing a GBA emulator

Installing devkitARM

Obtaining Tonc’s example code

Compiling the examples

Manual steps to build a GBA ROM

Alternative toolchains

Introduction

Unless you want to punch in the instructions in binary in a hex editor, you’ll need a

development environment to turn human readable code into machine code. This

chapter will show you how to set up the necessary components and use them to

compile Tonc’s examples.

By the end you should have:

A text editor

A GBA emulator (mGBA)

A cross-compiler toolchain (devkitARM)

Libraries used for GBA programming (libtonc in particular)

The examples which accompany this tutorial

SOME COMMAND-LINE SKILLS REQUIRED

To compile a GBA game, you’ll need a basic undestanding of the command-line.

If this is unfamiliar to you, the following Unix command-line tutorial may be

Tonc - GBA Programming in rot13

19 / 757

https://command-line-tutorial.readthedocs.io/

helpful.

If you’re on Windows, you should use the MSYS2 terminal which comes with

devkitARM. On other OS’s, the built-in terminal should be perfectly adequate.

Choosing a text editor

A decent text editor is essential for programming. At the bare minimum you’ll want

something that supports syntax highlighting and gives you control over indentation

and line endings. That means notepad.exe sadly won’t cut it.

There are many options, and you may already have a favourite. But in case you don’t,

here are some suggestions:

Visual Studio Code - a popular and featureful editor that works on Linux,

Windows & Mac

Kate - another powerful editor, a bit lighter and fully open-source

Geany - runs well on low-end machines and is still very extensible via plugins

Notepad++ - a lightweight and widely-loved choice on Windows

Once you’ve chosen an editor and gotten comfortable with it, you can move onto the

next section.

Tonc - GBA Programming in rot13

20 / 757

https://code.visualstudio.com/
https://kate-editor.org/
https://www.geany.org/
https://notepad-plus-plus.org/

Fig 2.1: Editing a file in VS Code.

In many editors it’s possible to set a hotkey (usually F5 or Ctrl+Enter) to compile

and run your code. This can be an effective workflow, but for the purposes of this

tutorial we’ll use the command-line, because it’s essential to know what’s going on

under the hood.

Likewise, code-completion and error highlighting are also valuable features which

you may want to spend time setting up, but are outside the scope of this chapter.

Installing a GBA emulator

Needless to say, you’ll need a way to actually run your GBA programs. Testing on real

hardware from time to time is highly recommended (and part of the fun), but for

everyday development you’ll want something more convenient. That’s where

emulators come in.

At the time of writing, the most suitable emulator for GBA development is mGBA. It’s

highly accurate and has features for developers such as memory viewers, debug

logging, and a GDB server for step debugging, all of which will make your life a lot

easier when things go wrong (and they will)!

Tonc - GBA Programming in rot13

21 / 757

https://mgba.io/

Fig 2.2: A GBA ROM running inside mGBA

Other emulators which you might want to use are: NanoBoyAdvance and SkyEmu,

which are both cycle accurate and effectively the closest you can get to playing on real

hardware without actually doing so.

Finally no$gba (debug version) is a somewhat older and less accurate Windows-only

GBA emulator, but has some unique debugging features you won’t find elsewhere.

Namely a visual debugger, performance profiler, CPU usage meters, and memory

access checking which can catch buffer overflows and such. If you can get it working,

it’s an invaluable tool!

Installing devkitARM

devkitARM has been the standard toolchain for GBA homebrew for many years. It is

provided by a team called devkitPro (dkP), though informally the tools are o�en

referred to as devkitPro too (much to the maintainers’ lament).

To install devkitARM, visit the devkitPro Getting Started page and follow the

instructions for your OS.

Tonc - GBA Programming in rot13

22 / 757

https://github.com/nba-emu/NanoBoyAdvance
https://github.com/skylersaleh/SkyEmu
https://problemkaputt.github.io/gba.htm
https://devkitpro.org/wiki/Getting_Started

DO NOT USE SPACES IN PATHS

devkitARM uses make for building projects, which doesn’t cope well with

spaces in paths (such as My Documents). The reason for this is that make uses

spaces as a separator between command-line options, but unlike e.g. shell

scripts, it doesn’t provide an adequate form of quoting/escaping, especially not

when working with lists of filenames.

Windows tips

If you are on Windows, there is a GUI installer which downloads and installs the

components automatically. Be sure to select “GBA Development” during installation,

as shown in fig 2.3.

Fig 2.3: Installing devkitARM with the GBA packages on Windows.

Linux & Mac tips

If you are using Linux or Mac, a�er following the instructions on dkP’s Getting Started

page, you should install the gba-dev package group via dkp-pacman in your terminal

Tonc - GBA Programming in rot13

23 / 757

https://en.wikipedia.org/wiki/Make_(software)

(or just pacman if you use Arch Linux). To do this, run the following command:

When asked which packages to install (“Enter a selection (default=all):”) you should

simply hit Enter to install everything in the entire gba-dev group.

Obtaining Tonc’s example code

This tutorial comes with a full set of examples to demonstrate the concepts taught in

each chapter.

Additionally, libtonc is the GBA programming library that accompanies Tonc, and is

necessary to compile the examples. In the past, libtonc had to be downloaded

separately and placed where your projects could find it. But nowadays it comes

included as part of devkitARM. As long as you selected the gba-dev packages during

installation, you already have libtonc.

The bad news is devkitARM doesn’t include the Tonc examples, so you still have to

download those yourself. You can get them via “Code -> Download Zip” on the

repository page, or by using git in your terminal:

TOOLBOX.H VS LIBTONC

In the early chapters, we’ll be building our own library called toolbox.h which

replicates parts of libtonc for educational purposes. But for real-world usage,

sudo dkp-pacman -S gba-dev

git clone https://github.com/gbadev-org/libtonc-examples

Tonc - GBA Programming in rot13

24 / 757

https://github.com/gbadev-org/libtonc-examples
https://git-scm.com/

sticking to a more featureful, tried-and-tested library (such as libtonc itself)

should be preferred.

Compiling the examples

To test your installation, let’s try building one of the examples.

In the terminal, navigate to the directory where one of the examples is located (let’s

say, the hello example) and run make :

When invoked, make will build the project by following the rules in the file called

‘Makefile’ in the current working directory. Assuming this was successful, a .gba file

will be produced, which you can run in your emulator of choice:

Fig 2.4: One of the Tonc examples running in mGBA.

If you’ve gotten this far, congratulations! You are now ready to start writing your own

GBA programs.

cd libtonc-examples/basic/hello
make

Tonc - GBA Programming in rot13

25 / 757

You can move onto the next chapter, or keep reading for more details.

SETTING ENVIRONMENT VARIABLES

If you get an error such as Please set DEVKITPRO in your environment , it

means your environment variables aren’t set properly. The solution to this

differs between machines, but usually you want to edit a file called .bashrc in

your home directory, and add the following lines to it:

The last line adds the compiler and related tools to your PATH environment

variable, allowing you to use them directly in your terminal.

This is optional, because the example makefiles also set PATH during the build

process. But having the tools on hand is useful, and required if you want to

follow along in the next section.

A�er editing .bashrc , you will have to close and reopen your terminal to apply

the changes. Or you can run source ~/.bashrc to persist these changes in the

current shell.

Manual steps to build a GBA ROM

We’ve just seen how to compile a GBA program via make . Copying the makefile and

using it for your own projects is absolutely encouraged! That said, it’s valuable to

know what’s happening under the hood.

export DEVKITPRO=/opt/devkitpro
export DEVKITARM=/opt/devkitpro/devkitARM
export DEVKITPPC=/opt/devkitpro/devkitPPC

export PATH=$DEVKITARM/bin:$DEVKITPRO/tools/bin:$PATH # optional

Tonc - GBA Programming in rot13

26 / 757

Converting your C/C++/asm sources into a valid GBA ROM involves 4 steps, which can

be seen in the output from running make :

The steps are as follows:

1. Compile/assemble the sources. We turn the human readable C or C++ files

(.c / .cpp) or assembly files (.s / .asm) to a binary format known as object

files (.o). There is one object file for each source file.

The tool for this is called arm-none-eabi-gcc . Actually, this is just a front-end

for the real compiler, but that’s just details. The arm-none-eabi- here is a prefix

which means this version of GCC produces machine code for bare-metal ARM

platforms; other target platforms have different prefixes. Note that C++ uses g++

instead of gcc .

2. Link the object files. A�er that, the separate object files are linked into a single

executable ELF file. Any precompiled code libraries (.a) you may have specified

are linked at this stage too.

You can actually compile and link at the same time, but it is good practice to

keep them separate: serious projects usually contain multiple source files and

you don’t want to have to wait for the whole world to recompile when you only

changed one. This becomes even more important when you start adding data

(graphics, music, etc).

Again, arm-none-eabi-gcc is used for invoking the linker, although the actual

linker is called arm-none-eabi-ld .

$ make
hello.c # <--- invoke the compiler
linking cartridge # <--- invoke the linker
built ... hello.gba # <--- elf stripped
ROM fixed! # <--- header fixed

Tonc - GBA Programming in rot13

27 / 757

https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

3. Strip to raw binary. The ELF file still contains debug data and can’t actually be

read by the GBA (though many emulators will accept it). arm-none-eabi-

objcopy removes the debug data and makes sure the GBA will accept it. Well,

almost.

4. Fix the header. Each GBA game has a header with a checksum to make sure it’s a

valid GBA ROM. The linking step makes room for one, but leaves it blank, so we

have to use a tool like DarkFader’s gbafix to fix the header. This tool comes

with devkitARM, so you don’t have to download it separately.

You can of course run all these commands in the terminal yourself without a makefile,

provided the dkP tools are in your PATH .

Let’s try it with the example named first - this is the easiest one to compile because it

doesn’t depend on any libraries.

There you have it - a GBA program compiled from scratch! Well… we can always go

deeper but this is probably a good place to stop for now. x)

There are various options passed to the tools here that may not be immediately

obvious. These are explained in the makefile appendix if you’re interested.

AVOID BATCH FILES FOR COMPILING

cd libtonc-examples/basic/first/source

Compile first.c to first.o
arm-none-eabi-gcc -mthumb -c first.c

Link first.o (and standard libs) to first.elf
arm-none-eabi-gcc -specs=gba.specs -mthumb first.o -o first.elf

Strip to binary-only
arm-none-eabi-objcopy -O binary first.elf first.gba

Fix header
gbafix first.gba

Tonc - GBA Programming in rot13

28 / 757

You may be tempted to stick all these commands into a batch file or shell script,

and use that to compile your project. This is simple, but not recommended.

The reason becomes apparent as soon as your project has more than one

source file: if you make an edit to a single file, you shouldn’t have to recompile

all of the sources, only the one that changed. A build system such as make is

smart enough to realise this, whereas simple shell scripts are not.

When you get to the point where your project has dozens of source files, this

makes a big difference!

Alternative toolchains

The advantage of devkitARM is that it provides a consistent environment for

compiling GBA homebrew on Windows, Mac and Linux. However, if you’re feeling

adventurous there are other good options available nowadays:

gba-toolchain - uses the CMake build system instead of Makefiles

meson-gba - uses the Meson build system instead of Makefiles

gba-bootstrap - the bare minimum needed to compile a GBA program. In other

words, roll your own toolchain, with the hard bits done for you.

Why would you want to use these? They might be easier to install (many Linux distros

offer their own builds of arm-none-eabi-gcc and related packages, which is

essentially the same thing devkitARM provides), or you could be using a machine for

which devkitARM is not available (such as a Raspberry Pi). Or perhaps you just want a

better build system than makefiles.

Tonc assumes you’re using devkitARM, but most of the information is relevant no

matter which toolchain you’re using.

Tonc - GBA Programming in rot13

29 / 757

https://github.com/felixjones/gba-toolchain
https://github.com/LunarLambda/meson-gba
https://github.com/AntonioND/gba-bootstrap

AVOID ‘DEVKITADVANCE’

You may encounter a toolchain called devkitAdvance. This is an ancient

toolchain which hasn’t been updated since 2003. By using it, you will be

missing out on two decades worth of compiler improvements and

optimisations. If somebody recommends this to you, run away!

Tonc - GBA Programming in rot13

30 / 757

3. My first GBA demo

Finally, your first GBA program

Your second first GBA program

General notes on GBA programming

Testing your code on a real GBA

Finally, your first GBA program

Now that you have your development environment ready, it’s time to take a look at a

simple GBA program. For this we will use the code from the C-file first.c. The plan at

this point is not full understanding; the plan is to get something to compile and get

something running. The code will be discussed in this chapter, but what it all means

will be covered in later chapters.

Don’t worry about the code just yet, there’s time for that later. And don’t leave yet, I’ll

give a nicer version later on. All that matters for now is that you’re able to compile and

run it.

// First demo. You are not expected to understand it
// (don't spend too much time trying and read on).
// But if you do understand (as a newbie): wow!

int main()
{
 (unsigned int)0x04000000 = 0x0403;

 ((unsigned short*)0x06000000)[120+80*240] = 0x001F;
 ((unsigned short*)0x06000000)[136+80*240] = 0x03E0;
 ((unsigned short*)0x06000000)[120+96*240] = 0x7C00;

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

31 / 757

Fig 3.1: picture of the first demo

As explained in the previous chapter, you can run

make in your terminal to build the project. Under

the hood this does the following:

compile first.c to first.o,

link the list of object files (currently only

first.o) to first.elf,

translate first.elf to first.gba by stripping all

excess ELF information,

fix the header so that the GBA will accept it.

A�er the makefile has run, you should have a file called first.gba. If you don’t, there’s a

problem with your setup because the code sure isn’t wrong! Go back to make sure

you didn’t miss anything - but if you’re still having trouble, feel free to stop by on

Discord / IRC or the Forums, there’s a good chance someone will be able to help!

If you do find yourself with a GBA executable, run it on hardware or your emulator of

choice and you should get a red, a green, and a blue pixel at positions (120, 80), (136,

80) and (120, 96), respectively.

Now, for the code itself…

Huh?

If you’re somewhat confused by it, you wouldn’t be alone. I expect that unless you

already know a thing or two about GBA programming or have experience with low-

level programming from other platforms, the code will be a total mystery. If you’re

proficient enough in C you may have some idea what’s making the three pixels

appear, but I admit that it is very hard to see.

And that was kind of my point actually. If one were to hand this in for a test at a

programming class, you would fail so hard. And if not, the professors should be fired.

While the code show above does work, the fact that it’s almost unreadable makes it

bad code. Writing good code is not only about getting results, it’s also about making

sure other people can understand what’s happening without too much trouble.

Tonc - GBA Programming in rot13

32 / 757

https://gbadev.net/resources.html#community
https://forum.gbadev.net/

The code of first.c also serves another purpose, namely as a reminder that GBA

programming is very low-level. You interact directly with the memory, and not

through multiple layers of abstraction brought by APIs. To be able to do that means

you have to really understand how computers work, which all programmers should

know at least to some degree. There are APIs (for lack of a better word) like HAM that

take care of the lowest levels, which definitely has its merits as it allows you to deal

with more important stuff like actual game programming, but on the other hand it

hides a lot of details – details that sometimes are better le� in the open.

Those who want a better, more intelligible, version of the previous code can skip the

next section and move on to the second first demo. The warped minds who can’t just

let it go and want to have an explanation right now (for the record, I count myself

among them), here’s what’s going on.

Explanation of the code

This is a quick and dirty explanation of the earlier code. Those previously mentioned

warped minds for whom this section is intended will probably prefer it that way. A

more detailed discussion will be given later.

As I said, GBA programming is low-level programming and sometimes goes right

down to the bit. The 0x04000000 and 0x06000000 are parts of the accessible

memory sections. These numbers themselves don’t mean much, by the way; they just

refer to different sections. There aren’t really 0x02000000 between these two

sections. As you can see in the memory map, these two sections are for the IO

registers and VRAM, respectively.

To work with these sections in C, we have to make pointers out of them, which is what

the ‘ unsigned int* ’ and ‘ unsigned short* ’ do. The types used here are almost

arbitrary; almost, because some of them are more convenient than others. For

example, the GBA has a number of different video modes, and in modes 3 and 5 VRAM

is used to store 16-bit colors, so in that case casting it to halfword pointers is a good

idea. Again, it is not required to do so, and in some cases different people will use

Tonc - GBA Programming in rot13

33 / 757

different types of pointers. If you’re using someone else’s code, be sure to note the

datatypes of the pointers used, not just the names.

The word at 0400:0000 contains the main bits for the display control. By writing

0x0403 into it, we tell the GBA to use video mode 3 and activate background 2. What

this actually means will be explained in the video and bitmap mode chapters.

In mode 3, VRAM is a 16-bit bitmap; when we make a halfword pointer for it, each

entry is a pixel. This bitmap itself is the same size as the screen (240x160) and because

of the way bitmaps and C matrices work, by using something of the form

‘array[y*width + x]’ are the contents of coordinates (x, y) on screen. That gives us our 3

pixel locations. We fill these with three 16-bit numbers that happen to be full red,

green and blue in 5.5.5 BGR format. Or is that RGB, I always forget. In any case, that’s

what makes the pixels appear. A�er that there is one more important line, which is the

infinite loop. Normally, infinite loops are things to be avoided, but in this case what

happens a�er main() returns is rather undefined because there’s little to return to,

so it’s best to avoid that possibility.

And that’s about it. While the Spartan purity of the code does appeal to a part of me, I

will stress again that this is not the right way to program in C. Save the raw numbers

for assembly please.

Your second first GBA program

So, let’s start over again and do it right this time. Or at least more right than before.

There are a number of simple ways to improve the legibility of the code. Here is the

list of things we’ll do.

First and foremost is the use of named literals, that is to say #defined names for

the constants. The numbers that went into the display control will get proper

names, as will the colors that we plotted.

Tonc - GBA Programming in rot13

34 / 757

We’ll also use #define for the memory mapping: the display control and VRAM

will then work more like normal variables.

We’ll also create some typedefs, both for ease of use and to indicate conceptual

types. For instance, a 16-bit color is essentially a halfword like any other, but if

you typedef it as, say, COLOR , everyone will know that it’s not a normal

halfword, but has something to do with colors.

Finally, instead of plotting pixels with an array access, which could still mean

anything, well use a subroutine for it instead.

Naturally, this will expand the total lines of code a bit. Quite a bit, in fact. But it is well

worth it. The code is actually a two-parter. The actual code, the thing that has all the

functionality of the first demo, can be found in second.c. All the items discussed

above, the typedefs, #defines and inlines, are put in toolbox.h.

Tonc - GBA Programming in rot13

35 / 757

// toolbox.h:
//
// === NOTES ===
// * This is a _small_ set of typedefs, #defines and inlines that can
// be found in libtonc, and might not represent the
// final forms.

#ifndef TOOLBOX_H
#define TOOLBOX_H

// === (from tonc_types.h) ==

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;

typedef u16 COLOR;

#define INLINE static inline

// === (from tonc_memmap.h) ===

#define MEM_IO 0x04000000
#define MEM_VRAM 0x06000000

#define REG_DISPCNT *((volatile u32*)(MEM_IO+0x0000))

// === (from tonc_memdef.h) ===

// --- REG_DISPCNT defines ---
#define DCNT_MODE0 0x0000
#define DCNT_MODE1 0x0001
#define DCNT_MODE2 0x0002
#define DCNT_MODE3 0x0003
#define DCNT_MODE4 0x0004
#define DCNT_MODE5 0x0005
// layers
#define DCNT_BG0 0x0100
#define DCNT_BG1 0x0200
#define DCNT_BG2 0x0400
#define DCNT_BG3 0x0800
#define DCNT_OBJ 0x1000

// === (from tonc_video.h) ==

#define SCREEN_WIDTH 240
#define SCREEN_HEIGHT 160

Tonc - GBA Programming in rot13

36 / 757

As you can see, the number of lines in toolbox.h is actually much larger than that of

the real code. This may seem like a bit of a waste now, but this is only because it’s

such a small demo. None of the contents of toolbox.h is actually compiled, so there is

no cost in terms of memory use. In fact, if it did it wouldn’t belong in a header file, but

that’s a discussion I’ll go into another time. Right now, let’s see what we actually have

in toolbox.h

#define vid_mem ((u16*)MEM_VRAM)

INLINE void m3_plot(int x, int y, COLOR clr)
{ vid_mem[y*SCREEN_WIDTH+x]= clr; }

#define CLR_BLACK 0x0000
#define CLR_RED 0x001F
#define CLR_LIME 0x03E0
#define CLR_YELLOW 0x03FF
#define CLR_BLUE 0x7C00
#define CLR_MAG 0x7C1F
#define CLR_CYAN 0x7FE0
#define CLR_WHITE 0x7FFF

INLINE COLOR RGB15(u32 red, u32 green, u32 blue)
{ return red | (green<<5) | (blue<<10); }

#endif // TOOLBOX_H

#include "toolbox.h"

int main()
{
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 m3_plot(120, 80, RGB15(31, 0, 0)); // or CLR_RED
 m3_plot(136, 80, RGB15(0,31, 0)); // or CLR_LIME
 m3_plot(120, 96, RGB15(0, 0,31)); // or CLR_BLUE

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

37 / 757

The toolbox

Types and typedefs

First of all, we create some shorthand notations of commonly used types. No matter

what anyone says, brevity is a virtue. For example, unsigned types are very common

and writing out the full names (e.g, ‘ unsigned short ’) serves little purpose. The

shorthand ‘ u16 ’ is just much more convenient. Besides convenience, it also gives

better information on the size of the variable, which is also of great importance here.

I’ve also added a conceptual typedef. While it’s true that, in principle, an int is an int

no matter what it’s used for, it is helpful if you can tell what its supposed use is from

its type. In this case, I have a COLOR alias for u16 when I want to indicate a particular

halfword contains color information.

Memory map defines

To be able to work directly specific addresses in memory, you’ll have to cast them to

pointers or arrays and work with those. In this demo’s case, the addresses we’re

interested in are 0600:0000 (VRAM) and 0400:0000 (the display control register). In

the first demo I did the casts manually, but it’s better to use names for them so that

you don’t have to remember all the numbers and also because nobody else would

have any clue to what’s going on.

For the IO registers I’m using the official names, which are recognized by all parties.

The display control is known as REG_DISPCNT, and is defined as the word at

0400:0000 . Note that neither the name nor the type are set in stone: you could as

easily have called it “BOO” and even used a halfword pointer. The full list of register

#defines can be found in libtonc’s regs.h.

For those who aren’t as familiar with pointers as you should (boy, are you gonna be in

trouble �P), here is the structure of the REG_DISPCNT #define. I’m using vu32 as a

typedef for ‘volatile u32’ here.

Tonc - GBA Programming in rot13

38 / 757

code type description

MEM_IO+0x0000 Address
MEM_IO= 0x04000000 , so this is

address 0400:0000

(vu32*)0x04000000 pointer

A pointer to an unsigned int of

the volatile persuasion (ignore

this last part for now)

*
(vu32*)0x04000000

‘variable’

By dereferencing the pointer (the

‘*’ unary operator), we access the

contents of the pointer. Id est, the

whole thing becomes usable as a

variable.

So for all intents and purposes, REG_DISPCNT is a variable just like any other. You can

assign values to it, read its contents, perform bit operations on it and so forth. Which

is good, because that’s just the way we want to use that register.

A similar procedure is carried out for VRAM, only this is still in its pointer form in the

end. Because of that, vid_mem works as an array, not a variable. Again, this is exactly

how we want things. Please be careful with the definition, though: all the parentheses

there are required! Because of the operator precedence between casts and arrays,

leaving out the outer parentheses pair gives compilation errors.

IO register and their bits

The IO registers (not to be confused with the CPU registers) are a collection of

switches in the form of bitfields that control various operations of the GBA. The IO

registers can be found in the 0400:0000 range of memory, and are usually clumped

into words or halfwords according to personal preference. To get anything done, you

have to set specific bits of the IO registers. While you can try to remember all the

numerical values of these bits, it’s more convenient to use #defines instead.

#define REG_DISPCNT *((volatile u32*)(MEM_IO+0x0000))

Tonc - GBA Programming in rot13

39 / 757

The toolbox header lists a number of the #defines I use for REG_DISPCNT. The full list

can be found in vid.h of libtonc, and the register itself is described in the video

chapter. For now, we only need DCNT_MODE3 and DCNT_BG2. The former sets the

video mode to mode 3, which is simplest of the 3 available bitmap modes, and the

latter activates background 2. Out of a total of four, bg 2 is the only one available in

the bitmap modes and you have to switch it on if you want anything to show up. You

have to admit that these names are a lot more descriptive than 0x0003 and 0x0400 ,

right?

I’ve also added a list of useful color defines, even though I’m not using them in

second.c. They may or may not be useful in the future, though, so it’s good to have

them around.

Creating the register #defines is probably the biggest part of header files. As a rough

estimate, there are 100 registers with 16 bits each, so that would be 1600 #defines.

That’s a lot. The exact number may be smaller, but it is still large. Because the names

of the #defines in and of themselves aren’t important, you can expect different

naming schemes for different people. I am partial to my own set of names, other older

GBA coders may use PERN’s names and more recent ones may use libgba’s, which

comes with devkitARM. Take your pick.

Macros and inline functions

You can also create #defines that work a little like functions. These are called macros.

I’m not using them here, but there are plenty to be found in libtonc’s headers. Like all

#defines, macros are part of the preprocessor, not the compiler, which means that the

debugger never sees them and they can have many hidden errors in them. For that

reason, they have been depreciated in favor of inline functions. They have all the

benefits of macros (i.e., integrated into the functions that call them so that they’re

fast), but are still function-like in syntax and resolved at compile time. At least that’s

the theory, in practice they’re not quite as speedy as macros, but o�en preferable

anyway.

Tonc - GBA Programming in rot13

40 / 757

http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/Inline.html

One inline function I’m using is m3_plot() , which, as you may have guessed, is used

to plot pixels in mode 3. In mode 3, VRAM is just a matrix of 16bit colors, so all we have

to do to plot a pixel is enter a halfword in the right array element. m3_plot() looks

exactly like a normal function, but because the ‘ static inline ’ in front of it makes it

an inline function. Note that inlining is only a recommendation to the compiler, not a

commandment, and it only works if optimizations are switched on.

The second inline function is RGB15() , which creates a 16bit color from any given red,

green and blue values. The GBA uses 16bit colors for its graphics – or actually 15bit

colors in a 5.5.5 BGR format. That’s 32 shades of red in the first (lowest) 5 bits, 32

greens in bits 5 to 9, and 32 blues in 10-14. The RGB15() inline takes care of all the

shi�ing and masking to make that happen.

The working code

Making use of the contents of toolbox.h makes the code of the demo much more

understandable.

The first line in main() sets a few bits in the display control, commonly known as

REG_DISPCNT. I use DCNT_MODE3 to set the video mode to mode 3, and activate

background 2 with DCNT_BG2 . This translates to 0x0403 as before, but this method

gives a better indication of what’s happening than entering the raw number. Using a

variable-like #define instead of the raw dereferenced pointer is also preferable;

especially as the latter is sure to wig out people new to C.

So how do I know what bit does what to create the #defines in the first place? Simple,

I looked them up in GBATEK, the essential reference to GBA programming. For every

IO register I use in these pages I’ll give a description of the bits and a list of #defines as

// Mode 3 plotter as macro ...
#define M3_PLOT(x, y, clr) vid_mem[(y)*SCREEN_WIDTH+(x)]=(clr)

// and as an inline function
static inline void m3_plot(int x, int y, COLOR clr)
{ vid_mem[y*SCREEN_WIDTH+x]= clr; }

Tonc - GBA Programming in rot13

41 / 757

https://problemkaputt.de/gbatek.htm

they’re defined in libtonc. The formats for these descriptions were given in the

preface, and the table for REG_DISPCNT can be found in the video chapter.

Actually plotting the pixels is now done with the inline function m3_plot() , which is

formatted much the same way as every kind of pixel plotter in existence: 2

coordinates and the color. Much better than raw memory access, even though it

works exactly the same way. The colors themselves are now created with an inline

too: RGB15 takes 3 numbers for the red, green and blue components and ties them

together to form a valid 16-bit color.

Finally, there is an endless loop to prevent the program from ever ending. But aren’t

endless loops bad? Well usually yes, but not here. Remember what happens when PC

programs end: control is kicked back to the operating system. Well, we don’t have an

operating system. So what happens a�er main() returns is undefined. It is possible

to see what happens by looking at a file called ctrs0.S, which comes with your dev-kit,

but that’s not a thing for beginners so at the moment my advice is to simply not let it

happen. Ergo, endless loop. For the record, there are better ways of stopping GBA

programs, but this one’s the easiest. And now we’ve reached the end of the demo.

Better, no?

And that is what proper code looks like. As a basic rule, try to avoid raw numbers:

nobody except you will know what they mean, and a�er a while you may forget them

yourself as well. Typedefs (and enums and structs) can work wonders in structuring

code, so can subroutines (functions, inline functions and macros). Basically, every

time you notice you are repeating yourself (copy&paste coding), it might be time to

think about creating some subs to replace that code.

These are just a few basic guidelines. If you need more, you can find some more here,

for example. Google is your friend. Now, if you’ve followed any classes on C, you

should already know these things. If not, you have been cheated. Books and tutorials

may sometimes skip these topics, so it may be necessary to browse around for more

guidelines on programming styles. That’s all they are, by the way: guidelines. While

Tonc - GBA Programming in rot13

42 / 757

https://web.archive.org/web/20110624025547/http://www.jetcafe.org/~jim/c-style.html

the rules are usually sensible, there’s no need to get fascist about them. Sometimes

the rules won’t quite work for your situation; in that case feel free to break them. But

please keep in mind that these guidelines have been written for a reason: more o�en

than not you will benefit from following them.

First demo v3?

There are many ways that lead to Rome. You’ve already seen two ways of coding that

essentially do the same thing, though one was easily superior. But sometimes things

aren’t so clear cut. In many cases, there are a number of equally valid ways of

programming. The obvious example is the names you give your identifiers. No one’s

forcing you to a particular set of names because it’s not the names that are important,

it’s what they stand for. Another point of contention is whether you use macros,

functions, arrays or what not for dealing with the memory map. In most cases, there’s

no difference in the compiled code.

The code below shows yet another way of plotting the 3 pixels. In this case, I am using

the color #defines rather than the RGB inline, but more importantly I’m using an array

typedef M3LINE with which I can map VRAM as a matrix so that each pixel is

represented by a matrix element. Yes, you can do that, and in some way it’s even

better than using an inline or macro because you’re not limited to just setting pixels;

getting, masking and what not are all perfectly possible with a matrix, but if you were

to go the subroutine way, you’d have to create more for each type of action.

As you can see, there’s all kinds of ways of getting something done, and some are

more practical than others. Which one is appropriate for your situation is pretty much

up to you; it’s just part of so�ware design.

Tonc - GBA Programming in rot13

43 / 757

General notes on GBA programming

Console programming is substantially different from PC programming, especially for

something like the GBA. There is no operating system, no complex API to learn, it’s

just you against the memory. You need to have intimate knowledge of the GBA

memory sections to make things work, and good pointer and bit-operation skills are a

must. Also remember that you don’t have a 2GHz CPU, half a gig of RAM and a GPU

that can do a gazillion polygons per second. It’s just a 16 MHz CPU with 96kB video

memory. And no floating point support or even hardware division. These are all things

you need to be aware of when designing your GBA so�ware.

Another thing that you need to remember is that the GBA has a tendency to do things

just a tiny bit different than you may expect. The primary example of this is the matrix

used for affine transformations like rotation and scaling. All of the popular tutorials

give the wrong matrix for a rotation-scale transformation, even though the reference

documents give the correct description of each element. Other good examples are the

#include "toolbox.h"

// extra stuff, also in tonc_video.h
#define M3_WIDTH SCREEN_WIDTH
// typedef for a whole mode3 line
typedef COLOR M3LINE[M3_WIDTH];
// m3_mem is a matrix; m3_mem[y][x] is pixel (x,y)
#define m3_mem ((M3LINE*)MEM_VRAM)

int main()
{
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 m3_mem[80][120]= CLR_RED;
 m3_mem[80][136]= CLR_LIME;
 m3_mem[96][120]= CLR_BLUE;

 while(1);
 return 0;
}

Tonc - GBA Programming in rot13

44 / 757

end result of trying to write a single byte to VRAM, the fact that bits for key-states are

actually set when the button’s unpressed instead of the other way around, or what the

timer register REG_TMxD really does.

I’ve tried to be complete in my explanations of all these things, but I’m positive I’ve

missed a thing or two. If you encounter problems, you’re probably not the first one.

There are plenty of FAQs and forums where you can find the solution. If that fails, it

never hurts to ask. If any of my information is incorrect or incomplete, please don’t

hesitate to tell me.

GBA Good/bad practices

For some reason, there are a lot of bad programming practices among the GBA

development community. The main reason for this is probably that people just copy-

paste from tutorial code, most of which use these practices. Here’s a short list of

things to avoid, and things to adopt.

Don’t believe everything you read. Bottom line: people make mistakes.

Sometimes, the information that is given is incorrect or incomplete. Sometimes

the code doesn’t work; sometimes it does, but it’s inefficient or inconsistent or

just contains practices that will come back to bite you later on. This is true for

most (if not all) older tutorials. Don’t automatically assume you’re doing it

wrong: there is a chance it’s the source material.

Unfortunately, if you’re new to programming you might not recognize the bad

and adopt the standards exhibited by some sources. Do not learn C

programming from GBA tutorials! I’d almost extent that suggestion to on-line

tutorials in general, especially short ones. Books are usually more accurate and

provide a better insight into the material. (But again, not always.)

RTFAQ / RTFR. Read the gbadev forum FAQ. Should go without saying. It covers a

lot of common problems. Additionally, read the fuckin reference, by which I

mean GBATEK, which covers just about everything.

Tonc - GBA Programming in rot13

45 / 757

http://www.coranac.com/documents/taptngba/
https://gbadev.net/forum-archive/thread/14/418.html
https://problemkaputt.de/gbatek.htm

Makefiles are good. Many tutorials use batchfiles for building projects. This is a

very easy method, I agree, but in the long run, it’s very inefficient, Windows only

and is prone to maintainability problems. Makefiles are better for Real World

projects, even though there may be a hurdle setting them up initially.

Fortunately, you don’t have to worry about it that much, because DevkitPro

comes with a template makefile/project (see

${DEVKITPRO}/examples/gba/template) where all you need to do is say in

which directories the source/header/data files are kept. The makefiles I use for

the advanced and lab projects are an adaptation of these.

Thumb-code is good. The standard sections for code (ROM and EWRAM) have

16bit buses. ARM instructions will clog the bus and can seriously slow down

performance. Thumb instructions fit better here. Thumb code is o�en smaller

too. Note that because of the 32bit bus of IWRAM, there is no penalty for ARM

code there.

Enabling interworking, optimizations and warnings are good. Interworking (-

mthumb-interwork) allows you to use switch between ARM and Thumb code;

you may want this if you have a few high-performance routines in ARM/IWRAM

that you want to call from ROM code. Optimizations (-O #) make GCC not be an

idiot when compiling C into machine code (I’m serious: without them the output

is attrociously bad in every way). It produces faster code, and usually smaller as

well. Warnings -Wall should be enabled because you will do stupid things that

will produce compilable output, but won’t do what you expected. Warnings are

reminders that something funky may be going on.

32bit variables are good. Every CPU has a ‘native’ datatype, also known as the

word, or in C-speak, the int . Generally speaking, the CPU is better equipped to

deal with that datatype than any other. The GBA is called a 32bit machine

because the CPU’s native datatype is 32-bit. The instruction sets are optimised

for word-sized chunks. It likes words, so you’d better feed it words unless you

have no other choice.

Tonc - GBA Programming in rot13

46 / 757

In a very real way, the 32bit integer is the only datatype the GBA has. The rest are

essentially emulated, which carries a small performance penatly (2 extra shi�

instructions for bytes and halfwords). Do not use u8 or u16 for loop-indices for

example, doing so can cut the speed of a loop in half! (The belief that using

smaller types means lower memory-use only holds for aggregates and maybe

globals; for local variables it actually costs memory). Likewise, if you have

memory to copy or fill, using words can be about twice as fast as halfwords. Just

be careful when casting, because an ARM CPU is very picky when it comes to

alignment.

Data in header files is bad, very bad. I’ll go in a little detail about it when talking

about data. And see also here and here.

Those are points where other GBA tutorials o�en err. It’s not an exclusive list, but the

main points are there I think. There are also a few things on (C) programming in

general that I’d like to mention here.

Know the language; know the system. It should go without saying that if you’re

programming in a certain language or on a certain system, you should know a

little (and preferably a lot) about both. However, I have seen a good deal of code

that was problematic simply because the author apparently didn’t know much

about either. As I said in the beginning of this section, the GBA has a few

interesting quirks that you need to know about when programming for it. That,

of course, is what Tonc is all about. Some things stem from lack of C skills – the

‘int’-thing is an example of this. Another very common problem is correct

memory and pointer use, something that I will cover a little later and also in the

section on data. With C, you have different kinds of datatypes, pointers, the

preprocessor and bit-operators at your disposal. Learn what they do and how to

use them effectively.

Think first, code later. Don’t open up an editor, type some code and hope it

works correctly. It won’t. How can it, if you haven’t even defined what ‘correctly’

means? Think of what you want to do first, then what you need to get it done

and then try to implement it.

Tonc - GBA Programming in rot13

47 / 757

https://gbadev.net/forum-archive/thread/4/2605.html
https://gbadev.net/forum-archive/thread/14/3687.html

A lot of programming (for me anyway) is not done in a text editor at all. For

example, for anything involving math (which can include graphics as well), it’s

better to make a diagram of the situation. I have pages of diagrams and

equations for the affine transformation and mode 7, just to see what what going

on. Pen and paper are your friends here.

Learn to generalize and simplify. This is actually not about programming, but

problem-solving in general. Specific problems are o�en special cases of more

general problems. For example, 2D math is a subset of multi-dimensional math;

vector analysis and transformations such as rotations and scaling are parts of

linear algebra. If you know the general solution, you can always (well, o�en, at

any rate) work down to the specific case. However, what is o�en taught (in

school, but in universities as well) are the specific solutions, not the general

ones. While using the special case solutions are o�en faster in use, they won’t

work at all if the case is just a little different than the example in the book. If

you’d learned the general solution – better yet, how to arrive at the general

solution – you’d stand a much better change of solving the task at hand.

A related issue is simplification. For example, if you have long expressions in a

set of equations (or algorithms), you can group them to together under a new

name. This means less writing, less writing and a lower risk of making a mistake

somewhere.

Learn basic optimization strategies. By this I don’t mean that you should know

every trick in the book, but there are a few things that you can use in writing

code that can speed things up (sometimes even significantly) without cost to

readbility and maintainability. In fact, sometimes the code actually becomes

easier to read because of it. A few examples:

Use a better algorithm. Okay, so this one may not always be simple, but

it’s still very true.

Use ints. The int is loosely defined as the native datatype. Processors

tend to perform better when they deal with their native datatype.

Tonc - GBA Programming in rot13

48 / 757

Use temporary variables for common expressions. If you use a long

expression more than a few times, consider dumping it in a temp. This

means less writing for you, and less reading for everyone. It can also make

your code faster because you don’t need to evaluate the entire expression

all the time. This is especially true for global variables, which have to be

reloaded a�er each function-call because the values may have changed.

Use pointers. Pointers have the reputation of being dangerous, but they’re

a very powerful tool if used correctly. Pointer arithmetic is usually faster

than indexing because it’s closer to hardware, and by assigning temp

pointers to deeply nested structure expressions (see above), you can gratly

reduce the length of the expressions, which makes things easier on the

compiler and the reader alike.

Precalculate. This is related to the previous two points. If you have a loop

in which things don’t depend on the loop-variable, precalculate that part

before the loop. Also, to avoid (complex) calculations, you could dump the

data in a Look-up Table and simply grab a value from there.

Avoid branches. Things that redirect program flow (ifs, loops, switches)

generally cost more than other operations such as arithmetic. Sometimes

it’s possible to effectively do the branch with arithmetic (for example,

(int)x>>1 gives −1 or 0, depending on the sign of x) There are many more

optimization techniques, of course. Wikipedia has a nice overview, and you

can find pages discussing particular techniques here[b0rked] and there.

Some of these techniques will be done by the compiler anyway, but not

always.

Learn to optimize later. Also known as “premature optimization is the root of all

evil”. Optimization should be done in the final stages, when most code is in pace

and you can actually tell where optimization is necessary (if it’s necessary at all).

However, this does not mean you should actually strive for the slowest solution

in the early phases. O�en there is a cleaner and/or faster (sometimes even much

faster) algorithm then the trivial one, which will come to you with just a small

amount of thought. This isn’t optimization, it’s simply a matter of not being

stupid. A few of the points mentioned above fall in this category.

Tonc - GBA Programming in rot13

49 / 757

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://web.archive.org/web/20090719211007/http://www.abarnett.demon.co.uk:80/tutorial.html
http://linuxgazette.net/issue71/joshi.html

There are always exceptions. There is no programming guideline that doesn’t

have its exception. Except maybe this one.

I’ll leave it at that for now. Entire books have been written on how to code efficiently.

Resources are available on the well as well: search for things like “optimization”,

“coding standards” or “coding guidelines” should give you more than enough. Also

look up Design Pattern and Anti-pattern. Also fun are books and sites that show how

not to code. Sometimes these are even more useful. Worse than Failure is one of these

(in particular the codeSOD category); The programming section of Computer

stupidities is also nice. If you want to see why the use of global variables is generally

discouraged, do a search for ‘alpha’ in the latter page.

A few examples of good/bad practices

Here are a few examples of code that, while functional, could be improved in terms of

speed, amount of code and/or maintainability.

Ints versus non-ints

Above, I noted that use of non-ints can be problematic. Because this bad habit is

particularly common under GBA and NDS code (both homebrew and commercial), I’d

like to show you an example of this.

Tonc - GBA Programming in rot13

50 / 757

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Anti-pattern
http://worsethanfailure.com/Default.aspx
http://www.rinkworks.com/stupid/cs_programming.shtml
http://www.rinkworks.com/stupid/cs_programming.shtml

This routine brightens or darkens a palette by adding a brightness-factor to the color

components, each of which is then clamped to the range [0,31⟩ to avoid funky errors.

The basic algorithm is sound, even the implementation is, IMHO, pretty good. What

isn’t good, however is the datatypes used. Using s8 and u16 here adds an extra shi�-

pair practically every time any variable is used! The loop itself compiles to about 90

Thumb instructions. In contrast, when using int s for everything except pal the loop

is only 45 instructions long. Of course the increase in size means an increase in time as

well: the int-only version is 78% faster than the one given above. To repeat that: the

code has doubled in size and slowed down by 78% just by using the wrong

datatype!

I’ll admit that this example is particularly nasty because there is a lot of arithmetic in

it. Most functions would incur a smaller penalty. However, there is no reason for

losing that performance in the first place. There is no benefit of using s8 and u16 ; it

does not increase redability – all it does is cause bloat and slow-down. Use 32-bit

variables when you can, the others only when you have to.

// Force a number into range [min, max>
#define CLAMP(x, min, max) \
 ((x)>=(max) ? ((max)-1) : (((x)<(min)) ? (min) : (x)))

// Change brightness of a palette (kinda) (70)
void pal_brightness(u16 *pal, u16 size, s8 bright)
{
 u16 ii;
 s8 r, g, b;

 for(ii=0; ii<size; ii++)
 {
 r= (pal[ii])&31;
 g= (pal[ii] >>5)&31;
 b= (pal[ii]>>10)&31;

 r += bright; r= CLAMP(r, 0, 32);
 g += bright; g= CLAMP(g, 0, 32);
 b += bright; b= CLAMP(b, 0, 32);

 pal[ii]= r |(g<<5) | (b<<10);
 }
}

Tonc - GBA Programming in rot13

51 / 757

Now, before this becomes another goto issue, non-ints do have their place. Variables

can be divided into two groups: worker variables (things in registers) and memory

variables. Local variables and function parameters are worker variables. These should

be 32-bit. Items that are in memory (arrays, globals, structs, and what not) could

benefit from being as small as possible. Of course, memory variables still have to be

loaded into registers before you can do anything with them. An explicit local variable

may be useful here, but it depends on the case at hand.

Pointer problems

One of the most common mistakes GBA neophytes make is mixing up array/pointer

sizes when copying data. Data is data, but you can access it in different ways. For

example, here’s code that copies bitmap-data from an array into VRAM.

The fooBitmap array represents some bitmap. In order to display that bitmap on the

screen, you need to copy its data into VRAM. That’s simple enough: we have vid_mem

from before, and we can copy from fooBitmap to VRAM by copying elements using a

simple for-loop.

// An array representing a 240x160@16 bitmap, converted
// to an array by some graphics conversion tool.
const u8 fooBitmap[240*160*2]=
{
 // Maaaaany, many lines of data.
}

int main()
{
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 // Copy 240x160 pixels to VRAM (ORLY?)
 int ii;
 for(ii=0; ii<240*160; ii++)
 vid_mem[ii]= fooBitmap[ii];

 return 0;
}

Tonc - GBA Programming in rot13

52 / 757

https://www.xkcd.com/292/

However, it’s not quite as simple as that. vid_mem is an u16 array; so defined

because in mode 3 each pixel is an 16-bit color. But fooBitmap is a byte-array: two

elements of this array represent one color, and copying bytes-to-halfwords leaves the

top-byte of each pixel empty, giving a very skewed result. Such a source-destination is

incredibly common, partly because people don’t know how pointers and arrays

represent memory, but also because they don’t pay attention to the datatype.

Here’s a version that would work:

By ensuring the source and destinations are of the same type, the copying leaves no

gaps. Note that the underlying data hasn’t changed – only how it’s used. There are

actually a lot more things you need to know about how to use data and memory,

which will be covered in a later chapter.

Simplification

Consider the following function (basically taken from the Rinkworks site mentioned

earlier):

// An array representing a 240x160@16 bitmap, converted
// to an array by some graphics conversion tool.
const u8 fooBitmap[240*160*2]=
{
 // Maaaaany, many lines of data.
}

int main()
{
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 u16 *src= (u16*)fooBitmap; // Cast source to u16-array

 // Copy 240x160 pixels to VRAM (YARLY!)
 int ii;
 for(ii=0; ii<240*160; ii++)
 vid_mem[ii]= src[ii];

 return 0;
}

Tonc - GBA Programming in rot13

53 / 757

What this function does is this: if x is between 1 and 7, return that number, otherwise

return 0. The thing to note is that the case-value and the return code are the same, so

instead of the switch-block you could have just returned x.

Simplifications like this o�en present themselves if you just think about what you’re

doing for a little while, rather than just entering code. Now, this would should be

rather obvious, but more difficult switch-blocks can o�en be replaces by something

like this as well. For example, if there is a simple mathematical relation between the

input and the return value (some addition or multiplication, for example), you can just

use that relation. Even if there is not such a simple relation, there can be possibilities.

If you’re returning constants, you could put those constants in a table and use x as an

index.

The above is a simplification in terms of the algorithm used. Another kind of

simplification is in readability. Of course, everybody has their own ideas about what’s

readable. Personally, I prefer to keep my statements short, especially in the place

where the action happens. The next function is an example of bounding circle

int foo(int x)
{
 switch(x)
 {
 case 1: return 1;
 case 2: return 2;
 case 3: return 3;
 case 4: return 4;
 case 5: return 5;
 case 6: return 6;
 case 7: return 7;
 }
 return 0;
}

int foo(int x)
{
 if(x >= 1 && x <= 7)
 return x;
 else
 return 0;
}

Tonc - GBA Programming in rot13

54 / 757

collision detection. Basically, you have two circles at points p1 = (x1, y1) and

p2 = (x2, y2) and radii r1 and r2. The distance between these two points can be

calculated with the Pythagorean theorem. If this distance is smaller than the sum of

the two radii, the circles overlap. A function that checks whether the player sprite hits

any of the enemy sprites could look something like this:

Tonc - GBA Programming in rot13

55 / 757

https://en.wikipedia.org/wiki/Pythagorean_theorem

Personally, I have a hard time reading what actually goes on inside the if-statement

there. Because the expression is 6 lines long, I actually have to sit down and parse

what it actually does, and hope that the parentheses are all correct, etc. Now, note

that a number of things are used multiple times here: the gSprites accesses (6× for

// Some basic structs and a sprite array.
// #defines for sprite-indices and amounts omitted.
typedef struct { int x, y; } POINT;

typedef struct
{
 POINT position;
 int radius;
} TSprite;

TSprite gSprites[SPRITE_MAX];

// Collision function.

int player_collision()
{
 int ii;

 for(ii=0; ii<ENEMY_MAX; ii++)
 {
 // Test for hit between player and enemy ii
 if((gSprites[ENEMY_ID+ii].position.x -
gSprites[PLAYER_ID].position.x) *
 (gSprites[ENEMY_ID+ii].position.x -
gSprites[PLAYER_ID].position.x) +
 (gSprites[ENEMY_ID+ii].position.y -
gSprites[PLAYER_ID].position.y) *
 (gSprites[ENEMY_ID+ii].position.y -
gSprites[PLAYER_ID].position.y) <
 (gSprites[ENEMY_ID+ii].radius + gSprites[PLAYER_ID].radius)
*
 (gSprites[ENEMY_ID+ii].radius + gSprites[PLAYER_ID].radius)
)
 {
 return 1;
 }
 }

 // Not hit
 return 0;
}

Tonc - GBA Programming in rot13

56 / 757

the player, 6× for the enemy) and then the positions as well. These can all be accessed

with less code by using pointers and other local variables. Also, the player’s attributes

are loop invariant (they don’t change during the loop), so they can be loaded outside

the loop.

There may not have been a real change in the number of lines, but the lines

themselves are shorter and easier to read. Also, instead of a 6-line if -expression, it

now fits on a single line and you can actually see what it does. Personally, I’d call that

a win.

Testing your code on a real GBA

If you’re just starting GBA programming, chances are you’re using the emulators that

are out there, and will be content with those. However, if you look through the forums

int player_collision()
{
 int ii;
 int r1= gSprites[PLAYER_ID].radius, r2, dx, dy;
 POINT *pt1= &gSprites[PLAYER_ID].position, *pt2;
 TSprite *enemy= &gSprites[ENEMY_ID];

 for(ii=0; ii<ENEMY_MAX; ii++)
 {
 r2= enemy[ii].radius;
 pt2= &enemy[ii].position;
 dx= pt2->x - pt1->x;
 dy= pt2->y - pt1->y;

 // Test for hit between player and enemy ii
 if(dx*dx + dy*dy < (r1+r2)*(r1+r2))
 return 1;
 }

 // Not hit
 return 0;
}

Tonc - GBA Programming in rot13

57 / 757

https://en.wikipedia.org/wiki/Loop-invariant_code_motion

you’ll see many people urging you to test on hardware regularly. They are absolutely

right.

Now, it isn’t that the emulators are bad. On the contrary, in fact; the most popular

emulators have things like tile, map and memory viewers that are essential to

debugging. An emulator like VBA is very, very good, but not quite perfect. Take the

Tonc demos, for example: they run the same on VBA as on a real GBA in all cases …

mostly. For one thing, timing is a real issue on most of them (the exception here is

no$gba, which I’ve never seen off the mark by more than 2%, usually a lot less). Also,

in a few rare occasions (like in cbb_demo and win_demo) there were small but

important differences between GBA and emulator outputs, and if you’ve never tested

on the real thing, you’d never know.

One other thing that is very different is the colors. Since it’s not back-lit the GBA

screen is much darker than a PC monitor. Or maybe that’s just my room ;) . Also, on

an emulator you have the luxury of scaling your view; the real GBA is always 3“ screen.

There’s world of difference, trust me on this. Take that first.gba example I showed

above: the pixels are so tiny it’s almost impossible to see on a real GBA! Even an 8x8

tile is pretty small. Also, the use of a keyboard in an emu is nothing like holding a real

GBA in your hands.

And, of course, the whole idea of creating something that works on a console has an

air of coolness that defies description. Well, almost anyway. The word is progasm.

Says it all really, doesn’t it?

Multiboot & linkers

OK, so now you know you should test on hardware, how do you do it? A�er all, you

can’t exactly plug a GBA into your PC like a USB memory stick or a printer? Well, yes

you can … with the right equipment. The two most common ways are a multiboot

cable or a flash linker.

Tonc - GBA Programming in rot13

58 / 757

http://www.catb.org/~esr/jargon/html/P/progasm.html

Flash Card & Linker

A flash card is a GBA cart with a difference: it is completely rewritable. There are a

number of different sets available: different sized carts (64Mbit to 1024Mbit), USB or

Parallel port versions; sets that use a separate linker (where you have to take the cart

out of the GBA, write to it, and reinsert) or ones that write directly to the cart or

transfer through the multiboot port. Ideally you’d use one of these. However, they can

be rather pricy ($60 - $200 (and up?)) and generally only available through online

stores, which also means shipping and taxes and such.

Multimedia cards

A solution that’s becoming more and more popular is using standard multimedia

cards (eg. SD, CompactFlash) and an adapter like GBAMP and SuperCard. Memory

cards can be very cheap (like $10) and bought in most electronics stores; the adapters

are genereally $25 and up.

SUPERCARD VS WAITSTATES

There is one small technical problem with SuperCards: they use slow memory

that doesn’t support 3/1 ROM waitstates. This is a faster setting than the default

4/2 and anything that uses the former simply won’t run. This shouldn’t be a

problem with most homebrew things, but a handful of binaries will fail and you

wouldn’t be able to make use of the speed-up yourself either.

Multiboot cable

The other way is a multiboot cable. This is a cable that plugs into the GBA multiboot

port (like multiplayer games do) and one of the PC ports, usually the parallel port.

These are a lot cheaper than a flash kit. You can even build one yourself �) ! You can

find the instructions and necessary so�ware to build an Xboo communication cable

Tonc - GBA Programming in rot13

59 / 757

https://web.archive.org/web/20050629010032/http://www.movieadvance.com/
https://web.archive.org/web/20060424132515/http://eng.supercard.cn:80/

on www.devkitpro.org, which works like a charm. Basically all you need to do is

connect one end of the link cable to a male parallel port cable. If you shop around you

should be able to get all you need for as little as $5.

But, like always, there’s no such thing as a free lunch. What happens in a multiboot

game is that the code is written to EWRAM. That’s how you can use one cart in a

multiplayer game. The multiboot cable is the same thing, only with the PC as the

host. The trouble is that EWRAM is only 256kb in size; you won’t be able to fit an entire

game on it. And, of course, it runs always through your computer, so unless you have

a laptop, forget about taking it outside to show off to your friends.

Fig 3.2: efa flash card.

Fig 3.3: SuperCard, compact

flash version.
Fig 3.4: xboo multiboot ca

Compiling for real hardware

This is almost the same as for emulators. The only real things you have to worry about

are a) that you can only use the binary a�er the objcopy treatment, and b) that you

need to have a valid GBA header, which it usually doesn’t. If the intro screen shows

“Game Boy” as normal, but the “Nintendo” at the bottom is garbled, you have a bad

header. To get a valid header, use a program called gbafix.exe . This is originally by

darkfader, but you can also find it at www.devkitpro.org. I already mentioned the

extra steps for a multiboot game earlier.

Flash kits usually come with so�ware that can take care of all this stuff for you (or so

I’m told, I don’t have one). The Xboo zip-file also has a little app that sends your

binary to the GBA.

Tonc - GBA Programming in rot13

60 / 757

https://devkitpro.org/
https://www.darkfader.net/main/
https://devkitpro.org/

4. Introduction to GBA Graphics

General introduction

Draw and blank periods

Colors and palettes

Bitmaps, backgrounds and sprites

Display registers: REG_DISPCNT, REG_DISPSTAT and REG_VCOUNT

Vsyncing part I, the busy-wait loop

General introduction

The GBA has an LCD screen that is 240 pixels wide, 160 pixels high and is capable of

displaying 32768 (15 bit) colors. The refresh rate is just shy of 60 frames per second

(59.73 Hz). The GBA has 5 independent layers that can contain graphics: 4

backgrounds and one sprite layer and is capable of some special effects that include

blending two layers and mosaic and, of course, rotation and scaling.

Whereas sound and joypad functionality have to make do with only a few measly

registers, the video system has a great deal of memory at its disposal (relatively

speaking). Apart from a multitude of registers in I/O memory, there’s the 96kb of video

memory (starting at 0600:0000h), palette memory (0500:0000h) and OAM memory

(0700:0000h).

Draw and blank periods

As said, the entire GBA screen is refreshed every 60th of a second, but there’s more to

it than that. A�er a scanline has been drawn (the HDraw period, 240 pixels), there is a

Tonc - GBA Programming in rot13

61 / 757

pause (HBlank, 68 pixels) before it starts drawing the next scanline. Likewise, a�er the

160 scanlines (VDraw) is a 68 scanline blank (VBlank) before it starts over again. To

avoid tearing, positional data is usually updated at the VBlank. This is why most

games run at 60 or 30 fps. (FYI, syncing at the VBlank is also why we in PAL countries

o�en had slower games: PAL TVs run (ran) at 50Hz, hence only 50 fps instead of 60,

hence a 17% slower game if nobody bothered to account for it. Few companies ever

did �().

Both the CowBite Spec and GBATEK give you some interesting details about the

timings of the display. A full screen refresh takes exactly 280896 cycles, divided by the

clock speed gives a framerate of 59.73. From the Draw/Blank periods given above you

can see that there are 4 cycles per pixel, and 1232 cycles per scanline. You can find a

summary of timing details in table 4.1.

Fig 4.1: vdraw, vblank and

hblank periods.

subject length cycles

pixel 1 4

HDraw 240px 960

HBlank 68px 272

scanline Hdraw+Hbl 1232

VDraw 160*scanline 197120

VBlank 68*scanline 83776

refresh VDraw+Vbl 280896

Table 4.1: Display timing details

Colors and palettes

The GBA is capable of displaying 16bit colors in a 5.5.5 format. That means 5 bits for

red, 5 for green and 5 for blue; the le�over bit is unused. Basically, the bit-pattern

Tonc - GBA Programming in rot13

62 / 757

http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm#Graphics%20Hardware%20Overview
https://problemkaputt.de/gbatek.htm#lcddimensionsandtimings

looks like this: “ xbbbbbgggggrrrrr ”. There are a number of defines and macros in

color.h that will make dealing with color easier.

Now, as for palettes…

<rant>

Guys, the word here is “palette”! One ‘l’, two ‘t’s and an ‘e’ at the end. It is not a “pallet”,

which is “a low, portable platform, usually double-faced, on which materials are

stacked for storage or transportation, as in a warehouse”, nor is it a “pallette”, meaning

“a plate protecting the armpit, in a suit of armor”. The word “pallete”, its most common

variant, isn’t even in the dictionary, thus not even worth considering. It’s “palette”,

people, “palette”.

</rant>

Anyhoo, the GBA has two palettes, one for sprites (objects) and one for backgrounds.

Both palettes contain 256 entries of 16bit colors (512 bytes, each). The background

palette starts at 0500:0000h , immediately followed by the sprite palette at

0500:0200h . Sprites and backgrounds can use these palettes in two ways: as a single

palette with 256 colors (8 bits per pixel); or as 16 sub-palettes or palette banks of 16

colors (4 bits per pixel).

One final thing about palettes: index 0 is the transparency index. In paletted modes,

pixels with a value of 0 will be transparent.

Bitmaps, backgrounds and sprites

All things considered, the GBA knows 3 types of graphics representations: bitmaps,

tiled backgrounds and sprites. The bitmap and tiled background (also simply known

as background) types affect how the whole screen is built up and as such cannot both

be activated at the same time.

In bitmap mode, video memory works just like a w×h bitmap. To plot a pixel at

location (x,y), go to location y*w+x and fill in the color. Note that you cannot build up a

Tonc - GBA Programming in rot13

63 / 757

screen-full of individual pixels each frame on the GBA, there are simply too many of

them.

Tiled backgrounds work completely different. First, you store 8x8 pixel tiles in one

part of video memory. Then, in another part, you build up a tile-map, which contains

indices that tells the GBA which tiles go into the image you see on the screen. To build

a screen you’d only need a 30x20 map of numbers and the hardware takes care of

drawing the tiles that these numbers point to. This way, you can update an entire

screen each frame. There are very few games that do not rely on this graphics type.

Finally, we have sprites. Sprites are small (8x8 to 64x64 pixels) graphical objects that

can be transformed independently from each other and can be used in conjunction

with either bitmap or background types.

PREFER TILE MODES OVER BITMAP MODES

In almost all types of games, the tile modes will be more suitable. Most other

tutorials focus on bitmap modes, but that’s only because they are easier on

beginners, not because of their practical value for games. The vast majority of

commercial games use tile modes; that should tell you something.

Those are the three basic graphical types, though other classifications also spring to

mind. For example, the bitmap and tiled backgrounds types, since they’re mutually

exclusive and use the entire screen, constitute the background-types. Also, it so

happens that the tiles of tiled backgrounds and the sprites have the same memory

layout (namely, in groups of 8x8 pixel tiles). This makes tiled backgrounds and sprites

the tiled-types.

Tonc - GBA Programming in rot13

64 / 757

Display registers: REG_DISPCNT, REG_DISPSTAT and

REG_VCOUNT

There are three I/O registers that you will encounter when doing anything graphical:

the display control REG_DISPCNT (0400:0000h) , the display status REG_DISPSTAT

(0400:0004h) and the scanline counter REG_VCOUNT (0400:0006h) . Those names are

simply defines to the memory locations and can, in principle, be chosen at will.

However, we will use the names as they appear in the Pern Project, which are the

most common.

The REG_DISPCNT register is the primary control of the screen. The bit-layout of this

register and their meanings can be found in the following table. This is the general

format I will use for registers or register-like sections. The details of the format have

already been explained in the preface.

REG_DISPCNT @ 0400�0000h

F E D C B A 9 8 7 6 5 4 3
OW W1 W0 Obj BG3 BG2 BG1 BG0 FB OM HB PS GB

bits name define description

0-

2

Mode DCNT_MODEx.

DCNT_MODE#

Sets video mode. 0, 1, 2 are tiled

modes; 3, 4, 5 are bitmap modes.

3 GB DCNT_GB Is set if cartridge is a GBC game. Read-

only.

4 PS DCNT_PAGE Page select. Modes 4 and 5 can use

page flipping for smoother animation.

This bit selects the displayed page

(and allowing the other one to be

drawn on without artifacts).

5 HB DCNT_OAM_HBL Allows access to OAM in an HBlank.

OAM is normally locked in VDraw. Will

reduce the amount of sprite pixels

rendered per line.

Tonc - GBA Programming in rot13

65 / 757

http://www.drunkencoders.com/

6 OM DCNT_OBJ_1D Object mapping mode. Tile memory

can be seen as a 32x32 matrix of tiles.

When sprites are composed of

multiple tiles high, this bit tells

whether the next row of tiles lies

beneath the previous, in

correspondence with the matrix

structure (2D mapping, OM =0), or

right next to it, so that memory is

arranged as an array of sprites (1D

mapping OM =1). More on this in the

sprite chapter.

7 FB DCNT_BLANK Force a screen blank.

8-

B

BG0-

BG3,

Obj

DCNT_BGx,

DCNT_OBJ.

DCNT_LAYER#

Enables rendering of the

corresponding background and

sprites.

D-

F

W0-

OW

DCNT_WINx,

DCNT_WINOBJ

Enables the use of windows 0, 1 and

Object window, respectively.

Windows can be used to mask out

certain areas (like the lamp did in

Zelda:LTTP).

Setting the display control is probably the first thing you’ll be doing. For simple

demos, you can just set it once and leave it at that, though switching between the

video-modes can have some interesting results.

Now the other two registers I mentioned, REG_DISPSTAT and REG_VCOUNT . The latter

tells you the scanline that is currently being worked on. Note that this counter keeps

going into the VBlank as well, so it counts to 227 before starting at 0 again. The former

gives you information about the Draw/Blank status and is used to set display

interrupts. You can also do some really cool stuff with the interrupts that you can

enable here. For one thing, the HBlank interrupt is used in creating Mode 7 graphics,

and you want to know how that works, don’t you?

Tonc - GBA Programming in rot13

66 / 757

REG_DISPSTAT @ 0400�0004h

F E D C B A 9 8 7 6 5 4 3 2 1 0
VcT - VcI HbI VbI VcS HbS VbS

bits name define description

0 VbS DSTAT_IN_VBL VBlank status, read only. Will be set

inside VBlank, clear in VDraw.

1 HbS DSTAT_IN_HBL HBlank status, read only. Will be set

inside HBlank.

2 VcS DSTAT_IN_VCT VCount trigger status. Set if the current

scanline matches the scanline trigger (

REG_VCOUNT == REG_DISPSTAT {8-F})

3 VbI DSTAT_VBL_IRQ VBlank interrupt request. If set, an

interrupt will be fired at VBlank.

4 HbI DSTAT_HBL_IRQ HBlank interrupt request.

5 VcI DSTAT_VCT_IRQ VCount interrupt request. Fires interrupt

if current scanline matches trigger

value.

8-

F

VcT DSTAT_VCT# VCount trigger value. If the current

scanline is at this value, bit 2 is set and

an interrupt is fired if requested.

REG_VCOUNT @ 0400�0006h (read�only)

F E D C B A 9 8 7 6 5 4 3 2 1 0
- Vc

bits name description

0-

7

Vc Vertical count. Range is [0,227]

Tonc - GBA Programming in rot13

67 / 757

Vsyncing part I, the busy-wait loop

As said, use the VBlank as a timing mechanism and to update the game data. This is

called vsync (vertical syncronisation). There are a number of ways to vsync. The two

most common methods use a while loop and check REG_VCOUNT or REG_DISPSTAT .

For example, since the VBlank starts at scanline 160, you could see when REG_VCOUNT

goes beyond this value.

Unfortunately, there are a few problems with this code.

First of all, if you’re simply doing an empty while loop to wait for 160, the compiler

may try to get smart, notice that the loop doesn’t change REG_VCOUNT and put its

value in a register for easy reference. Since there is a good chance that that value will

be below 160 at some point, you have a nice little infinite loop on your hand. To

prevent this, use the keyword volatile (see regs.h).

Second, in small demos simply waiting for the VBlank isn’t enough; you may still be in

that VBlank when you call vid_sync() again, which will be blazed through

immediately. That does not sync to 60 fps. To do this, you first have to wait until the

next VDraw. This makes our vid_sync look a little like this:

This will always wait until the start of the next VBlank occurs. And REG_VCOUNT is now

volatile (the “ vu16 ” is typedef ed as a volatile unsigned (16bit) short. I’ll be using

#define REG_VCOUNT *(u16*)0x04000006

void vid_vsync()
{ while(REG_VCOUNT < 160); }

#define REG_VCOUNT *(vu16*)0x04000006

void vid_vsync()
{
 while(REG_VCOUNT >= 160); // wait till VDraw
 while(REG_VCOUNT < 160); // wait till VBlank
}

Tonc - GBA Programming in rot13

68 / 757

a lot of this kind of shorthand, so get used to it). That’s one way to do it. Another is

checking the last bit in the display status register, REG_DISPSTAT {0}.

So we’re done here, right? Errm … no, not exactly. While it’s true that you now have an

easy way to vsync, it’s also a very poor one. While you’re in the while loop, you’re still

burning CPU cycles. Which, of course, costs battery power. And since you’re doing

absolutely nothing inside that while-loop, you’re not just using it, you’re actually

wasting battery power. Moreover, since you will probably make only small games at

first, you’ll be wasting a LOT of battery power. The recommended way to vsync is

putting the CPU in low-power mode when you’re done and then use interrupts to

bring it back to life again. You can read about the procedure here, but since you have

to know how to use interrupts and BIOS calls, you might want to wait a while.

Tonc - GBA Programming in rot13

69 / 757

Fig 5.1: Link

(24x24 bitmap).

5. The Bitmap modes (mode 3, 4, 5)

Introduction

The GBA bitmap modes

Page flipping

On data and how to use it

Conclusions

Introduction

In this chapter, we’ll look at the bitmap modes. Bitmap modes are a good place to

start because there is a one to one relation between the contents of memory and the

pixels on the screen. The essentials of all the bitmap modes will be discussed briefly,

with a closer look at what you can do in mode 3 as an example. We’ll also see a bit of

page flipping (mode 4), which allows for smoother animation.

The chapter will close with a section on how to deal with data and computer memory

in general. Because GBA programming is very close to the hardware, you need to

know these things. If you’ve been programming (in C or assembly) for a long time and

have already gained a good understanding on data, datatypes and memory you can

probably skip it; for the rest of you, I would strongly urge to read it, because it is very

important for all the chapters to come.

Bitmap 101

In fig 5.1 you can find a bitmap of one of the game characters that

made Nintendo great. This is probably how most people think of

bitmaps: a grid of colored pixels. In order to use bitmaps in a program

we need to know how they’re arranged in memory. For that we use

Tonc - GBA Programming in rot13

70 / 757

fig 5.2 (below); this is a zoomed out version of fig 5.1, with a pixel grid imposed over it

and some numbers.

A bitmap is little more than a w×h matrix of colors (or color-indices), where w is the

number of columns (the width) and h the number of rows (the height). A particular

pixel can be referred to with a coordinate pair: (x, y). By the way, the y-axis of the GBA

points down, not up. So pixel (0, 0) is in the top-le� corner. In memory, the lines of the

bitmap are laid out sequentially, so that the following rule holds: in a w×h bitmap, the

pixel (x, y) is the (w×y + x)-th pixel. This is true for all C matrices, by the way.

Fig 5.2 shows how this works. This is a w=24 by h=24 bitmap, at 8bpp (8 Bits Per Pixel

(=1 byte)). The numbers in yellow indicate the memory locations; you can count them

for yourself if you don’t believe me. The first pixel, (0, 0), can be found at location 0.

The last pixel of the first row (23, 0) is at w−1 (=23 in this case). The first pixel of the

second row (0, 1) is at w (=24) etc, etc, till the last pixel at w×h−1.

Fig 5.2a: zoom out of fig 5.1, with pixel offsets.
Fig 5.2b: zoom out of fig 5.1, with pixel values

omitted for clarity. Palette on the le�hand sid

Note, however, that when you use another bitdepth, the addresses change too. For

example, at 16bpp (2 bytes per pixel), you’d need to multiply the pixel-number by 2.

Tonc - GBA Programming in rot13

71 / 757

Or use another datatype for your array. The general formula is le� as an exercise for

the reader.

Usually it’s not actually the width (i.e., the number of pixels in a row) that’s important,

but the pitch. The pitch is defined as the number of bytes in a scanline. For 8bpp

images the pitch and width will usually be the same, but for, say, 16bpp images (2

bytes per pixel) the pitch is the width times two. There’s another catch: memory

alignment. Alignment will be covered in a later section, but the upshot is that systems

generally have a ‘preferred’ type size and can better deal with data if the addresses

are a multiple of that type size. This is why scanlines in some bitmap file formats are

always aligned to 32-bit boundaries.

The GBA bitmap modes

Video modes 3, 4 and 5 are the bitmap modes. To use them, put 3, 4 or 5 in the lowest

bits of REG_DISPCNT and enable BG2 . You may wonder why we start with mode 3,

rather than mode 0. The reason for this is that bitmaps are a lot easier to come to

terms with than tilemaps. And this is the only reason. The truth of the matter is that

the bitmap modes are just too slow to be used for most conventional GBA games. I

can’t give an exact figure, but if someone told me 90% or more of GBA games used tile

modes and not bitmap modes, I wouldn’t be surprised. The only time when bitmap

modes would be beneficial would be either for very static screens (introductory

demos) or very dynamic screens (3D games like Star Fox or Doom).

The bitmap modes have the following characteristics:

mode width height bpp size page-flip

3 240 160 16 1× 12C00h No

4 240 160 8 2× 9600h Yes

5 160 128 16 2× A000h Yes

Table 5.1: Bitmap mode characteristics

Tonc - GBA Programming in rot13

72 / 757

What width, height and bpp mean should be clear by now; the size that the bitmap

requires is simply width × height × bpp/8. Page flipping may need some more

explanation, but first we’ll look at some examples of mode 3 graphics.

Drawing primitives in mode 3

We’ve already seen how to plot pixels, now it’s time for some lines and rectangles.

Horizontal lines are nearly trivial: because the pixels are in adjacent memory, all you

need is a simple loop from the starting x to the final x. Vertical lines are nearly as easy:

while the pixels aren’t right next to each other, they do have a fixed offset between

them, namely the pitch. So again a simple loop is all you need. Rectangles are

essentially multiple horizontal lines, so those are easy as well.

Diagonal lines are a little trickier, for a number of reasons. Diagonal lines have a slope

that indicates how many horizontal steps you need to take before moving to the next

scanline. That would only work if the absolute value were lower than one, otherwise

you’d get gaps between pixels. For higher slopes, you need to increment vertically,

and plot horizontally.

Another point is how to make the routine fast enough to be of real use. Fortunately,

these things have all been figured out in the past already, so we’ll just use the results

here. In this case, we’ll use a Bresenham Midpoint algorithm for the line drawing,

modified to deal with horizontal and vertical lines separately. While I could explain

what the routine does exactly, it is out of the scope of the chapter, really.

Two points I have ignored here are normalization and clipping. Normalization means

making sure the routine runs in the right direction. For example, when implementing

a line drawing routine that runs from x1 to x2 via an incrementing for loop, you’d

best be sure that x2 is actually higher than x1 in the first place. Clipping means

cutting the primitive down to fit inside the viewport. While this is a good thing to do,

we will omit it because it can get really hairy to do it well.

The code below is an excerpt from toolbox.c from the m3_demo and contains

functions for drawing lines, rectangles and frames on a 16bpp canvas, like in mode 3

Tonc - GBA Programming in rot13

73 / 757

https://en.wikipedia.org/wiki/Bresenham's_line_algorithm

and mode 5. dstBase is the base-pointer to the canvas and dstPitch is the pitch.

The rest of the parameters should be obvious.

Tonc - GBA Programming in rot13

74 / 757

#include "toolbox.h"

//! Draw a line on a 16bpp canvas
void bmp16_line(int x1, int y1, int x2, int y2, u32 clr,
 void *dstBase, uint dstPitch)
{
 int ii, dx, dy, xstep, ystep, dd;
 u16 *dst= (u16*)(dstBase + y1*dstPitch + x1*2);
 dstPitch /= 2;

 // --- Normalization ---
 if(x1>x2)
 { xstep= -1; dx= x1-x2; }
 else
 { xstep= +1; dx= x2-x1; }

 if(y1>y2)
 { ystep= -dstPitch; dy= y1-y2; }
 else
 { ystep= +dstPitch; dy= y2-y1; }

 // --- Drawing ---

 if(dy == 0) // Horizontal
 {
 for(ii=0; ii<=dx; ii++)
 dst[ii*xstep]= clr;
 }
 else if(dx == 0) // Vertical
 {
 for(ii=0; ii<=dy; ii++)
 dst[ii*ystep]= clr;
 }
 else if(dx>=dy) // Diagonal, slope <= 1
 {
 dd= 2*dy - dx;

 for(ii=0; ii<=dx; ii++)
 {
 *dst= clr;
 if(dd >= 0)
 { dd -= 2*dx; dst += ystep; }

 dd += 2*dy;
 dst += xstep;
 }
 }
 else // Diagonal, slope > 1
 {

Tonc - GBA Programming in rot13

75 / 757

These functions are very general: they will work for anything that has 16-bit colors.

That said, it may be annoying to have to add the canvas pointer and pitch all the time,

 dd= 2*dx - dy;

 for(ii=0; ii<=dy; ii++)
 {
 *dst= clr;
 if(dd >= 0)
 { dd -= 2*dy; dst += xstep; }

 dd += 2*dx;
 dst += ystep;
 }
 }
}

//! Draw a rectangle on a 16bpp canvas
void bmp16_rect(int left, int top, int right, int bottom, u32 clr,
 void *dstBase, uint dstPitch)
{
 int ix, iy;

 uint width= right-left, height= bottom-top;
 u16 *dst= (u16*)(dstBase+top*dstPitch + left*2);
 dstPitch /= 2;

 // --- Draw ---
 for(iy=0; iy<height; iy++)
 for(ix=0; ix<width; ix++)
 dst[iy*dstPitch + ix]= clr;
}

//! Draw a frame on a 16bpp canvas
void bmp16_frame(int left, int top, int right, int bottom, u32 clr,
 void *dstBase, uint dstPitch)
{
 // Frame is RB exclusive
 right--;
 bottom--;

 bmp16_line(left, top, right, top, clr, dstBase, dstPitch);
 bmp16_line(left, bottom, right, bottom, clr, dstBase, dstPitch);

 bmp16_line(left, top, left, bottom, clr, dstBase, dstPitch);
 bmp16_line(right, top, right, bottom, clr, dstBase, dstPitch);
}

Tonc - GBA Programming in rot13

76 / 757

so you could create an interface layer specifically for mode 3 and mode 5. The ones

for mode 3 would look something like this:

typedef u16 COLOR;

#define vid_mem ((COLOR*)MEM_VRAM)

#define M3_WIDTH 240

// === PROTOTYPES ===

INLINE void m3_plot(int x, int y, COLOR clr);
INLINE void m3_line(int x1, int y1, int x2, int y2, COLOR clr);
INLINE void m3_rect(int left, int top, int right, int bottom, COLOR
clr);
INLINE void m3_frame(int left, int top, int right, int bottom, COLOR
clr);

// === INLINES ==

//! Plot a single \a clr colored pixel in mode 3 at (\a x, \a y).
INLINE void m3_plot(int x, int y, COLOR clr)
{
 vid_mem[y*M3_WIDTH+x]= clr;
}

//! Draw a \a clr colored line in mode 3.
INLINE void m3_line(int x1, int y1, int x2, int y2, COLOR clr)
{
 bmp16_line(x1, y1, x2, y2, clr, vid_mem, M3_WIDTH*2);
}

//! Draw a \a clr colored rectangle in mode 3.
INLINE void m3_rect(int left, int top, int right, int bottom, COLOR clr)
{
 bmp16_rect(left, top, right, bottom, clr, vid_mem, M3_WIDTH*2);
}

//! Draw a \a clr colored frame in mode 3.
INLINE void m3_frame(int left, int top, int right, int bottom, COLOR
clr)
{
 bmp16_frame(left, top, right, bottom, clr, vid_mem, M3_WIDTH*2);
}

Tonc - GBA Programming in rot13

77 / 757

Fig 5.3: drawing in mode 3.

Finally, there is a m3_fill() function, that fills the entire mode 3 canvas with a single

color.

Now, note what I’m doing here: instead of treating

VRAM as an array of 16-bit values which are

appropriate for 16bpp colors, I’m using a 32-bit

pointer and filling VRAM with a 32-bit variable

containing two colors. When filling large chunks of

memory, it makes no difference if I fill it in N 16-bit

chunks, or ½N 32-bit chunks. However, because

you only use half the number of iterations in the

latter case, it’s roughly twice as fast. In C, it’s perfectly legal to do something like this

(provided that strict aliasing is satisfied) and o�en actually useful. This is why it’s

important to know the principles of data and memory. Also note that I’m using

pointer arithmetic here instead of array indices. While the compiler generally make

the conversion itself, doing it manually is still o�en a little faster. (When in doubt, read

the assembly language that GCC generates.)

While this method is already twice as fast as the ‘normal’ method, there are actually

much faster methods as well. We will meet these later, when we stop using separate

toolkit files and start using libtonc, the code library for tonc. Tonclib contains the

functions described above (only faster), as well as 8bpp variations of the bmp16_

routines and interfaces for mode 4 and mode 5.

//! Fill the mode 3 background with color \a clr.
void m3_fill(COLOR clr)
{
 int ii;
 u32 *dst= (u32*)vid_mem;
 u32 wd= (clr<<16) | clr;

 for(ii=0; ii<M3_SIZE/4; ii++)
 *dst++= wd;
}

Tonc - GBA Programming in rot13

78 / 757

Below you can find the main code for m3_demo, which uses the m3_ functions to

draw some items on the screen. Technically, it’s bad form to use this many magic

numbers, but for demonstration purposes it should be okay. The result can be seen in

fig 5.3.

#include "toolbox.h"

int main()
{
 int ii, jj;

 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 // Fill screen with grey color
 m3_fill(RGB15(12, 12, 14));

 // Rectangles:
 m3_rect(12, 8, 108, 72, CLR_RED);
 m3_rect(108, 72, 132, 88, CLR_LIME);
 m3_rect(132, 88, 228, 152, CLR_BLUE);

 // Rectangle frames
 m3_frame(132, 8, 228, 72, CLR_CYAN);
 m3_frame(109, 73, 131, 87, CLR_BLACK);
 m3_frame(12, 88, 108, 152, CLR_YELLOW);

 // Lines in top right frame
 for(ii=0; ii<=8; ii++)
 {
 jj= 3*ii+7;
 m3_line(132+11*ii, 9, 226, 12+7*ii, RGB15(jj, 0, jj));
 m3_line(226-11*ii,70, 133, 69-7*ii, RGB15(jj, 0, jj));
 }

 // Lines in bottom left frame
 for(ii=0; ii<=8; ii++)
 {
 jj= 3*ii+7;
 m3_line(15+11*ii, 88, 104-11*ii, 150, RGB15(0, jj, jj));
 }

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

79 / 757

A dash of mode 4

Mode 4 is another bitmap mode. It also has a 240×160 frame-buffer, but instead of

16bpp pixels it uses 8bpp pixels. These 8 bits are a palette index to the background

palette located at 0500:0000 . The color you’ll see on screen is the color found in the

palette at that location.

Pixels of a bitdepth of 8 mean you can only have 256 colors at a time (instead of 32768

in the case of 15bpp), but there are benefits as well. For one, you can manipulate the

colors of many pixels by simply changing the color in the palette. An 8bpp frame-

buffer also takes up half as much memory as a 16bpp buffer. Not only is it faster to fill

(well, in principle anyway), but there is now also room for a second buffer to allow

page flipping. Why that’s useful will be covered in a minute.

There is, however, one major downsize to using mode 4, which stems from a

hardware limitation. With 8-bit pixels, it’d make sense to map VRAM as an array of

bytes. This would be fine if it weren’t for the rather annoying fact that VRAM does not

allow byte-writes! Now, because this is a very important point, let me repeat that: You

cannot write to VRAM in byte-sized chunks!!!. Byte reads are ok, but writes have to

be done in 16-bit or 32-bit chunks. If you do write in bytes to VRAM, the halfword

you’re accessing will end up with that byte duplicated into both the lower and upper

bytes: you’re setting two pixels at once. Note that this no-byte-write rule also extends

to palette memory and OAM, but there it doesn’t cause trouble because you won’t be

using that as bytes anyway.

So how to plot single-pixels then? Well, you have to read the whole halfword you’re

trying to access, mask off the bits you don’t want to overwrite, insert your pixels and

then write it back. In code:

Tonc - GBA Programming in rot13

80 / 757

As you can see, it’s a little more complicated than m3_plot() . It takes a lot longer to

run as well. Still, once you have a pixel plotter, you can create other rendering

routines with ease. The basic code for drawing lines, rectangles, circles and the like

are pretty much independent of how pixels are formatted. For example, drawing a

rectangle is basically plotting pixels in a double loop.

This is the generic template for a rectangle drawing routine. As long as you have a

functional pixel plotter, you’re in business. However, business will be very slow in

mode 4, because of the complicated form of the plotter. In all likelihood, it’ll be so

slow to make it useless for games. There is a way out, though. The reason m4_plot()

is slow is because you have to take care not to overwrite the other pixel. However,

when you’re drawing a horizontal line (basically the ix loop here), chances are that

you’ll have to give that other pixel the same color anyway, so you needn’t bother with

read-mask-write stuff except at the edges. The implementation of this faster (much

faster) line algorithm and subsequently rectangle drawer is le� as an exercise for the

reader. Or you can seek out tonc_bmp8.c in libtonc.

#define M4_WIDTH 240 // Width in mode 4
u16 *vid_page= vid_mem; // Point to current frame buffer

INLINE void m4_plot(int x, int y, u8 clrid)
{
 u16 *dst= &vid_page[(y*M4_WIDTH+x)/2]; // Division by 2 due to
u8/u16 pointer mismatch!
 if(x&1)
 *dst= (*dst& 0xFF) | (clrid<<8); // odd pixel
 else
 *dst= (*dst&~0xFF) | clrid; // even pixel
}

void generic_rect(int left, int top, int right, int bottom, COLOR clr)
{
 int ix, iy;
 for(iy=top; iy<bottom; iy++)
 for(ix=left; ix<right; ix++)
 generic_plot(ix, iy, clr);
}

Tonc - GBA Programming in rot13

81 / 757

VRAM VS. BYTE WRITES

You cannot write individual bytes into VRAM (or the palette or OAM for that

matter). Halfwords or words only, please. If you want to write single bytes, you

have to read the full (half)word, insert the byte, and put it back.

Please don’t skip this note, and make yourself aware of the full ramifications of

this. Errors due to pointer-type mismatches are very easy to make, and you may

be writing to VRAM as bytes more o�en than you think.

GENERIC VS. SPECIFIC RENDERING ROUTINES

Every kind of graphics surface needs its own pixel plotter. In principle, more

complicated (multi-pixel) shapes are surface independent. For example, a line

routine follows the same algorithm, but simply uses a different plotter for

drawing pixels. These generic forms are great in terms of re-usability and

maintainability, but can be disastrous when it comes to speed. Creating surface-

specific renderers may be extra work, but can on occasion save you up to a

factor of 100 in speed.

Complications of bitmap modes

While I could go on to discuss more complicated matters, such as drawing rectangles

and blits and text, there’s very little reason to do so at this junction. As I said before,

the bitmap modes are useful to learn some basic functionality, but for most practical

purposes, you’re better off with tiled modes.

The primary issue is speed. Even simple primitives such as the ones shown here can

take a lot of time, especially if you’re not careful in your implementation. For example,

a full mode 3 screen-wipe would take about 60% of a VBlank at best! In bad

implementations of a screen-wipe, like doing it with a rectangle drawer that calls a

non-inline pixel-plotting function, could take as much as 10 frames. And then you still

Tonc - GBA Programming in rot13

82 / 757

have to draw all your backgrounds and sprites and do the game logic. The phrase

‘crawling horror’ somehow springs to mind at the thought of this.

Aside from that, bitmap modes can use only one background and have no hardware

scrolling to speak of. Also, though this is jumping the gun a bit, it overlaps the

memory that contains the sprite tiles, which starts at 0601:0000h . For that reason,

you will only be able to use sprite-tiles 512 to 1023 when in modes 3-5.

Page flipping can alleviate some of these items, but that’s not available in mode 3. It is

in mode 5, but that uses only a small portion of the screen, so gaming with only that

looks awkward. As for mode 4, well, that’s one of those places where you will really

see what programming close to the hardware means: it doesn’t allow you to write to

VRAM in byte-sized chunks! The only way to have a single-pixel resolution is to

combine 2 adjacent pixels and write those, which costs a lot of extra time.

So basically, use the bitmap modes for testing and/or static images, but not much else

unless you know the tilemodes can’t do what you want.

BITMAP MODES ARE NOT FOR GAMING

Do not get too comfortable with bitmap modes. Though they’re nice for gbadev

introductory sections because they are easier to work with than tile modes, and

they have advantages for 3D games, they are not suitable for most types of

games because the GBA simply can’t push pixels fast enough. Tinker with them

to get a feel for IO registers and the like, then move on.

Page flipping

Page flipping is a technique that eliminates nasty artifacts like tearing in animation.

There are two things going on at the same time in an animation: placing the pixels on

bitmap (writing), and drawing the bitmap on screen (displaying). So�ware takes care

Tonc - GBA Programming in rot13

83 / 757

Fig 5.4: Page flipping procedure. No

data is copied, only the ‘display’

and ‘write’ pointers are swapped.

of writing, updating the positions of characters etc;

hardware does the displaying: it simply takes the

bitmap and copies it to the screen. The problem is

that both these processes take time. What’s worse,

they happen at the same time. And when the game

state changes in mid draw, the bottom section will be

of the current state, while the top section will

represent the previous state. Needless to say, this is bad.

Enter page flipping. Instead of using one single bitmap to write and display, you use

two. While one bitmap is displayed, you write all you need onto a second bitmap (the

back-buffer). Then, when you’re finished, you tell the hardware to display that second

bitmap and you can prepare the next frame on the first. No artifacts whatsoever.

While the procedure works great, there are some snares. For the first, consider this.

Given are the pointers to the two pages page1 and page2 . Right now, page1 is

displayed and page2 is being prepared; so far so good. But when you switch to the

second page, this only makes page2 the display-page; you have to make page1 the

write-page yourself! The solution to this problem is simple: use a write-buffer pointer,

but it can catch you off-guard if you’re new to this stuff.

The second problem concerns a little nasty in the age-old method of animation. The

canonical animation does this. Frame1: draw object. Frame2: erase old object, draw

object in new state. This doesn’t work for page flipping since Frame2 is written on an

entirely different bitmap than Frame1, so trying to erase Frame1’s old object doesn’t.

What you need to erase is the object from 2 frames ago. Again, easy solution, but you

have be aware of the problem. (Of course, erasing the entire frame each time would

work too, but who’s got the time?)

PAGEFLIPPING, NOT DOUBLE BUFFERING

Another method of smoother animation is double buffering: draw on a

secondary buffer (the backbuffer) and copy it to the screen when finished. This

Tonc - GBA Programming in rot13

84 / 757

is a fundamentally different technique than page flipping! Even though both

use two buffers, in page flipping you don’t copy the backbuffer to the display

buffer, you make backbuffer the display buffer.

What the GBA does is page flipping, so refer to it as such.

GBA page flipping

The second page of the GBA is located at location 0600:A000h . If you look at the size

required for mode 3, you’ll see why it doesn’t have page-flipping capabilities: there’s

no room for a second page. To set the GBA to display the second page, set

REG_DISPCNT {4}. My page flipping function looks a little like this:

The code is relatively straightforward. vid_page is the pointer that always points to

the write-page. I had to pull a little casting trickery to get the XOR to work (C doesn’t

like it when you try it on pointers). On the GBA, the steps for page flipping are

perfectly xorrable operations. Sure, you could just put the equivalent in an if-else

block, but where’s the fun in that :P?

Page flipping demo

What follows is the code (sans data) for the pageflip demo. The actual part concerned

with page flipping is very small. In fact, the actual flip is merely a call to vid_flip()

once every 60 frames = 1 second (point 3). We’ll also have to set the video mode to

something that actually has pages to flip, which in this case is mode 4.

u16 *vid_flip()
{
 // toggle the write_buffer's page
 vid_page= (u16*)((u32)vid_page ^ VID_FLIP);
 REG_DISPCNT ^= DCNT_PAGE; // update control register
 return vid_page;
}

Tonc - GBA Programming in rot13

85 / 757

What we’ll have to do as well is load the data that will be displayed on these two

pages. I’m using the standard C routine memcpy() for the copy, because that’s the

standard way of copying things in C. While it’s faster than manual loops, it does come

with a few snares that you need to be aware of before using it everywhere. Tonclib

comes with faster and safer routines, but we’ll get to those when it’s time.

Loading a bitmap is very simple in theory, but the bitmap(s) I’m using are only 144×16

in size, while the VRAM page’s pitch is 240 pixels wide. This means that we’ll have to

copy each scanline separately, which is done at point (1). Note that I’m copying

frontBitmap to vid_mem_front and backBitmap to vid_mem_back , because those

are the starting locations of the two pages.

Since these are mode 4 bitmaps, they’ll also need a palette. Both palettes use

frontPal , but instead of using memcpy() to copy it to the background palette

memory, I’m using a u32 array because … well, just because I guess.

Lastly, you can pause and unpause the demo by holding the Start Button.

Tonc - GBA Programming in rot13

86 / 757

#include <string.h>

#include <toolbox.h>
#include "page_pic.h"

void load_gfx()
{
 int ii;
 // (1) Because my bitmaps here don't fit the screen size,
 // I'll have to load them one scanlline at a time
 for(ii=0; ii<16; ii++)
 {
 memcpy(&vid_mem_front[ii*120], &frontBitmap[ii*144/4], 144);
 memcpy(&vid_mem_back[ii*120], &backBitmap[ii*144/4], 144);
 }

 // (2) You don't have to do everything with memcpy.
 // In fact, for small blocks it might be better if you didn't.
 // Just mind your types, though. No sense in copying from a 32-bit
 // array to a 16-bit one.
 u32 *dst= (u32*)pal_bg_mem;
 for(ii=0; ii<8; ii++)
 dst[ii]= frontPal[ii];
}

int main()
{
 int ii=0;

 load_gfx();
 // Set video mode to 4 (8bpp, 2 pages)
 REG_DISPCNT= DCNT_MODE4 | DCNT_BG2;

 while(1)
 {
 while(KEY_DOWN_NOW(KEY_START)); // pause with start
 vid_vsync();

 // (3) Count 60 frames, then flip pages
 if(++ii == 60)
 {
 ii=0;
 vid_flip();
 }
 }
 return 0;
}

Tonc - GBA Programming in rot13

87 / 757

Fig 5.5: the page flipping demo switches between these

two blocks.

On data and how to use it

This section is a little boring (ok, very boring) but it needs to be said. While books and

tutorials on C may use data for whatever purpose, they o�en gloss over what data

actually is at the lowest level, and how to deal with it correctly. As you’ll be dealing

directly with hardware and memory here, it is important that you are aware of these

items, preferably even understand them, so that they don’t bite you in the ass at some

later point.

The first two subsections are about how to get graphics into your game, something

that you’ll really need to know. A�er that I’ll discuss a few nasty and highly technical

things that may or may not cause problems later on. These are optional and you can

skip to the data-loading/interpreting demo at any time. That said, I urge you to read

them anyway because they may save you a lot of debugging time.

RELAX, IT’S ONLY 1S AND 0S

When you get right down to it, everything on computers is merely a big mess of

bits without any purpose by itself. It is the interaction between hardware and

so�ware that makes sequences of bits appear as valid executable code, a

bitmap, music or whatever.

Tonc - GBA Programming in rot13

88 / 757

Yes, we have no files

This may be a good point to say a few words on data. Strictly speaking, everything is

data, but in this case I’m referring to data that on PC games would be separate from

the executable: graphics, music, maybe scripts and text-files and what not. This all

works fine on a PC, but not so fine on the GBA because there is no file system. This

means that you cannot use the standard file I/O routines (fscanf() , fread() , etc) to

read the data, because there are no files to read them from.

All the game’s data has to be added directly to the binary. There are a number of ways

to do this. The most common way is to convert the raw binary files to C-arrays, then

compile those and link them to the project. Well, the most common among

homebrewers is probably converting to C arrays and using #include on them, but

that’s something that you should never do. Also popular are assembly arrays. These

are a useful alternative to C arrays because a) they can’t be #include d and b)

because they bypass the compilation step and compilation of arrays is very intensive.

Of course, you would have to know how to work with the assembler. Another nice

thing about the assembler is that you can include binary files directly into them,

eliminating the need for a converter. Lastly, while the GBA doesn’t have a native file

system, you can always write your own. A common one is GBFS by the gbadev forum

FAQ maintainer, tepples. Using a file system is actually the recommended method,

but for now, I’ll stick to C arrays because they are the easiest to use.

AHEM. ACTUALLY, WE DO HAVE FILES

There were no files in the past, but in July of 2006, Chishm gave us libfat, which

is a FAT-like file system for GBA and Nintendo DS. It is distributed via devkitPro

Updater as well, so chances are you have it already.

Tonc - GBA Programming in rot13

89 / 757

https://pineight.com/gba/#gbfs
https://web.archive.org/web/20120201074338/http://chishm.drunkencoders.com/

Where do my arrays go?

By default, arrays go into IWRAM. You know, the one that’s only 32 KiB long. Now, a

mode 3 bitmap is 240×160×2 = 77 kB. Obviously, trying to put a 77 kB object into a 32

KiB section would fit nicely into the bad things category. To avoid this, put it in the

read-only section (ROM), which is much larger. All you have to do for this is add the

const keyword to the definition if you’re using C, or the .rodata directive in

assembly. Note that for multiboot programs, ROM actually means EWRAM, which is

only 256 KiB long. The latter would fit three mode 3 bitmaps; more would again be

bad unless you use compression.

Note that what I said about arrays is true for all arrays, not just data arrays: if you want

any kind of large array (like a backbuffer for mode 3), it would also default to and

overfill IWRAM. But you can’t make it const because then you’d not be able to write

on it. GCC has attributes that lets you choose where things are put – in EWRAM for

instance. Here are the commonly seen #define macros for the attributes that can be

used for specific section placement.

CONST IS GOOD

Data that you don’t expect to change in your game should be defined as

constant data using the const keyword, lest it trashes your IWRAM.

#define EWRAM_DATA __attribute__((section(".ewram")))
#define IWRAM_DATA __attribute__((section(".iwram")))
#define EWRAM_BSS __attribute__((section(".sbss")))

#define EWRAM_CODE __attribute__((section(".ewram"), long_call))
#define IWRAM_CODE __attribute__((section(".iwram"), long_call))

Tonc - GBA Programming in rot13

90 / 757

Converted and const arrays in C++

There are two little snags that you can trip on if you’re using (converted) data arrays in

C++. The first is that tools that generate the arrays will output C files, not C++ files.

This is not a problem in itself because those files will be compiled just the same. What

is a problem is that C++ uses something known as Name mangling to allow

overloading and stuff like that. C doesn’t and as a result, the name that the C++ file

looks for isn’t the same one as in the C file and you get undefined references. To fix

this, use extern "C" in front or around the declarations of the stuff in the C files.

Another problem with C++ is that const-arrays are considered static (local to the file

that contains it) unless you add an external declaration to it. So if you just have const

u8 foo[]= { etc } in a file, the array will be invisible to other files.The solution here

would be to add the declaration inside the file itself as well.

// This:

extern "C" const unsigned char C_array[];

// Or this:
extern "C"
{
const unsigned char C_array1[];
const unsigned char C_array2[];
}

// foo.cpp. Always have an external declaration
// inside the file as well.

extern const unsigned char foo[];

const unsigned char foo[]=
{
 // data
};

Tonc - GBA Programming in rot13

91 / 757

https://en.wikipedia.org/wiki/Name_mangling

Data conversion

It’s rather easy to write a tool that converts a binary file to a C or asm array. In fact,

devkitARM comes with two that do just that: raw2c.exe and bin2s.exe. It also comes

with the basic tools for gbfs by the way. But being able to attach binary files to your

game is only part of the story. Consider a bitmap, for example. In principle, a bitmap

is a binary file just like any other. There’s nothing inherently graphical about it, and it

doesn’t magically appear as a bitmap whenever you use it by itself. Yes, when you

double-click on it, an image viewer may pop up and display it, but that’s only because

there’s some serious work by the OS going on underneath. Which we don’t have here.

Most files will follow a certain format to tell it what it is, and how to use it. For

bitmaps, that usually means width, height, bitdepths and a few other fields as well.

The point is that they’re not directly usable. You can’t just attach, say, a BMP file to

your project and copy it to VRAM and think that everything will work out. No, you have

to convert it to a GBA-usable format. Now, you can do this internally (on the GBA

itself), or externally (on the PC and attach the converted data to the project). Because

the latter is a much more efficient use of GBA resources, that is the usual procedure.

There are many conversion tools, one might almost say too many. Some are one-trick

ponies: a single file-type to a single graphics mode for example. Some are very

powerful and can handle multiple file-types, multiple files, different conversion

modes with lots of options on the side, and compression. It should be obvious which

are of the most value.

A good one is gfx2gba. This is a command-line tool so that it can be used in a

makefile, but there is a GUI front-end for it as well. This tool has the Good Things I

mentioned earlier, plus some map-exporting options and palette merging, but the

input file must be 8-bit and I hear that while it does compress data, the array-size is

still given as its uncompressed size for some unfortunate reason. This tool comes with

the HAM installation, and is quite common, so definitely recommended.

Unfortunately, there seems to be another tool with the same name. You’ll want the

v0.13 version by Markus, not the other one.

Tonc - GBA Programming in rot13

92 / 757

https://www.coranac.com/files/gba/gfx2gba.zip

Personally, I use Usenti, which is my own tool. This is a bitmap editor (paint program)

with exporting options thrown in. It allows different file-types, different bitdepths,

different output files, all modes, some map-exporting stuff, meta-tiling, compression

and a few others. It may not be as powerful as big photo-editing tools as Photoshop,

GIMP, Aseprite, and the like, but it gets the job done. If you’re still drawing your

graphics with Microso� Paint, please stop that and use this one instead. The exporter

is also available separately in the form of the open source project called (win)grit,

which comes in a command-line interface (grit) and a GUI (wingrit). As of January

2007, it is also part of the devkitPro distribution.

BITMAP CONVERSION VIA CLI

There are many command-line interfaces available for graphics conversion, but

to make them function you need the correct flags. Here are examples for

gfx2gba and grit, converting a bitmap foo.bmp to a C array for modes 3, 4 and 5.

This is just an example, because this is not the place for a full discussion on

them. Look in their respective readme’s for more details.

Below, you can see a partial listing of modes.c, which contains the bitmap and the

palette used in the bm_modes demo discussed at the end of this section, as exported

by Usenti. It is only a very small part of the file because at over 2700 lines it is way too

long to display here, which wouldn’t serve much of a purpose anyway. Note that both

gfx2gba
mode 3, 5 (C array; u16 foo_Bitmap[]; foo.raw.c)
 gfx2gba -fsrc -c32k foo.bmp
mode 4 (C array u8 foo_Bitmap[], u16 master_Palette[];
foo.raw.c, mastel.pal.c)
 gfx2gba -fsrc -c256 foo.bmp

grit
mode 3, 5 (C array; u32 fooBitmap[]; foo.c foo.h)
 grit foo.bmp -gb -gB16
mode 4 (C array; u32 fooBitmap[], u16 fooPal[]; foo.c foo.h)
 grit foo.bmp -gb -gB8

Tonc - GBA Programming in rot13

93 / 757

https://www.coranac.com/projects/#usenti
https://www.coranac.com/projects/#grit

big u32 0x01020304

big u16 0x0102 0x0304

u8 0x01 0x02 0x03 0x04

little u16 0x0201 0x0403

little u32 0x04030201

Table 5.2: Big endian vs little

endian interpretation of byte-

sequence 01h, 02h, 03h, 04h

are u32 arrays, rather than the u8 or u16 arrays you

might encounter elsewhere. What you need to

remember is that it doesn’t matter in what kind of an

array you put the data: in memory it’ll come out the

same anyway.

Well, that’s not quite true. Only with u32 arrays is

proper data alignment guaranteed, which is a good

thing. More importantly, you have to be careful with

the byte-order of multi-byte types. This is called the endianness of types. In a little

endian scheme, least significant bytes will go first and in a big endian, most

significant bytes will go first. See table 2 for an example using 0x01 , 0x02 , 0x03 and

0x04 . The GBA is a little endian machine, so the first word of the modesBitmap array,

0x7FE003E0 is the halfwords 0x03E0 (green) followed by 0x7FE0 (cyan). If you want

more examples of this, open up VBA’s memory viewer and play around with the 8-bit,

16-bit and 32-bit settings.

The key point here: the data itself doesn’t change when you use different data-types

for the arrays, only the way you represent it does. That was also the point of the

bm_modes demo: it’s the same data in VRAM all the time; it’s just used in a different

way.

Tonc - GBA Programming in rot13

94 / 757

//==
//
// modes, 240x160@16,
// + bitmap not compressed
// Total size: 76800 = 76800
//
// Time-stamp: 2005-12-24, 18:13:22
// Exported by Cearn's Usenti v1.7.1
// (comments, kudos, flames to "daytshen@hotmail.com")
//
//==

const unsigned int modesBitmap[19200]=
{

0x7FE003E0,0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE0
7FE0,0x7FE07FE0,

0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F
080F,0x080F080F,

0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F
080F,0x080F080F,

0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F
080F,0x080F080F,
// ...
// over 2500 more lines like this
// ...

0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F
080F,0x080F080F,

0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F
080F,0x080F080F,

0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F080F,0x080F
080F,0x080F080F,

0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE07FE0,0x7FE0
7FE0,0x7FE07FE0,
};

const unsigned int modesPal[8]=
{

0x7FE07C1F,0x03FF0505,0x03E00505,0x7C000000,0x0000080F,0x00000000,0x0000

Tonc - GBA Programming in rot13

95 / 757

Fig 5.6: even Bart knows …

Those 2700 lines represent a 77 kB bitmap. One single bitmap. In all likelihood, you’ll

need at least a couple of them to make anything worthwhile. Most games have lots of

data in them, not only graphics but maps and sound and music as well. All this adds

up to a huge amount of data, certainly too much for just EWRAM and maybe even for a

full cart. That is why compression is also important. The GBA BIOS has decompression

routines for bit-packing, run-length encoding, LZ77 and Huffman. Converters

sometimes have the appropriate compressors for these routines, which can

drastically shrink the amount of memory used. Usenti and (win)grit support these

compressors. So does gfx2gba, which even has some more. A tool that just does

compression on binary files (but does it very well) is GBACrusher. I won’t go into

compression that much (or at all), but you can read up on the subject here.

UNDERSTANDING DATA

It is vital that you understand what data is, how the different datatypes work.

Preferably endianness and alignment too. Emulators and hex editors can help

you with this. Once you have compilation working, just make a few random

arrays and see what they look like in the VBA memory viewer for a while.

#include code or data considered harmful

Most non-trivial projects will have multiple files

with code and data. The standard way of dealing

with these is to compile these separately and then

link the results to the final binary. This is the

recommended strategy. However, most other

tutorials and many of the example code you can

find on the web do something else: a unity build.

0000,0x080F0000,
};

Tonc - GBA Programming in rot13

96 / 757

https://www.coranac.com/files/gba/GBACrusher.zip
https://web.archive.org/web/20180820012154/http://members.iinet.net.au/~freeaxs/gbacomp/
https://en.wikipedia.org/wiki/Unity_build

They #include everything into the main source file and compile that. This is not a

recommended practice and should be avoided.

”But why not? It seems to work fine, and it’s so easy!”

Yes, it is easy; and it does seem to work. The main problem is that a unity build isn’t

scalable. For small projects (a handful of files) you probably won’t notice, but as

projects grow to hundreds and perhaps thousands of files, you will run into some very

annoying problems. The main issue is what #include actually does. It copies the

whole included file into the includer to form a single larger file. This leads to the

following issues.

Massive files to compile. So, #include creates one big file. If you have a lot of

stuff, you’ll have one very big file. This will cost large amounts of memory and

slows down compilation. As the project grows, what starts as a compile time of a

second can grow to several, then minutes and perhaps even hours.

At some point, there was also the problem that the compiler couldn’t handle

files exceeding 4 MB, putting a limit on how much you could #include in a C

file. I’m not sure if this is still an issue.

Recompiling the world. The main problem is that when you #include

everything, you need to recompile everything as well. If you make one change

anywhere, no matter how small, causes everything to be compiled. For small

projects (say, a handful of files), a full rebuild would take a few seconds so it’s

not a problem. But larger projects can have hundreds or thousands of files, and

the time is not measured in seconds, but in minutes or perhaps hours. Sure it’s a

good excuse to go sword fighting, but terribly annoying if you want to do

something productive.

Bloat. Even if your own code and data are relatively small in number, you’re

probably using some code library for API functions. Normally, these are pre-

compiled and only the functions used are linked into your binary. But if those

worked by #include as well (in other words, if their creators had followed the

Tonc - GBA Programming in rot13

97 / 757

https://en.wikipedia.org/wiki/Scalability
https://xkcd.com/303/

practice I’m warning against), every function in that library would be included as

well, including the ones you’re not using. This increases the filesize, and

increases the problems mentioned above.

Undeclared identifiers, multiple definitions and circular dependencies. In a

nutshell, C requires that you declare an identifier before it’s referenced, and it

can only be defined once. The first point means that the order of inclusions

starts to matter: if, say, fileB.c needs something from fileA.c, the latter needs to

be included before the former to get a compile. The second means that you

could only #include a file once in the whole project: if fileB.c and fileC.c both

need stuff from fileA.c, you can’t #include it in them both because when they’re

#include d in main.c, fileA.c is effectively #include d twice and the compiler

will balk.

These points can technically be overcome by being careful, such as using an

include guard. But, again, when projects grow, things can get increasingly more

difficult to keep track of which comes before what and why. There is, however,

one point at which it will go wrong, namely when there are circular

dependencies: fileB.c needs fileA.c and vice versa. Each file would require the

other to go first, which simply isn’t possible because it’d cause multiple

definitions.

Data alignment. I’ll get to what this means in a minute, but right now know that

copy routines work better if the data is aligned to 32-bit boundaries (even for

byte and halfword arrays). Some of them won’t even work properly if this isn’t

the case. This is usually guaranteed if you compile separately, but if the arrays

are #included and no steps have been taken to force alignment, you simply

never know.

It’s not much of a problem nowadays because most graphics converters force

data alignment, but you still need to know about it. Because data alignment is a

fairly esotheric concept, it’s next to impossible to track down unless you’re

aware of the problems it can bring.

Tonc - GBA Programming in rot13

98 / 757

https://en.wikipedia.org/wiki/Include_guard

So please, do yourself a favor and do not #include every file you have into main.c or

its counterpart in your project. Put function and variable definitions in separate

source files to be compiled separately and linked later. The #include directive is only

to be used for files with preprocessor directives, declarations, type definitions, and

inline functions.

Proper build procedure

Separate compilation

So what do you do instead? Well, for starters keep all the code and data in separate

source files. Compile these separately by invoking gcc on each file. This gives you a list

of object files. These you then link together. In batch files, you’d need to add extra

commands for each file, but a properly setup makefile uses a list of object files, and

the makefile’s rules will then take care of the rest automatically. Using the makefile of

the second demo as a reference, you’ll get something like this:

The OBJS variable contains the names of three object files, which would be the

targets of compiling foo.c, bar.c and boo.c. Remember, makefiles list rules by target,

not by prerequisite. The compilation step uses a static pattern rule, which for each

object file (.o) in OBJS compiles the source file (.c) file with the same title. This is

what runs the compiler for our three source files. In the linking step, the automatic

partial makefile for using multiple source files
some steps omitted for clarity

3 targets for compilation
OBJS := foo.o bar.o boo.o

link step: .o -> .elf
$(PROJ).elf : $(OBJS)
 $(LD) $^ $(LDFLAGS) -o $@

compile step .c -> .o
$(OBJS) : %.o : %.c
 $(CC) -c $< $(CFLAGS) -o $@

Tonc - GBA Programming in rot13

99 / 757

variable $^ expands to the prerequisites of the rule, which is the list of all object files,

and this is how the files are all linked together. If you need more files, add them to the

OBJS list.

Note that the devkitARM and tonc template files take care of these things

automatically. Just put the source files into the right directory and you’re good to go.

Symbols, declarations and definitions

If you have been doing everything via #include , you should consider refactoring all

of your stuff to separate source files. No, let me rephrase that, you need to do this

because you’ll benefit from it in the end. If you’re already well in your project, this is

going to suck because it’s boring and time consuming and most likely it’s not even

going to work properly when you try the first build a�erwards. I expect you’ll get a

whole slew of errors, particularly these three:

`foo’ undeclared

redefinition of `foo’

multiple definition of `foo’

To understand what these mean, you need to know a little bit more about how C (and

indeed programs) actually works.

As I said before, there aren’t really things like programs, bitmaps, sound on

computers; it’s all just bits. Bits, bits and more bits. What makes a sequence of bits

work as a program is the way it is fed to the CPU, VRAM, and other sections.

Somewhere in the build process, there has to be a translation of all the C code to data

and machine instructions. This, of course, is the compiler’s job.

But wait, there’s more. C allows you to compile each file separately, and then link

them later into the actual program. This is a good idea, because it allows you to save

time by only compiling the files that you have recently modified, as well as the use of

code libraries, which are little more than a bunch of precompiled source files. If you’re

not convinced that this is a good idea, consider what it would take without it. You’d

Tonc - GBA Programming in rot13

100 / 757

have to have all the source code that you wanted to use (including for things like

printf() and all the API code), and compile all those megabytes of source files each

time. Sounds like fun? No, I didn’t think so either.

However, you need a little more bookkeeping to make this all work. Because

everything is just bits, you’d need a way to find out where the function or data you

want to use actually is. The contents of the compiled files (the object files) isn’t just

raw binary, it contains symbols. This is just a word for the group of things that have

actual binary information attached to them. Among other things, the object file keeps

track of the symbol’s name, section, size, and where its content is in the object file. A

function is a symbol, because it contains instructions. A variable is also a symbol, as is

data for bitmaps, sound, maps et cetera. Preprocessor #define s, typedef s and

struct / class declarations are not symbols, because they only don’t have actual

content in them, but allow you to structure your code better.

The other bookkeeping note is that each source/object file is a separate entity. In

principle, it knows nothing about the outside world. This makes sense because it

limits the dependency on other files, but it does create a little problem when you

want to make files work together. This is where declarations come in.

You may have noticed that C is pretty strict when it comes to names of stuff. Before

you can use anything, it requires you to mention what it is beforehand. For example, if

you use a function foo() in your code and you never defined its code, or even if you

put it a�er the call to foo() , the compiler will complain that it doesn’t know what

you’re talking about. That is, it will say that ‘`foo’ is undeclared’. You have to admit it

has a right to stop there: how would it know how to use the thing if you never told it

what it was?

The code snippet below gives an example of when a reference is and is not declared,

and why it’s important to have a declaration. Function a() calls foo() , which is not

known at the time, so an error is produced. Function b() also calls foo() , which is

known at that time, but still gives an error because foo() just happens to require an

integer as an argument. If the declaration wasn’t mandatory and the call in a() was

Tonc - GBA Programming in rot13

101 / 757

allowed, foo() would have been processing the wrong kind of information at

runtime. There are ways around such problems, of course, languages like PHP, VB and

others work fine without mandatory declarations, but the cost for that is speed and

possibly a lot more runtime errors.

Now back to our separate files, and the difference between declarations and

definitions of symbols. A definition is something of actual content: it is what actually

forms the symbol. Examples are the value(s) in variables, and the code in functions. A

declaration is just an empty reference. It just says that there is something in the

project with a particular name, and indicates how that something is supposed to be

used: whether it’s a function or variable, what datatype, which arguments, that sort of

things. This is how you can use symbols from other object files.

You should be familiar with what a definition looks like. A declaration looks very

similar. The basic variable declaration is the variable name and attributes (type, const,

//# C requires identifiers to be declared or defined before first use.

// ERROR: `foo' is undefined.
void a()
{
 foo();
}

// Definition of foo(). Now the system 'knows' what foo is.
void foo(int x)
{
 // code
}

// foo is known and used correctly: no errors.
void b()
{
 foo(42);
}

// foo is known but used incorrectly. Compiler issues error.
void c()
{
 foo();
}

Tonc - GBA Programming in rot13

102 / 757

section) preceded by extern . For functions, replace the code block by a semi-colon.

You can also add extern there, but it’s not required.

Now, a definition is also a declaration, but this does not work the other way. How can

it, the declaration is supposed to be empty. The distinction is subtle, but it’s the

reason you might get multiple definition errors when linking the files together. Think

of what would happen if you have the definition of function foo() in multiple files.

Each file itself would know what foo() is because definitions are also declarations,

so it would pass the compilation stage. So now you have multiple object files, each

containing a symbol called foo . But then you try to link them into one file. The linker

sees different versions of foo , and stops because it doesn’t know which one you are

actually trying to use. The moral here is that you can have as many declarations as

you want, but there can be only one definition.

// --
// DECLARATIONS. Put these in source (.c) or header (.h) files.
// --
extern int var;
extern const unsigned int data[256];
void foo(int x);

// --
// DEFINITIONS. Put these in source (.c) only.
// --

// uninitialized definition
int var;

// initialized definition
const unsigned int data[256]=
{
 // data
};

void foo(int x)
{
 // code
}

Tonc - GBA Programming in rot13

103 / 757

https://en.wikipedia.org/wiki/One_Definition_Rule

Another point I should raise is that the declaration defines how a symbol is to be dealt

with, as it is the only point of reference if the definition is in another file. This means

that, in theory, you could have a variable var defined as an int , but declared as a

short , or even a function! While not exactly recommended, but it is an interesting

item.

Lastly: the distinction of what should go in source files, and what in headers. Source

files can actually contain anything, so that’s an easy one. Remember that they will

contain everything a�er the preprocessor step anyway, because that’s what

#include really does. So what matters is what you put in headers. The purpose of

header files is to have a place for all the non-symbol stuff that you want to use in

different source files. That means declarations, #define s, macros, typedef s,

struct / class descriptions. It also means static inline functions, because these

don’t form symbols either, but are integrated in the functions that call them.

Summary

All this stuff about separate compilation, declarations, and definitions is rather

important for C programming, but the preceding text may be a little much to take in at

once. So here is a summary of the most important points.

Symbols. Symbols are those parts of the code that form actual binary content in

the final program. This includes functions, variables, data, but not preprocessor

or type description stuff.

Declarations/definitions. A definition of a symbol is where the actual content is.

A declaration just says that something of a certain name exists, but will be added

to the project later. Multiple (identical) declarations may exist, but there can be

only one definition in the project. Definitions are also declarations.

Source/object files are selfcontained entities. They contain the definitions of

the symbols that are in the code, and a list of references to outside symbols, as

indicated by the declarations.

Header files contain meta-data, not symbols. Header files cannot be compiled,

but are intended contain the ‘glue’ that allow difference sources to work

Tonc - GBA Programming in rot13

104 / 757

together (i.e., declarations) and stuff that makes writing the sources easier (like

#define s and macros). They are meant to be included in multiple files, so they

cannot create symbols because that would lead to multiple definitions.

Potential problems during compilation or linking:

`foo’ undeclared. Compiler error. The identifier foo is not known at this point.

Check the spelling, or add the appropriate declaration or header file containing

the declaration.

redefinition of `foo’. Compiler error. The identifier as a previous declaration or

definition conflicting with the current one in the same file or included headers.

Usually accompanied by a message of the previous definition.

multiple definition of ‘foo’. Linker error. The symbol name foo is shared by

multiple object files. Replace all but one definitions of foo in the source files

with the appropriate declarations. Usually accompanied with a message

indicating the object file with the other definition(s).

Data alignment

Data alignment is about the ‘natural’ memory addresses of variables. It is o�en

beneficial to have a variable of a certain length to start at an address divisible by that

length. For example, a 32-bit variable likes to be put at addresses that are a multiple

of 4. Processors themselves also have certain preferred alignments. Addressing will

work faster if you stick to their native types and alignment (say, 32-bit everything for

32-bit CPUs). For PCs it is not required to do any of this, it’ll just run slower. For RISC

systems, however, things must be aligned properly or data gets mangled.

In most cases, the compiler will align things for you. It will put all halfwords on even

boundaries and words on quad-byte boundaries. As long as you stick to the normal

programming rules, you can remain completely oblivious to this alignment stuff.

Except that you won’t always stick to the rules. In fact, C is a language that allows you

to break the rules whenever you feel like it. It trusts you to know what you’re doing.

Whether that trust is always justified is another matter �P

Tonc - GBA Programming in rot13

105 / 757

The best example of breaking the rules is pointer casting. For example, most graphics

converters will output the data as u16 arrays, so you can copy it to VRAM with a

simple for loop. You can speed up copying by roughly 160% if you copy by words

(32-bit) rather than halfwords (16-bit). Run the txt_se2 demo and see for yourself. All

you have to do for this is one or two pointer casts, as shown here.

Both these routines copy fooSize bytes from fooData to VRAM. Only the second

version is much faster because there are half as many loop iterations and also

because the ARM CPU is just better at dealing with 32-bit chunks. The only danger

here is that while fooData will be halfword aligned, it need not be word aligned,

which is a requirement for the second version. For those readers that think casts like

this and mis-alignment only happen to other people, think again: the faster copy

routines (memcpy() , CpuFastSet() , and DMA too) cast to word pointers implicitly.

Use them (and you should) and you run the risk of misalignment.

There are many ways of ensuring proper alignment. The easiest way is to not mix

converted data with the rest of your stuff. That is, don’t #include data-files. This

should suffice. Another method is to convert to u32 arrays in the first place. In

assembly files, you can control alignment by using the .p2align *n* directive,

where n aligns to 2n bytes. C itself doesn’t allow manual alignment, but there is an

extension for this in GCC: __attribute__((aligned(4))) . Add that to the

definition and it’ll be word aligned. This is o�en #define d as ALIGN4 in some

headers. Files in GBFS are also always correctly aligned.

#define fooSize ...
const u16 fooData[]= { ... };

// copy via u16 array (the de facto standard)
u16 *dst= (u16*)vid_mem, *src= (u16*)fooData;
for(ii=0; ii<fooSize/2; ii++)
 dst[ii]= src[ii];

// copy via u32 array (mooch faster)
u32 *dst= (u32*)vid_mem, *src= (u32*)fooData;
for(ii=0; ii<fooSize/4; ii++)
 dst[ii]= src[ii];

Tonc - GBA Programming in rot13

106 / 757

Struct alignment

One other area where alignment can cause problems is in struct definitions. Look at

the following code. Here we have a struct named FOO consisting of one byte, b, one

word w and one halfword h. So that’s 1+4+2=7 bytes for the struct right? Wrong.

Because of the alignment requirement, w doesn’t immediately follow b but leaves 3

bytes of padding. When defining arrays of this type, you’ll also see that there are also

two padding bytes a�er h, because otherwise later array entries would run into

trouble.

The real size is actually 12 bytes. Not only is this almost twice the size, if you ever try

to copy the array using a hard-coded 7 rather than sizeof(struct FOO) , you

completely mess it up. Take this lesson to heart. It’s a very easy mistake to make and

difficult to detect a�er the fact. If you were unaware of this fact and you’ve already

done some GBA coding, check your struct (or class) declarations now; chances are

there are gaps that shouldn’t be there. Simply rearranging some of the members

// one byte, one word, one halfword. 7 byte struct?
// Well let's see ...
struct FOO
{
 u8 b;
 u32 w;
 u16 h;
};

// Define a FOO array
struct FOO foos[4]=
{
 { 0x10, 0x14131211, 0x1615 },
 { 0x20, 0x24232221, 0x2625 },
 { 0x30, 0x34333231, 0x3635 },
 { 0x40, 0x44434241, 0x4645 },
};

// In memory. 4x12 bytes.
// 10 00 00 00 | 11 12 13 14 | 15 16 00 00
// 20 00 00 00 | 21 22 23 24 | 25 26 00 00
// 30 00 00 00 | 31 32 33 34 | 35 36 00 00
// 40 00 00 00 | 41 42 43 44 | 45 46 00 00

Tonc - GBA Programming in rot13

107 / 757

should suffice to make them fit better. Note that this is not specific to the GBA:

struct s on PCs may behave the same way, as I noticed when I was writing my TGA

functions.

There are ways of forcing packing, using the ‘ __attribute__((packed)) ’ attribute. If

struct FOO had that, it really would be 7 bytes long. The downside of this is that the

non-byte members could be mis-aligned, and the compiler emits code to put the

value together byte for byte. This is very much slower than the non-packed version, so

only use this attribute if you have no other choice. What happens with mis-aligned

(half)words then I can’t tell you though, but I’m sure it’s not pretty.

FORCING ALIGNMENT AND PACKING

GCC has two attributes that allow you to force alignment of arrays, and remove

member-alignment in struct s.

Devkits and struct alignment

As far as I’ve been able to tell, struct s have always had word alignment. This was

useful because it made copying struct s faster. C allows you to copy structs with a

single assignment, just like the standard data types. Because of the word-alignment,

these copies are fast because GCC will make use of ARM’s block-copy instructions,

which are much faster than copying member by member.

// Useful macros
#define ALIGN(n) __attribute__((aligned(n)))
#define PACKED __attribute__((packed))

// force word alignment
const u8 array[256] ALIGN(4) = {...};
typedef struct FOO {...} ALIGN(4) FOO;

// force struct packing
struct FOO {...} PACKED;

Tonc - GBA Programming in rot13

108 / 757

However, this does not seem to be true under devkitARM r19 (and presumably higher)

anymore. The new rule seems to be that struct s are aligned to their largest member.

This does make more sense as a struct of two bytes would actually be two bytes long.

However, it does mean that GCC will now call memcpy() for non-aligned struct s.

Apart from it being a function with quite a bit of overhead (i.e., it’s very slow if you

want to copy a single small struct), it will actually fail to produce correct results in

some cases. The problem is that low-length copies it will copy by the byte, which is

something you cannot do for VRAM, OAM, or the palette. For example, objects that

we’ll see later use a struct of four halfwords; using a struct copy there, something

I am very fond of doing, screws up everything. The only way to make it work properly

is to force word alignment on the struct .

FORCING STRUCT-ALIGNMENT IS A GOOD THING

The rules for struct alignment have changed since devkitARM r19. Instead of

being always word-aligned, they are now aligned as well as their members will

allow. If this means they’re not necessarily word-aligned, then they will use

memcpy() for struct copies, which is slow for small structs, and may even be

// This doesn't work on devkitARM r19 anymore
typedef struct OBJ_ATTR
{
 u16 attr0, attr1, attr2;
 s16 fill;
} OBJ_ATTR;

OBJ_ATTR a, b;
b= a; // Fails because of memcpy

// Forcing alignment: this works properly again
typedef struct OBJ_ATTR
{
 u16 attr0, attr1, attr2;
 s16 fill;
} ALIGN(4) OBJ_ATTR;

OBJ_ATTR a, b;
b= a; // No memcpy == no fail and over 10 times faster

Tonc - GBA Programming in rot13

109 / 757

wrong (see next section). If you want to be able to do struct copies fast and

safe, either force alignment or cast to other datatypes.

Copying, memcpy() and sizeof

There are many different ways of copying data on this platform. Arrays, struct

copies, standard copiers like memcpy() , and GBA specific routines like CpuFastSet()

and DMA. All of these have their own strengths and weaknesses. All of them can be

affected by misalignment and the no-byte-write rule. I discuss some of them in the

txt_se2 demo.

I’ve chosen to use memcpy() in the early demos for a number of reasons. The main

one is that it is part of the standard C library, meaning that C programmers should

already be familiar with it. Secondly, it is somewhat optimized (see the txt_se2 demo

for details). However, there are two potential pitfalls with the routine. The first is data

alignment (yes, that again). If either the source or the destination is not word-aligned,

you’re in trouble. Secondly, if the number of bytes is too small, you’re in trouble too.

Both of these have to do with the basic function of memcpy() , namely to be a fast byte

copier. But as you know, you can’t copy single bytes to VRAM directly. Fortunately, it

has an optimised mode that uses an unrolled word-copy loop if two conditions are

satisfied:

1. When both source and destinations are word aligned.

2. When you are copying more than 16 bytes.

This is usually the case so I figured it’d be safe enough for the demos. There are also

look-alikes in libtonc that do the same thing only better, namely memcpy16() and

memcpy32() , but these are in assembly so I thought I wouldn’t lay them on you so

soon. Highly recommended for later though.

On a related subject, there is also memset() for memory fills. Be careful with that one,

because that will only work with bytes. Tonclib also includes 16- and 32-bit versions of

Tonc - GBA Programming in rot13

110 / 757

this routine, but also in assembly.

The last thing I want to discuss is the sizeof() operator. In other tutorials you will

see this being used to find the size in bytes of arrays, which is then used in memcpy() .

It’s a good procedure but will not always work. First, sizeof() actually gives the size

of the variable, which need not always be the array itself. For example, if you use it on

a pointer to the array, it’ll give the size of the pointer and not of the array. The

compiler never complains, but you might when hardly anything is copied. Secondly,

sizeof() is an operator, not a function. It is resolved at compile-time, so it needs to

be able to find the size at that time as well. To do this, either the declaration (in the

header) should indicate the size, or the array definition (in the source file) should be

visible.

Bottom line: you can use sizeof() , just pay attention to what you use it on.

Okay, that was the long and boring –yet necessary– section on data. Congratulations

if you’ve managed to stay awake till this point, especially if you’ve actually

understood all of it. It’s okay if you didn’t though, in most cases you won’t run into the

problems discussed here. But just remember this section for if you do run into trouble

when copying and you can’t find it in the code; it might save you a few hours of

debugging.

Data interpretation demo

The bm_modes is an example of how the same data can result in different results

depending on interpretation (in this case, modes 3, 4 and 5). In the code below, I make

one copy into VRAM, and switch between the modes using Le� and Right. The results

can be seen in Fig 5.7a-c.

I’ve arranged the data of the bitmap in such a way that the name of the current mode

can be read clearly, as well as indicated the mode’s boundaries in memory. Because

the data intended for the other modes is still present, but not interpreted as intended,

that part of the bitmap will look a little distorted. And that’s partly the point of the

demo: when filling VRAM, you need to know how the GBA will use the data in it, and

Tonc - GBA Programming in rot13

111 / 757

make sure it’ll be used. If the bitmap ends up being all garbled, this is the likely

suspect; check the bitdepth, dimensions and format (linear, tiled, compressed, etc)

and if something conflicts, fix it.

Now, sometimes this is not as easy as it sounds. The general procedure for graphics is

to create it on the PC, then use an exporter tool to convert it to a raw binary format,

then copy it to VRAM. If the exporter has been given the wrong options, or if it can’t

handle the image in the first place, you’ll get garbage. This can happen with some of

the older tools. In some cases, it’s the bitmap editor that is the culprit. For paletted

images, a lot depends on the exact layout of the palette, and therefore it is vital that

you have a bitmap editor that allows total control over the palette, and leaves it intact

when saving. Microso� Paint and Pyxel Edit for example do neither. Even very

expensive photo editing tools don’t, so be careful.

For this image, I used <plug>my own bitmap editor Usenti</plug>, which not only has

some nice palette control options, and tiling functions, but a built-in GBA graphics

exporter as well. To make the background be the same color in all modes, the two

bytes of the 16-bit background color of modes 3 and 5 had to serve as palette entries

for mode 4, both using that 16-bit color again. In this case, the color is 0x080F , sort of

a brownish color. The bytes are 8 and 15, so that’s the palette entries where the color

goes too. Normally you don’t have to worry about switching bitdepths mid-game, but

knowing how to read data like this is a useful debugging skill.

Tonc - GBA Programming in rot13

112 / 757

https://www.coranac.com/projects/#usenti

Fig 5.7a: bm_modes in mode 3. Fig 5.7b: bm_modes in mode 4.

#include <string.h>
#include "toolbox.h"
#include "modes.h"

int main()
{
 int mode= 3;
 REG_DISPCNT= mode | DCNT_BG2;

 // Copy the data and palette to the right
 // addresses
 memcpy(vid_mem, modesBitmap, modesBitmapLen);
 memcpy(pal_bg_mem, modesPal, modesPalLen);

 while(1)
 {
 // Wait till VBlank before doing anything
 vid_vsync();

 // Check keys for mode change
 key_poll();
 if(key_hit(KEY_LEFT) && mode>3)
 mode--;
 else if(key_hit(KEY_RIGHT) && mode<5)
 mode++;

 // Change the mode
 REG_DISPCNT= mode | DCNT_BG2;
 }

 return 0;
}

Tonc - GBA Programming in rot13

113 / 757

Fig 5.7c: bm_modes in mode 5.

Conclusions

Now we’ve seen some of the basics of the GBA bitmap modes: the properties of

modes 3, 4 and 5, page flipping, rudimentary drawing for mode 3 and one of the most

important rules of VRAM interactions: you cannot write to VRAM in bytes. There is

much more that can be said, of course. Bitmap graphics is a rich subject, but going

into more detail right now may not be the best idea. For one, the bitmap modes are

very rarely used in games anyway, but also because there are other things to talk

about as well. Things like button input, which is what the next chapter is about.

This chapter also discussed a few things about handling data, a very important topic

when you’re this close to the hardware. Datatypes matter, especially when accessing

memory through pointers, and you need to be aware of the differences between

them, and the opportunities and dangers of each. Even if you don’t remember every

little detail in the data section, at least remember where to look when things go

screwy.

Before continuing with further chapters, this may be a good time to do some

experimenting with data: try changing the data arrays and see what happens. Look at

the different data interpretations, different casts, and maybe some intentional errors

as well, just to see what kinds of problems you might face at some point. It’s better to

make mistakes early, while programs are still short and simple and you have less

potential problems.

Tonc - GBA Programming in rot13

114 / 757

Or not, of course �P . Maybe it’s worth waiting a little longer with that; or at least

until we’ve covered basic input, which allows for much more interesting things than

just passive images.

Tonc - GBA Programming in rot13

115 / 757

6. The GBA buttons (a.k.a. keys)

Introduction

Keypad registers

Beyond basic button states

A simple key demo

Introduction

As you no doubt already know, the GBA has one 4-way directional pad (D-pad); two

control buttons (Select and Start); two regular fire buttons (A and B) and two shoulder

buttons (L and R), making a total of 10 keys. This is all you have in terms of user-GBA

interaction, and for most purposes it is plenty. The principles of key-handling are

pretty simple: you have one register with the keystates and you see which buttons are

pressed based on whether its bits are set or cleared. I will cover this, but I’ll also give

some more advanced functions that you will probably want to have at some point.

Keypad registers

The keypad register, REG_KEYINPUT

As said, the GBA has ten buttons, o�en referred to as keys. Their states can be found in

the first 10 bits of the REG_KEYINPUT register at location 0400:0130h (a.k.a. REG_P1).

The exact layout is shown below. I will refrain from giving a bit-by-bit description

because it should be quite obvious. The names of the defined constants I use are

“ KEY_ x”, where x is the name of the button, in caps.

Tonc - GBA Programming in rot13

116 / 757

REG_KEYINPUT @ 0400�0130h

F E D C B A 9 8 7 6 5 4 3 2 1
- L R down up left right start select B

Checking whether a key is pressed (down) or not would be obvious, if it weren’t for

one little detail: the bits are cleared when a key is down. So the default state of

REG_KEYINPUT is 0x03FF , and not 0 . As such, checking if key is down goes like this:

In case your bit-operation knowledge is a bit hazy (get it cleared up. Fast!), this first

inverts REG_KEYINPUT to a more intuitive (and useful) ‘bit is set when down’ setting

and then masks it with the key(s) you want to check. Note that key can in fact be a

combination of multiple keys and the result will be the combination of keys that are

actually down.

Key states are inverted

The key bits are low-active, meaning that they are cleared when a button is pressed

and set when they’re not. This may be a little counter-intuitive, but that’s the way it is.

The key control register, REG_KEYCNT

Just about everything you will ever need in terms of key-handling can be done with

REG_KEYINPUT . That said, you might like to know there is another key-register for

some extra control. The register in question is REG_KEYCNT , the key control register.

This register is used for keypad interrupts, much like REG_DISPSTAT was used for

video interrupts. The layout is the same as for REG_KEYINPUT , except for the top two

bits, see the table below. With REG_KEYCNT {14} you can enable the keypad interrupt.

The conditions for raising this interrupt are determined by REG_KEYCNT {0-9}, which

say what keys to watch out for and REG_KEYCNT {15}, which state the exact conditions.

If this bit is clear, then any of the aforementioned keys will raise the interrupt; if set,

then they must all be down for the interrupt to be raised. I wouldn’t be surprised if

#define KEY_DOWN_NOW(key) (~(REG_KEYINPUT) & key)

Tonc - GBA Programming in rot13

117 / 757

this is how you can reset most games by pressing Start+Select+B+A. Of course, to

make use of this register you need to know how to work with interrupts first.

REG_KEYCNT @ 0400�0132h

F E D C B A 9 8 7 6 5 4 3 2
Op I - L R down up left right start select

bits name define description

0-

9

keys KEY_x keys to check for raising a key interrupt.

E I KCNT_IRQ Enables keypad interrupt

F Op KCNT_OR,

KCNT_AND

Boolean operator used for determining

whether to raise a key- interrupt or not. If

clear, it uses an OR (raise if any of the keys of

bits 0-9 are down); if set, it uses an AND (raise

if all of those keys are down).

Beyond basic button states

While checking for the keystate with KEY_DOWN_NOW() is nice and simple, there are

better and/or more preferable methods of key-state handling. I will discuss two (or

three) of them here. First, synchronous keystates. This is just a fancy way of reading

the key-state at a given point and using that variable, instead of repeated reads of

REG_KEYINPUT when you process input. An outshoot of this is transitional states,

where you track not only the current state, but also the previous one. This lets you

test for changes in keystates, rather than just the keystates themselves.. Lastly,

tribools: three-state variables (in this cases −1, 0 and +1) that can be used to simplify

direction processing.

Tonc - GBA Programming in rot13

118 / 757

Synchronous and transitional key states

The use of KEY_DOWN_NOW() is a form of asynchronous key handling: you check the

state at the time the code needs it. While it works, it’s not always the best approach.

Firstly, it is less efficient in terms of code because the register is loaded and read every

time it is necessary (it’s volatile, remember?). A secondary concern is that a

simultaneous multi-button tap may not be registered as such because the code

reading the button states are a little apart.

But those are just minor concerns; the main issue is that there’s just little you can

really do with them. You can get the current state, but that’s it. As a simple example of

why this is insufficient for games, consider (un)pausing a game. This is usually done

by pressing Start, and then Start again for unpausing. That’s fine until you consider

that the game runs faster than you can react (this is a basic fact of life; the only reason

you can win games is because the game lets you. Deal), so the Start button will be

down for multiple frames. With KEY_DOWN_NOW() , the game will pause and unpause

during this time; the state of the game when you finally release the button is

essentially random. Needless to say, this is a Bad Thing™.

Enter synchronous states. Simply read the state once, at the beginning of the frame

for example, and use that as ‘the’ state for the whole frame. That takes care of the

excess readings of REG_KEYINPUT, and potentially missed simultaneity. For tracking

state changes, we also save the state of the previous frame. So at the very least, we

need two variables and a function that updates them, and for good measure, some

functions that check the states. Because these will be quite small, it makes sense to

inline them as well.

// === (tonc_core.c) ==
// Globals to hold the key state
u16 __key_curr=0, __key_prev=0;

Tonc - GBA Programming in rot13

119 / 757

The key states are stored in __key_curr and __key_prev . The function that updates

them is key_poll() . Note that this function already inverts REG_KEYINPUT, so that

the variables are active high, which makes later operations more intuitive. For

example, to test whether A is currently down (pressed), just mask __key_curr with

KEY_A , the bit for A. This is what key_is_down() does. While KEY_DOWN_NOW() gives

(almost) the same answer, I would still recommend using key_is_down() instead.

INVERT REG_KEYINPUT READS AS SOON AS POSSIBLE

The things that you might check the keystates for are simply easier in active-

high settings. Therefore, it is a good idea to make the keystate variables work

// === (tonc_input.h) ===
extern u16 __key_curr, __key_prev;

#define KEY_A 0x0001
#define KEY_B 0x0002
#define KEY_SELECT 0x0004
#define KEY_START 0x0008
#define KEY_RIGHT 0x0010
#define KEY_LEFT 0x0020
#define KEY_UP 0x0040
#define KEY_DOWN 0x0080
#define KEY_R 0x0100
#define KEY_L 0x0200

#define KEY_MASK 0x03FF

// Polling function
INLINE void key_poll()
{
 __key_prev= __key_curr;
 __key_curr= ~REG_KEYINPUT & KEY_MASK;
}

// Basic state checks
INLINE u32 key_curr_state() { return __key_curr; }
INLINE u32 key_prev_state() { return __key_prev; }
INLINE u32 key_is_down(u32 key) { return __key_curr & key; }
INLINE u32 key_is_up(u32 key) { return ~__key_curr & key; }
INLINE u32 key_was_down(u32 key) { return __key_prev & key; }
INLINE u32 key_was_up(u32 key) { return ~__key_prev & key; }

Tonc - GBA Programming in rot13

120 / 757

that way.

Transitional states

Back to the pause/unpause issue. The nasty behaviour KEY_DOWN_NOW() causes is

known as key bounce. This is because the macro only checks the current state. What

you need for proper (un)pausing is something that checks whether a key is going

down, rather than just down: you need to check the transition. That’s where the

previous state comes in. When a key is hit, i.e., the moment of it going down, it will be

pressed in the current state, but not the one before. In other words, the keys that are

‘hit’ are down currently, and not before: __key_curr&~__key_prev . A�er that,

checking for a particular key can be achieved with a simple mask as usual. This is

done by key_hit() .

That’s really all there is to it, and you can create similar functions to check for releases

(before AND NOT now), if it is held (before AND now), et cetera. Again, it all seems so

simple because the states were already inverted; when I first made these functions, I

had a terrible time figuring out what the right bit-ops were because the active-low

logic was throwing me off. Well okay, not really but it would have been easier if I had

them inverted from the start.

// Transitional state checks.

// Key is changing state.
INLINE u32 key_transit(u32 key)
{ return (__key_curr ^ __key_prev) & key; }

// Key is held (down now and before).
INLINE u32 key_held(u32 key)
{ return (__key_curr & __key_prev) & key; }

// Key is being hit (down now, but not before).
INLINE u32 key_hit(u32 key)
{ return (__key_curr &~ __key_prev) & key; }

Key is being released (up now but down before)
INLINE u32 key_released(u32 key)
{ return (~__key_curr & __key_prev) & key; }

Tonc - GBA Programming in rot13

121 / 757

Key tribool states

This is a little technique taken from the PA_Lib wiki. It isn’t so much about keys per se,

but a shorthand in how you can use the functions, and you will have to make up for

yourself whether what’s discussed in this subsection is right for you.

Imagine you have a game/demo/whatever in which you can move stuff around. To

make a character move le� and right, for example, you might do use something like

this.

Thing moves right, x increases; thing moves le�, x decreases, simple enough. Works

fine too. However, and this may just be my ifphobia acting up, it’s not very pretty

code. So let’s see if we can find something smoother.

Take a look at what the code is actually doing. Depending on two choices, the variable

is either increased (+), decreased (−), or unchanged (0). That’s a pretty good definition

of a tribool, a variable with three possible states, in this case +1, 0 and −1. What I’m

a�er is something that lets you use these states to do the following.

I suppose I could just wrap the if s in this function, but I prefer to do it via bit

operations. All I need to do for this is shi� the bits for specific keys down, mask that

with one, and subtract the results.

// variable x, speed dx
if(key_is_down(KEY_RIGHT))
 x += dx;
else if(key_is_down(KEY_LEFT))
 x -= dx;

x += DX*key_tri_horz();

// === (tonc_core.h) ==
// tribool: 1 if {plus} on, -1 if {minus} on, 0 if {plus}=={minus}
INLINE int bit_tribool(u32 x, int plus, int minus)
{ return ((x>>plus)&1) - ((x>>minus)&1); }

Tonc - GBA Programming in rot13

122 / 757

https://web.archive.org/web/20110318222049/http://www.palib.info/wiki/doku.php?id=day3

The inline function bit_tribool() creates a tribool value from any two bits in a

number (register or otherwise). The rest of the functions listed here use the current

keystate and the key-bits to create tribools for horizontal, vertical, shoulder and fire

buttons; others can be creates with relative ease. These functions make the code look

cleaner and are faster to boot. You will be seeing them quite o�en.

While the functions mentioned above only use __key_curr , it is easy to write code

that uses other key-state types. For example, a right-le� key_hit variant might look

something like this:

It’s just a call to bit_tribool() with using key_hit() instead of __key_curr . In

case you’re wondering what the “−1” is doing there, I just need it to get the full hit

state. Remember that −1 is 0xFFFFFFFF in hex, in other words a full mask, which will

be optimized out of the final code. You will see this use of tribools a couple of times as

well.

// === (tonc_input.h) ===
enum eKeyIndex
{
 KI_A=0, KI_B, KI_SELECT, KI_START,
 KI_RIGHT, KI_LEFT, KI_UP, KI_DOWN,
 KI_R, KI_L, KI_MAX
};

// --- TRISTATES ---
INLINE int key_tri_horz() // right/left : +/-
{ return bit_tribool(__key_curr, KI_RIGHT, KI_LEFT); }

INLINE int key_tri_vert() // down/up : +/-
{ return bit_tribool(__key_curr, KI_DOWN, KI_UP); }

INLINE int key_tri_shoulder() // R/L : +/-
{ return bit_tribool(__key_curr, KI_R, KI_L); }

INLINE int key_tri_fire() // B/A : -/+
{ return bit_tribool(__key_curr, KI_A, KI_B); }

// increase/decrease x on a right/left hit
x += DX*bit_tribool(key_hit(-1), KI_RIGHT, KI_LEFT);

Tonc - GBA Programming in rot13

123 / 757

Fig 6.1: key_demo

screenshot, with L

and B held.

A simple key demo

The key_demo demo illustrates how these key functions can be

used. It shows a mode 4 picture of a GBA (a 240x160 8bit bitmap);

the colors change according to the button presses. The normal

state is grey; when you press the key, it turns red; when you

release it, it goes yellow; and as long as it’s held it’s green. Fig 6.1

shows this for the L and B buttons. Here’s the code that does the

real work:

Tonc - GBA Programming in rot13

124 / 757

#include <string.h>

#include "toolbox.h"
#include "input.h"

#include "gba_pic.h"

#define BTN_PAL_ID 5
#define CLR_UP RGB15(27,27,29)

int main()
{
 int ii;
 u32 btn;
 COLOR clr;
 int frame=0;

 memcpy(vid_mem, gba_picBitmap, gba_picBitmapLen);
 memcpy(pal_bg_mem, gba_picPal, gba_picPalLen);

 REG_DISPCNT= DCNT_MODE4 | DCNT_BG2;

 while(1)
 {
 vid_vsync();
 // slowing down polling to make the changes visible
 if((frame & 7) == 0)
 key_poll();
 // check state of each button
 for(ii=0; ii<KI_MAX; ii++)
 {
 clr=0;
 btn= 1<<ii;
 if(key_hit(btn))
 clr= CLR_RED;
 else if(key_released(btn))
 clr= CLR_YELLOW;
 else if(key_held(btn))
 clr= CLR_LIME;
 else
 clr= CLR_UP;
 pal_bg_mem[BTN_PAL_ID+ii]= clr;
 }
 frame++;
 }

 return 0;
}

Tonc - GBA Programming in rot13

125 / 757

BTN_PAL_ID is the starting index of the palette-part used for the buttons and CLR_UP

is a shade of grey; the rest of the colors should be obvious. To make sure that you can

actually see the changes in button colors I’m only polling the keys once every 8

frames. If I didn’t do that, you’ll hardly ever see a red or yellow button. (By the way, I

don’t actually change the buttons’ colors, but only the palette color that that button’s

pixels use; palette animation is a Good Thing™).

Tonc - GBA Programming in rot13

126 / 757

7. Sprite and background overview

Sprites and backgrounds introduction

Sprite and background control

Sprite and background mapping

Sprite and background image data

Summary

What’s in a name?

Sprites and backgrounds introduction

Although you can make games based purely on the bitmap modes, you’ll find very

few that do. The simple reason for this is that all graphics would be rendered by

so�ware. No matter how good your code is, that’s always going to be a slow process.

Now, I’m not saying it can’t be done: there are several FPSs on the GBA (Wolfenstein

and Doom for example). I am saying that unless you’re willing to optimize the crap out

of your code, you’ll have a hard time doing it.

The vast majority uses the GBA’s hardware graphics, which come in the forms of

sprites and tiled backgrounds (simply “background” or “bg” for short). As I said in the

video introduction, a tiled background is composed of a matrix of tiles (hence the

name) and each tile contains an index to an 8x8 pixel bitmap known as a tile. So what

ends up on screen is a matrix of tiles. There are four of these backgrounds with sizes

between 128x128 pixels (32x32 tiles) to 1024x1024 pixels (128x128 tiles). Sprites are

smaller objects between 8x8 to 64x64 pixels in size. There are 128 of them and you can

move them independently of each other. Like backgrounds, sprites are built out of

tiles.

The hardware takes care of several other aspects of rendering besides mere raster

blasting. For one thing, it uses color keying to exclude some pixels from showing up

Tonc - GBA Programming in rot13

127 / 757

(i.e., these are transparent). Basically, if the tile’s pixel has a value of zero it is

transparent. Furthermore, the hardware takes care of a number of other effects like

flipping, alpha-blending and affine transformations like rotation and scaling.

The trick is setting up the process. There are three basic steps to be aware of: control,

mapping and image data. The boundaries of these steps are a bit vague, but it helps

to see it in this manner since it allows you to see sprites and backgrounds as two sides

of the same coin. And unification is a Good Thing®. There are still differences, of

course, but only in the details.

This page gives a broad overview of what I will talk about in the next couple of pages.

Don’t worry if you don’t understand right away, that’s not really the point right now.

Just let it seep into your brain, read the other pages and then you’ll see what I’m on

about here.

Sprite and background control

The first step of rendering is control. Control covers things that act on the sprites or

backgrounds as a whole, like activation of the things themselves, whether to use 16 or

256 color tiles, and effects like alpha-blending and transformations. First up is

whether or not you want to use the things in the first place. This is done by setting the

right bits in the display control register REG_DISPCNT . Once you’ve done that there

are further control registers for backgrounds: the REG_BGxCNT registers (0400:0008h -

0400:000Fh). For sprites there’s the Object Attribute Memory, or OAM, which can be

found at 0700:0000h . Each of the 128 sprites has three so-called attributes (hence

OAM) which covers both the control and mapping aspects of the sprites.

Tonc - GBA Programming in rot13

128 / 757

Sprite and background mapping

There’s a lot of grey area between control and mapping, but here goes. Mapping

concerns everything about which tiles to use and where they go. As said, the screen

appearance of both sprites and backgrounds are constructed of tiles, laid out side by

side. You have to tell the GBA which tiles to blit to what position. Fig 7.1a-c (below)

illustrates this. In fig 7.1b you see the tiles. Note that both sprites and backgrounds

have their own set of tiles.

In fig 7.1c you see how these tiles are used. The background uses a tile-map, which

works just like an ordinary paletted bitmap except that it’s a matrix of screenblock

entries (with tile-indices) instead of pixels (containing color-indices). Excuse me, a

what?!? Screenblock entry. Yes, I know the name is a bit silly. The thing is that you

need keep a clear distinction between the entries in the map (the screenblock entries,

SE for short) and the image-data (the actual tiles). Unfortunately, the term “tile” is

o�en used for both. I’ll stick to tiles for the actual graphical information, and since the

tile-map is stored in things called screenblocks, screenblock entries or SE for the map

data. Anyway, each SE has its own tile-index. It also contains bits for horizontal and

vertical flipping and, if it’s a 16-color background, an index for the palbank as well. In

fig 7.1c, you only see the tile-index, though.

For sprites, it’s s a bit different, but the basic steps remain. You give one tile-index for

the whole sprite; the GBA then figures out the other tiles to use by looking at the

shape and size of the sprite and the sprite mapping-mode. I’ll explain what this means

later; suffice to say that the mapping mode is either 1D or 2D, depending on

REG_DISPCNT{6} . In this case, I’ve used 1D mapping, which states that the tiles that a

sprite should use are consecutive. Like backgrounds, there’s additional flipping flags

and palette-info for 16-color sprites. Unlike backgrounds, these work on the whole

sprite, not just on one tile. Also, the component tiles of sprites are always adjoining,

so you can see a sprite as a miniature tiled-background with some imagination.

What belongs to the mapping step as well is the affine transformation matrix, if any.

With this 2x2 matrix you can rotate, scale or shear sprites or backgrounds. There

Tonc - GBA Programming in rot13

129 / 757

seems to be a lot of confusion about how this works so I’ve written a detailed,

mathematical description on how this thing works. Bottom line: the matrix maps from

screen space to texture-space, and not the other way round. Though all the reference

documents do state this in a roundabout way, almost every rotation-scale matrix I’ve

seen so far is incorrect. If your code is based on PERN’s, chances are yours is too.

Fig 7.1a: 2 sprites on a

background.

Fig 7.1c: tile usage by bgs and sprites. One tile per SE for bgs,

and the top-le� tile for sprites. Default tiles (with index 0 are

omitted for clarity's sake.

Fig 7.1b: background (above)

and sprite (below) tiles.

Sprite and background image data

Image data is what the GBA actually uses to produce an image. This means two

things: tiles and palettes.

Tonc - GBA Programming in rot13

130 / 757

Tiles

Sprites and backgrounds are composed of a matrix of smaller bitmaps called tiles.

Your basic tile is an 8x8 bitmap. Tiles come in 4bpp (16 colors / 16 palettes) and 8bpp

(256 colors / 1 palette) variants. In analogy to floating point numbers, I refer to these

as s-tiles (single-size tile) and d-tiles (double-size tiles). An s-tile is 32 (20h) bytes long,

a d-tile 64 (40h) bytes. The default type of tile is the 4bpp variant (the s-tile). If I talk

about tiles without mentioning which type, it either doesn’t matter or it’s an s-tile.

Just pay attention to the context.

There is sometimes a misunderstanding about what working in tiles really means. In

tiled modes, VRAM is not a big bitmap out of which tiles are selected, but a collection

of 8x8 pixel bitmaps (i.e., the tiles). It is important that you understand the differences

between these two methods! Consider an 8x8 rectangle in a big bitmap, and an 8x8

tile. In the big bigmap, the data a�er the first 8 pixels contain the next 8 pixels of the

same scanline; the next line of the ‘tile’ can be found further on. In tiled modes, the

next scanline of the tile immediately follows the current line.

Basically, VRAM works as an 8×N·8 bitmap in the tiled modes. Because such a small

width is impractical to work with, they’re usually presented as a wider bitmap

anyway. An example is the VBA tile viewer, which displays char blocks as a 256x256

bitmap; I do something similar in fig 7.2a. It is important to remember that these do

not accurately mimic the contents of VRAM; to reproduce the actual content of VRAM

you’d need something like fig 7.2b, but, of course, no-one is insane enough to edit

bitmaps in that manner. In all likelihood, you need a tool that can break up a bitmap

into 8x8 chunks. Or restructure it to a bitmap with a width of 8 pixels, which in

essence is the same thing.

As with all bitmaps, it is the programmer’s responsibility (that means you!) that the

bit-depth of the tiles that sprites and backgrounds correspond to the bit-depth of the

data in VRAM. If this is out of sync, something like fig 7.2a may appear as fig 7.2c.

Something like this is likely to happen sooner or later, because all graphics need to be

converted outside of the system before use; one misplaced conversion option is all it

takes.

Tonc - GBA Programming in rot13

131 / 757

Fig 7.2a: 8bpp tiles. Fig 7.2b: 8bpp tiles as bitmap.

Fig 7.2c: the data of fig 7.2a, interpreted as 4bpp data. If you see

something like this (and you will), you now know why.

TILED GRAPHICS CONSIDERATIONS

Remember and understand the following points:

1. The data of each tile are stored sequentially, with the next row of 8 pixels

immediately following the previous row. VRAM is basically a big bitmap 8

pixels wide. Graphics converters should be able to convert bigger bitmaps

into this format.

2. As always, watch your bitdepth.

TIP FOR GRAPHICS CONVERTERS

If you want to make your own conversion tools, here’s a little tip that’ll help you

with tiles. Work in stages; do not go directly from a normal, linear bitmap to

writing the data-file. Create a tiling function that takes a bitmap and arranges

the tiles into a bitmap 1 tile wide and H tiles high. This can then be exported

normally. If you allow for a variable tile-width (not hard-coding the 8-pixel

width), you can use it for other purposes as well. For example, to create 16x16

sprites, first arrange with width=16, then with width=8.

Tonc - GBA Programming in rot13

132 / 757

Tile blocks (aka charblocks)

All the tiles are stored in charblocks. As much as I’d like them to be called tile-blocks

because that’s what they’re blocks of, tradition has it that tiles are characters (not to

be confused with the programming type of characters: an 8bit integer) and so the

critters are called charblock. Each charblock is 16kb (4000h bytes) long, so there’s

room for 512 (4000h/20h) s-tiles or 256 (4000h/40h) d-tiles. You can also consider

charblocks to be matrices of tiles; 32x16 for s-tiles, 16x16 (or 32x8) for d-tiles. The

whole 96kb of VRAM can be seen as 6 charblocks.

As said, there are 6 tile-blocks, that is 4 for backgrounds (0-3) and 2 for sprites (4-5).

For tiled backgrounds, tile-counting starts at a given character base block (block for

the character base, CBB for short), which are indicated by REG_BGxCNT {2-3}. Sprite

tile-indexing always starts at the lower sprite block (block 4, starting at 0601:0000h).

It’d be nice if tile-indexing followed the same scheme for backgrounds and sprites,

but it doesn’t. For sprites, numbering always follows s-tiles (20h offsets) even for d-

tiles, but backgrounds stick to their indicated tile-size: 20h offsets in 4bpp mode, 40h

offsets for 8bpp mode.

BG VS SPRITE TILE INDEXING

Sprites always have 32 bytes between tile indices, bg tile-indexing uses 32 or 64

byte offsets, depending on their set bitdepth.

Now, both regular backgrounds and sprites have 10 bits for tile indices. That means

1024 allowed indices. Since each charblock contains 512 s-tiles, you can access not

only the base block, but also the one a�er that. And if your background is using d-

tiles, you can actually access a total of four blocks! Now, since tiled backgrounds can

start counting at any of the four background charblocks, you might be tempted to try

to use the sprite charblocks (blocks 4 and 5) as well. On the emulators I’ve tested, this

does indeed work. On a real GBA, however, it does not. This is one of the reasons why

Tonc - GBA Programming in rot13

133 / 757

you need to test on real hardware. For more on this subject see the background tile

subtleties and the cbb_demo .

Another thing you need to know about available charblocks is that in one of the

bitmap modes, the bitmaps extend into the lower sprite block. For that reason, you

can only use the higher sprite block (containing tiles 512 to 1023) in this case.

Thanks to the wonderful concept of typedef s, you can define types for tiles and

charblocks so that you can quickly come up with the addresses of tiles by simple

array-accesses. An alternative to this is using macros or inline functions to calculate

the right addresses. In the end it hardly matters which method you choose, though.

Of course, the typedef method allows the use of the sizeof operator, which can be

quite handy when you need to copy a certain amount of tile. Also, struct-copies are

faster than simple loops, and require less C-code too.

Palettes and tile colors

Sprites and backgrounds have separate palettes. The background palette goes first at

0500:0000h , immediately followed by the sprite palette (0500:0200h). Both palettes

contain 256 entries of 15bit colors.

// tile 8x8@4bpp: 32bytes; 8 ints
typedef struct { u32 data[8]; } TILE, TILE4;
// d-tile: double-sized tile (8bpp)
typedef struct { u32 data[16]; } TILE8;
// tile block: 32x16 tiles, 16x16 d-tiles
typedef TILE CHARBLOCK[512];
typedef TILE8 CHARBLOCK8[256];

#define tile_mem ((CHARBLOCK*)0x06000000)
#define tile8_mem ((CHARBLOCK8*)0x06000000)

//In code somewhere
TILE *ptr= &tile_mem[4][12]; // block 4 (== lower object block), tile
12

// Copy a tile from data to sprite-mem, tile 12
tile_mem[4][12] = *(TILE*)spriteData;

Tonc - GBA Programming in rot13

134 / 757

In 8-bit color mode, the pixel value in the tiles is palette-index for that pixel. In 4-bit

color mode, the pixel value contains the lower nybble of the palette index; the high

nybble is the palbank index, which can be found in either the sprite’s attributes, or

the upper nybble of the tiles. If the pixel-value is 0, then that pixel won’t be rendered

(i.e., will be transparent).

Because of 16-color mode and the transparency issue, it is essential that your bitmap

editor leaves the palette intact. I know from personal experience that MS-Paint and

the Visual C bitmap editor don’t, so you might want to use something else. Favorites

among other GBA developers are Graphics Gale and GIMP. Of course, since I have my

my own bitmap editor, I prefer to use that.

Summary

This is a short list of various attributes of sprites and backgrounds. It’s alright if you

don’t understand it right away; I’ll explain in more detail in the following pages.

Subject Backgrounds Sprites

Number 4 (2 affine) 128 (32 affine)

Max size
reg: 512x512

aff: 1024x1024
64x64

Control REG_BGxCNT OAM

Base tile

block
0-3 4

Available

tiles ids

reg: 0-1023

aff: 0-255

modes 0-2: 0-

1023

modes 3-5: 512-

1023

Tile memory

offsets

Per tile size:

4bpp: start=

base + id*32

Always per 4bpp

tile size:

Tonc - GBA Programming in rot13

135 / 757

http://www.tempest-j.com/gale/e/
http://www.gimp.org/
http://www.coranac.com/projects/#usenti

8bpp: start=

base + id*64

start= base +

id*32

Mapping

reg: the full

map is divided

into map-

blocks of 32×32

tegels. (banked

map)

aff: one matrix

of tegels, just

like a normal

bitmap (flat

map)

If a sprite is m × n

tiles in size:

1D mapping: the

m*n successive

tiles are used,

starting at id

2D mapping: tile-

blocks are 32×32

matrices; the

used tiles are the

n columns of the

m rows of the

matrix, starting

at id.

Flipping

Each tile can

be flipped

individually

Flips the whole

sprite

Palette 0500:0000h 0500:0200h

What’s in a name?

Well, since you are a programmer you should know the answer: plenty. If you

disagree, visit the How To Write Unmaintanable Code website and look at a number of

their entries. My naming scheme is a bit different from that of the GBA community. I

don’t do this just because I feel like being contrary. I find some of the conventional

names are incomplete, misleading and ambiguous. I feel little need, at least at

present, to follow tradition simply because everyone else does. But you still need to

know the traditional names, simply because everyone else does. So here’s a list of

differences in names.

Tonc - GBA Programming in rot13

136 / 757

https://www.mindprod.com/jgloss/unmain.html

Subject Traditional Tonc

Sprite and bg

image data
tiles tiles

Tile-map entries

tiles (can you

feel the

confusion?)

screenblock

entries / SE

Matrix for

transformations

Rot/Scale

matrix

affine matrix /

P

Sprite types
?? vs

Rot/Scale

regular vs

affine

Background

types
text vs rot

regular vs

affine

Depository for

sprite tiles

(0601:0000)

OAMData (i.e.,

not the real

OAM, which is

at

0700:0000)

tile_mem_obj

OAM

(0700:0000)
OAMData or

OAMMem
oam_mem

Tonc - GBA Programming in rot13

137 / 757

Fig 8.1.

Metroid.

Rawr.

8. Regular sprites

Sprite introduction

Sprite image data and mapping mode

Sprite control: Object Attribute Memory

Object attributes: OBJ_ATTR

Bitfield macros (OAM or otherwise)

Demo time

Sprite introduction

According to Webster’s, a sprite is “an imaginary being or spirit, as a fairy,

elf, or goblin”. Right, glad that’s cleared up. For games, though, when

referring to a sprite one is usually talking about “a [small] animated object

that can move freely from the background” (PERN). Primary examples are

game characters, but status objects like scores and life bars are o�en

sprites as well. Fig 8.1 on the right shows a sprite of everybody’s favorite

vampire jellyfish, the metroid. I will use this sprite in the demo at the end of this

chapter.

Sprites are a little trickier to use than a bitmap background, but not by much. You just

have to pay a little more attention to what you’re doing. For starters, the graphics

have to be grouped into 8×8 tiles; make sure your graphics converter can do that.

Aside from the obvious actions such as enabling sprites in the display control and

loading up the graphics and palette, you also have to set-up the attributes of the

sprites correctly in OAM. Miss any of these steps and you’ll see nothing. These things

and more will be covered in this chapter.

ESSENTIAL SPRITE STEPS

Tonc - GBA Programming in rot13

138 / 757

There are 3 things that you have to do right to get sprites to show up:

Load the graphics and palette into object VRAM and palette.

Set attributes in OAM to use the appropriate tiles and set the right size.

Switch on objects in REG_DISPCNT , and set the mapping mode there too.

SPRITES AREN’T OBJECTS

Or something like that. I know it sounds weird, but the more I think about it, the

more I realize that sprites and objects shouldn’t be considered interchangeable.

The term ‘object’, is a hardware feature, controlled in OAM. Right now, I think

that ‘sprite’ is more of a conceptual term, and should be reserved for actors,

like playing characters, monsters, bullets, etc. These can in fact be built up of

multiple hardware objects, or even use a background.

You could also thing of it in this way: objects are system entities linked to the

console itself, and sprites are game entities, living in the game world. The

difference may be subtle, but an important one.

This is merely my opinion, and I can’t say how right I am in this. Tonc still

switches back and forth between the two words because it’s too late to do

anything about it now. Mea culpa. I’d love to hear the opinion of others on the

subject, so feel free to speak your mind if you want.

Sprite image data and mapping mode

Like I said in the sprite and background overview, sprites are composed of a number

of 8×8-pixel mini-bitmaps called tiles, which come in two types: 4bpp (s-tiles, 32 bytes

long) and 8bpp (d-tiles, 64 bytes long). The tiles available for sprites are stored in

object VRAM, or OVRAM for short. OVRAM is 32 KiB long and is mapped out by the last

Tonc - GBA Programming in rot13

139 / 757

two charblocks of tile_mem , which are also known as the lower (block 4, starting at

0601:0000h) and higher (block 5, 0601:4000h) sprite blocks. Counting always starts

at the lower sprite-block and is always done in 32 byte offsets, meaning that sprite-

tile #1 is at 0601:0020h , no matter what the bit depth is (see table 8.1). With 4000h

bytes per charblock, a quick calculation will show you that there are 512 tiles in each

charblock, giving a total range of 1024. However, since the bitmap modes extend into

the lower sprite block, you can only use the higher sprite block (containing tiles 512 to

1023) in modes 3-5.

It may seem that calculating those tile addresses can be annoying, and it would be if

you had to do it manually. That’s why I have mapped the whole of VRAM with a

charblock/tile matrix called tile_mem , as discussed in the overview. Need tile #123 of

OVRAM? That’d be tile_mem[4][123] . Need its address? Use the address operator:

&tile_mem[4][123] . Quick, easy, safe.

Also, don’t forget that the sprites have their own palette which starts at 0500:0200h

(right a�er the background palette). If you are certain you’ve loaded your tiles

correctly but nothing shows up, it’s possible you filled the wrong palette.

memory 0601: 0000 0020 0040 0060 0080 0100 ...

4bpp tile 0 1 2 3 4 5

8bpp tile 0 2 4

Table 8.1: tile counting for sprites, always per 32

bytes. (You can use odd numbers for 8bpp tiles, but

be sure you fill the VRAM accordingly.)

BITMAP MODES AND OBJECT VRAM

Only the higher sprite block is available for sprites in modes 3-5. Indexing still

starts at the lower block, though, so the tile range is 512-1023.

Tonc - GBA Programming in rot13

140 / 757

The sprite mapping mode

Sprites aren’t limited to a single tile. In fact, most sprites are larger (see Table 8.3 for a

list of the available sizes for GBA sprites). Larger sprites simply use multiple tiles, but

this may present a problem. For backgrounds, you choose each tile explicitly with the

tile-map. In the case of sprites, you have two options: 1D and 2D mapping. The default

is 2D mapping, and you can switch to 1D mapping by setting REG_DISPCNT{6} .

How do these work? Consider the example sprite of fig 8.2a, showing the metroid of

fig 8.1 divided into tiles. In 2D mapping, you’re interpreting the sprite charblocks as

one big bitmap of 256×256 pixels and the sprite a rectangle out of that bitmap (still

divided into tiles, of course). In this case, each tile-row of a sprite is at a 32-tile offset.

This is shown in fig 8.2b. On the other hand, you can also consider the charblocks as

one big array of tiles, and the tiles of every sprite are consecutive. This is shown in fig

8.2c. The numbers in fig 8.2a show the difference between 1D and 2D mapping.

Assuming we start at tile 0, the red and cyan numbers follow 2D and 1D mapping,

respectively.

From a GBA-programming viewpoint, it is easier to use 1D mapping, as you don’t have

to worry about the offset of each tile-row when storing sprites. However, actually

creating sprites is easier in 2D mode. I mean, do you really want to edit a bitmap tile

by tile? That’s what I thought. Of course, it should be the exporting tool’s job to

convert your sprites from 2D to 1D mapping for you. You can do this with Usenti too.

Tonc - GBA Programming in rot13

141 / 757

https://www.coranac.com/projects/#usenti

Fig 8.2a: zoomed out version of

Fig 8.1, divided into tiles; colored

numbers indicate mapping

mode: red for 2D, cyan for 1D.

Fig 8.2b: how fig 8.2a should be stored in

memory when using 2D mapping.

Fig 8.2c: how fig 8.2a should be stored in

memory when using 1D mapping.

OBJECT DATA CONVERSION VIA CLI

Some command-line interfaces can tile bitmaps for use with objects (and

tilemaps). In some cases, they can also convert images with multiple sprite-

frames to a set of object tiles in 1D object mapping mode. If foo.bmp is a 64×16

bitmap with 4 16×16 objects, here’s how you can convert it to 8×8 4bpp tiles

using gfx2gba and grit (flags for 1D mapping are given in brackets)

Two notes on the 1D mapping flags here. First, gfx2gba can only meta-tile (-T)

square objects; for something like 16×8 objects you’d need to do the 1D

mapping yourself. Second, grit’s meta-tiling flags (-Mw and -Mh) can be

anything, and use tile units, not pixels.

gfx2gba
4x 16x16@4 objects (C array; u8 foo_Bitmap[], u16
master_Palette[]; foo.raw.c, master.pal.c)
 gfx2gba -fsrc -c16 -t8 [-T32] foo.bmp

grit
4x 16x16@4 objects (C array; u32 fooTiles[], u16 fooPal[];
foo.c, foo.h)
 grit foo.bmp -gB4 [-Mw 2 -Mh 2]

Tonc - GBA Programming in rot13

142 / 757

SIZE UNITS: TILES VS PIXELS

The default unit for bitmap dimensions is of course the pixel, but in tiled

graphics it is sometimes more useful to use tiles as the basic unit, that is, the

pixel size divided by 8. This is especially true for backgrounds. In most cases the

context will suffice to indicate which one is meant, but at times I will denote the

units with a ‘p’ for pixels or ‘t’ for tiles. For example, a 64x64p sprite is the same

as a 8×8t sprite.

Sprite control: Object Attribute Memory

Much unlike in the bitmap modes, you don’t have to draw the sprites yourself: the

GBA has special hardware that does it for you. This can get the sprites on screen faster

than you could ever achieve programmatically. There are still limits, though: there is a

limit to the amount of sprite pixels you can cram in one scanline. About 960, if the fora

are anything to go by.

So you don’t have to draw the sprites yourself; however, you do need to tell the GBA

how you want them. This is what the Object Attribute Memory –OAM for short– is for.

This starts at address 0700:0000h and is 1024 bytes long. You can find two types of

structures in OAM: the OBJ_ATTR struct for regular sprite attributes, and the

OBJ_AFFINE struct containing the transformation data. The definitions of these

structures can be found below. Note that names may vary from site to site.

Tonc - GBA Programming in rot13

143 / 757

There are a few interesting things about these structures. First, you see a lot of

fill er fields. Second, if you would take 4 OBJ_ATTR structures and lay them over

one OBJ_AFFINE structure, as done in table 8.2, you’d see that the fillers of one would

exactly cover the data of the other, and vice versa. This is no coincidence: OAM is in

fact a weave of OBJ_ATTR s and OBJ_AFFINE s. Why would Nintendo use a weave

instead of simply having one section of attributes and one for transform data? That’s a

good question and deserves a good answer. When I have one, I’ll tell you (I’m guessing

it’s a data-alignment thing). Also, note that the elements of the OBJ_AFFINE are

signed shorts. I’ve gone through a world of hurt with the obj_aff code because I

used u16 instead of s16 . With 1024 bytes at our disposal, we have room for 128

OBJ_ATTR structures and 32 OBJ_AFFINE s. The rest of this file will explain regular

sprites that only use OBJ_ATTR . I want to give the affine transformation matrix the full

mathematical treatment it deserves and will save affine sprites for later.

mem (u16) 0 3 4 7 8 b c f

OBJ_ATTR 0 1 2 0 1 2 0 1 2 0 1 2

OBJ_AFFINE pa pb pc pd

typedef struct tagOBJ_ATTR
{
 u16 attr0;
 u16 attr1;
 u16 attr2;
 s16 fill;
} ALIGN4 OBJ_ATTR;

typedef struct OBJ_AFFINE
{
 u16 fill0[3];
 s16 pa;
 u16 fill1[3];
 s16 pb;
 u16 fill2[3];
 s16 pc;
 u16 fill3[3];
 s16 pd;
} ALIGN4 OBJ_AFFINE;

Tonc - GBA Programming in rot13

144 / 757

Table 8.2: memory interlace of OBJ_ATTR and OBJ_AFFINE structures.

FORCE ALIGNMENT ON OBJ_ATTRS

As of devkitARM r19, there are new rules on struct alignments, which means

that structs may not always be word aligned, and in the case of OBJ_ATTR

structs (and others), means that struct copies like the one in oam_update()

later on, will not only be slow, they may actually break. For that reason, I will

force word-alignment on many of my structs with ALIGN4 , which is a macro for

__attribute__((aligned(4))) . For more on this, see the section on data

alignment.

Object attributes: OBJ_ATTR

The basic control for every sprite is the OBJ_ATTR structure. It consists of three 16-bit

attributes for such qualities as size, shape, position, base tile and more. Each of the

three attributes is covered below.

Attribute 0

The first attribute controls a great deal, but the most important parts are for the y

coordinate, and the shape of the sprite. Also important are whether or not the sprite is

transformable (an affine sprite), and whether the tiles are considered to have a bit

depth of 4 (16 colors, 16 sub-palettes) or 8 (256 colors / 1 palette).

OBJ_ATTR.attr0

F E D C B A 9 8 7 6 5 4 3 2 1 0
Sh CM Mos GM OM Y

bits name define description

Tonc - GBA Programming in rot13

145 / 757

0-

7

Y ATTR0_Y# Y coordinate. Marks the top of the

sprite.

8-

9

OM ATTR0_REG,

ATTR0_AFF,

ATTR0_HIDE,

ATTR0_AFF_DBL.

ATTR0_MODE#

(Affine) object mode. Use to hide the

sprite or govern affine mode.

00. Normal rendering.

01. Sprite is an affine sprite, using

affine matrix specified by

attr1{9-D}

10. Disables rendering (hides the

sprite)

11. Affine sprite using double

rendering area. See affine sprites

for more.

A-

B

GM ATTR0_BLEND,

ATTR0_WIN.

ATTR0_GFX#

Gfx mode. Flags for special effects.

00. Normal rendering.

01. Enables alpha blending.

Covered here.

10. Object is part of the object

window. The sprite itself isn't

rendered, but serves as a mask for

bgs and other sprites. (I think,

haven't used it yet)

11. Forbidden.

C Mos ATTR0_MOSAIC Enables mosaic effect. Covered here.

D CM ATTR0_4BPP,

ATTR0_8BPP

Color mode. 16 colors (4bpp) if cleared;

256 colors (8bpp) if set.

E-

F

Sh ATTR0_SQUARE,

ATTR0_WIDE,

Sprite shape. This and the sprite's size

(attr1{E-F}) determines the sprite's

real size, see table 8.4.

Tonc - GBA Programming in rot13

146 / 757

ATTR0_TALL.

ATTR0_SHAPE#

Two extra notes on attribute 0. First, attr0 contains the y coordinate; attr1

contains the x coordinate. For some reason I keep messing these two up; if you find

your sprite is moving le� when it should be moving up, this may be why. Second, the

affine and gfx modes aren’t always named as such. In particular, attr0{9} is simply

referred to as the double-size flag, even though it only works in that capacity if bit 8 is

set too. If it isn’t, then it hides the sprite. I think that it’s actually taken out of the

object rendering stage entirely leaving more time for the others, but I’m not 100%

sure of that.

shape\size 00 01 10 11

00 8×8 16×16 32×32 64×64

01 16×8 32×8 32×16 64×32

10 8×16 8×32 16×32 32×64

Table 8.3: GBA sprite sizes

Attribute 1

The primary parts of this attribute are the x coordinate and the size of the sprite. The

role of bits 9 to 13 depend on whether or not this is a affine sprite (determined by

attr0{8}). If it is, these bits specify which of the 32 OBJ_AFFINE s should be used. If

not, they hold flipping flags.

OBJ_ATTR.attr1

F E D C B A 9 8 7 6 5 4 3 2 1 0
Sz VF HF - X
- AID -

bits name define description

0-

8

X ATTR1_X# X coordinate. Marks le� of the sprite.

Tonc - GBA Programming in rot13

147 / 757

9-

D

AID ATTR1_AFF# Affine index. Specifies the OAM_AFF_ENTY
this sprite uses. Valid only if the affine flag

(attr0 {8}) is set.

C-

D

HF,

VF

ATTR1_HFLIP,

ATTR1_VFLIP.

ATTR1_FLIP#

Horizontal/vertical flipping flags. Used

only if the affine flag (attr0) is clear;

otherwise they're part of the affine index.

E-

F

Sz ATTR1_SIZE# Sprite size. Kinda. Together with the shape

bits (attr0 {E-F}) these determine the

sprite's real size, see table 8.3.

I’ll say it here too: attr0 contains y, attr1 contains x. Note that bits 12 and 13 have

a double role as either flipping flags or affine index. And if you are wondering if you

can still flip affine sprites, the answer is yes: simply use negative scales in the matrix.

Attribute 2

This attribute tells the GBA which tiles to display and its background priority. If it’s a

4bpp sprite, this is also the place to say what sub-palette should be used.

OBJ_ATTR.attr2

F E D C B A 9 8 7 6 5 4 3 2 1 0
PB Pr TID

bits name description

0-

9

TID ATTR2_ID# Base tile index of sprite. Note that in

bitmap modes, this must be 512 or

higher.

A-

B

Pr ATTR2_PRIO# Priority. Higher priorities are drawn

first (and therefore can be covered by

later sprites and backgrounds). Sprites

cover backgrounds of the same

priority, and for sprites of the same

priority, the higher OBJ_ATTR s are

drawn first.

Tonc - GBA Programming in rot13

148 / 757

C-

F

PB ATTR2_PALBANK# Palette bank to use when in 16-color

mode. Has no effect if the color mode

flag (attr0 {C}) is set.

Attribute 3

There is no attribute 3. Although the OBJ_ATTR struct does have a fourth halfword,

this is only a filler. The memory in that filler actually belongs to the OBJ_AFFINE s.

Nobody is to mistreat attr3 in any way … if there’s any affine sprite active.

OAM double buffering

You could write all your sprite data directly to the OAM at 0700:0000h , but that might

not always be the best move. If it’s done during VDraw there’s the possibility of

tearing. Even worse, you might change the sprite’s tile-index in mid-render so that the

top is in one animation frame and the bottom is in another. Not a pretty sight.

Actually, this isn’t something to worry about because you can’t update OAM during

VDraw; it’s locked then. What’s o�en done is creating a separate buffer of OAM entries

(also known as the object shadow) that can be modified at any time, and then copy

that to the real OAM during VBlank. Here’s my take on this.

I’m using 128 now, but I suppose you could use a lower number if you don’t use all the

sprites. Anyway, now you have a double buffer for both OBJ_ATTR and OBJ_AFFINE

data, which is available at any given time. Just make sure you copy it to the real OAM

when the time is right.

OBJ_ATTR obj_buffer[128];
OBJ_AFFINE *const obj_aff_buffer= (OBJ_AFFINE*)obj_buffer;

Tonc - GBA Programming in rot13

149 / 757

Bitfield macros (OAM or otherwise)

Setting and clearing individual bits is easy, but sometimes it’s not too convenient to

do it all yourself. This is especially true for field of bits like positions or palette banks,

which would involve long statements with masks and shi�s if you want to do it nicely.

To improve on this a little bit, I have a number of macros that may shorted the

amount of actual code. There are essentially three classes of macros here, but before I

go into that, I have to explain a little bit more about the hashed (foo‘#”) defines in the

attribute lists above.

The hash means that for each of these, there will be three #define s with foo as their

roots: foo _MASK , foo _SHIFT , and foo (_n) . These give the bitmask, bitshi� and a

bitfield set macro for the corresponding type.

For example, the one attached to the tile index, ATTR2_ID# . The tile index field has 10

bits and starts at bit 0. The corresponding defines therefore are:

Most GBA libraries out there have #define s like these, albeit with different names.

The actual macro isn’t 100% safe because it does no range checking, but it’s short and

sweet. Now, as far as Tonc’s text is concerned, every time you see the hash in the

define list for a register, it’ll have these three #define s to go with that name.

I also have a second batch of macros you can use for setting and getting specific

fields, which use the mask and shi� names explained above. I’ll admit the macros

look horrible, but I assure you they make sense and can come in handy.

// The 'ATTR2_ID#' from the attr2 list means these 3 #defines exist
#define ATTR2_ID_MASK 0x03FF
#define ATTR2_ID_SHIFT 0
#define ATTR2_ID(n) ((n)<<ATTR2_ID_SHIFT)

Tonc - GBA Programming in rot13

150 / 757

Well, I did warn you. The name argument here is the foo from before. The

preprocessor concatenation operator is use to create the full mask and shi� names.

Again using the tile-index as an example, these macros expand to the following:

BF_PREP() can be used to prepare a bitfield for later insertion or comparison.

BF_GET() gets a bitfield from a value, and BF_SET() sets a bitfield in a variable,

without disturbing the rest of the bits. This is basically how bitfields normally work,

except that true bitfields cannot be combined with OR and such.

The macros with a ‘2’ in their names work in a similar way, but do not apply shi�s.

These can be useful when you have already shi�ed #define s like ATTR0_WIDE , which

can’t use the other ones.

// bit field set and get routines
#define BF_PREP(x, name) (((x)<<name##_SHIFT)& name##_MASK)
#define BF_GET(x, name) (((x) & name##_MASK)>> name##_SHIFT)
#define BF_SET(y, x, name) (y = ((y)&~name##_MASK) |
BF_PREP(x,name))

#define BF_PREP2(x, name) ((x) & name##_MASK)
#define BF_GET2(y, name) ((y) & name##_MASK)
#define BF_SET2(y, x, name) (y = ((y)&~name##_MASK) | BF_PREP2(x,
name))

// Create bitfield:
attr2 |= BF_PREP(id, ATTR0_SHAPE);
// becomes:
attr2 |= (id<<ATTR2_ID_SHIFT) & ATTR2_ID_MASK;

// Retrieve bitfield:
id= BF_GET(attr2, ATTR2_ID);
// becomes:
id= (attr2 & ATTR2_ID_MASK)>>ATTR2_ID_SHIFT;

// Insert bitfield:
BF_SET(attr2, id, ATTR2_ID);
// becomes:
attr2= (attr&~ATTR2_ID_MASK) | ((id<<ATTR2_ID_SHIFT) & ATTR2_ID_MASK);

Tonc - GBA Programming in rot13

151 / 757

Note that none of these three have anything GBA specific in them; they can be used

on any platform.

Finally, what I call my build macros. These piece together the various bit-flags into a

single number in an orderly fashion, similar to HAM’s tool macros. I haven’t used them

that o�en yet, and I’m not forcing you to, but on occasion they are useful to have

around especially near initialization time.

Instead of doing ORring the bitflags together yourself, you can use these and perhaps

save some typing. The order of arguments maybe annoying to remember for some,

and the amount of safety checking may be a bit excessive (gee, ya think?!?), but if the

numbers you give them are constants the operations are done at compile time so

that’s okay, and sometimes they really can be helpful. Or not �P . Like I said, I’m not

forcing you to use them; if you think they’re wretched pieces of code (and I admit they

are) and don’t want to taint your program with them, that’s fine.

// Insert pre-shifted bitfield:
// BF_SET2(attr0, ATTR0_WIDE, ATTR0_SHAPE);
attr0= (attr0&~ATTR0_SHAPE_MASK) | (id & ATTR0_SHAPE_MASK);

// Attribute 0
#define ATTR0_BUILD(y, shape, bpp, mode, mos, bld, win) \
(\
 ((y)&255) | (((mode)&3)<<8) | (((bld)&1)<<10) | (((win)&1)<<11) \
 | (((mos)&1)<<12) | (((bpp)&8)<<10) | (((shape)&3)<<14) \
)

// Attribute 1, regular sprites
#define ATTR1_BUILD_R(x, size, hflip, vflip) \
(((x)&511) | (((hflip)&1)<<12) | (((vflip)&1)<<13) | (((size)&3)<<14))

// Attribute 1, affine sprites
#define ATTR1_BUILD_A(x, size, aff_id) \
(((x)&511) | (((aff_id)&31)<<9) | (((size)&3)<<14))

// Attribute 2
#define ATTR2_BUILD(id, pbank, prio) \
(((id)&0x3FF) | (((pbank)&15)<<12) | (((prio)&3)<<10))

Tonc - GBA Programming in rot13

152 / 757

Note that with the exception of bpp , the arguments are all shi�ed by the macros,

meaning that you should not use the #define flags from the lists, just small values

like you’d use if they were separate variables rather than bits in a variable.

Demo time

Now, to actually use the bloody things. The code below is part of the obj_demo. It is

the most complex I’ve shown yet, but if you take it one step at a time you’ll be fine.

Essentially, this demo places the tiles of a boxed metroid in the VRAM allotted for

objects and then lets you screw around with various OBJ_ATTR bits like position and

flipping flags. The controls are as follows:

Control Pad

Moves the sprite. Note that if you move far enough off-screen, it’ll come up on

the other side.

A and B Buttons

Flip the sprite horizontally or vertically, respectively.

Select Button

Makes it glow. Well, makes it palette-swap, actually. Handy for damage-flashing.

Start Button

Toggles between 1D and 2D mapping modes. Fig 8.2b and fig 8.2c should explain

what happens. Since the sprite is in 1D mode, there’s really not much to see

when you switch to 2D mapping, but I had a few buttons to spare, so I thought

why not.

L and R Buttons

Decreases or increase the starting tile, respectively. Again, I had a few keys to

spare.

Tonc - GBA Programming in rot13

153 / 757

// Excerpt from toolbox.h

void oam_init(OBJ_ATTR *obj, uint count);
void oam_copy(OBJ_ATTR *dst, const OBJ_ATTR *src, uint count);

INLINE OBJ_ATTR *obj_set_attr(OBJ_ATTR *obj, u16 a0, u16 a1, u16 a2);
INLINE void obj_set_pos(OBJ_ATTR *obj, int x, int y);
INLINE void obj_hide(OBJ_ATTR *oatr);
INLINE void obj_unhide(OBJ_ATTR *obj, u16 mode);

// === INLINES ==

//! Set the attributes of an object.
INLINE OBJ_ATTR *obj_set_attr(OBJ_ATTR *obj, u16 a0, u16 a1, u16 a2)
{
 obj->attr0= a0; obj->attr1= a1; obj->attr2= a2;
 return obj;
}

//! Set the position of \a obj
INLINE void obj_set_pos(OBJ_ATTR *obj, int x, int y)
{
 BF_SET(obj->attr0, y, ATTR0_Y);
 BF_SET(obj->attr1, x, ATTR1_X);
}

//! Hide an object.
INLINE void obj_hide(OBJ_ATTR *obj)
{ BF_SET2(obj->attr0, ATTR0_HIDE, ATTR0_MODE); }

//! Unhide an object.
INLINE void obj_unhide(OBJ_ATTR *obj, u16 mode)
{ BF_SET2(obj->attr0, mode, ATTR0_MODE); }

Tonc - GBA Programming in rot13

154 / 757

This is the basic utility code for the demo, and contains most of the things you’d

actually like to have functions for. Note that the inline functions make good use of the

bitfield macros shown earlier; if I hadn’t done that, the code would be a good deal

longer.

Another point that I need to make is that if I’d put everything into toolbox.h, the file

would be pretty big, around 700 lines or so. And with future demos, it’d be a lot

longer. With that in mind, I’ve started redistributing the contents a little: all the types

// toolbox.c

void oam_init(OBJ_ATTR *obj, uint count)
{
 u32 nn= count;
 u32 *dst= (u32*)obj;

 // Hide each object
 while(nn--)
 {
 *dst++= ATTR0_HIDE;
 *dst++= 0;
 }
 // init oam
 oam_copy(oam_mem, obj, count);
}

void oam_copy(OBJ_ATTR *dst, const OBJ_ATTR *src, uint count)
{

// NOTE: while struct-copying is the Right Thing to do here,
// there's a strange bug in DKP that sometimes makes it not work
// If you see problems, just use the word-copy version.
#if 1
 while(count--)
 *dst++ = *src++;
#else
 u32 *dstw= (u32*)dst, *srcw= (u32*)src;
 while(count--)
 {
 *dstw++ = *srcw++;
 *dstw++ = *srcw++;
 }
#endif

}

Tonc - GBA Programming in rot13

155 / 757

go in types.h, everything to do with the memory map goes into memmap.h, all the

register defines go into memdef.h and the input inlines and macros can be found in

input.h. The rest is still in toolbox.h, but will find themselves redistributed in the end

as well.

The two functions in toolbox.c need some more clarification as well I guess. In

oam_init() I cast the objects to a word pointer and use that for setting things; again,

this is simply because it’s a lot faster. Because it may be used to initialixe something

other than the real OAM, I copy the initialized buffer to OAM just in case.

The other point concerns something of a very specific bug in the optimizer of the

current compiler (devkitARM r19b). I expect this to be fixed in a later addition and the

basic version here should work, but just in case it isn’t, set the #if expression to 0 if

you see OAM get corrupted. If you must know, the problem seems to be struct

copying of OBJ_ATTRs in a for loop. Yes, it’s that specific. Even though struct

copying is legal and fast if they’re word aligned, it seems GCC gets confused with 8-

byte blocks in loops and uses memcpy() for each struct anyway, something that

wouldn’t work on OAM. Oh well.

Tonc - GBA Programming in rot13

156 / 757

#include <string.h>
#include "toolbox.h"
#include "metr.h"

OBJ_ATTR obj_buffer[128];
OBJ_AFFINE *obj_aff_buffer= (OBJ_AFFINE*)obj_buffer;

void obj_test()
{
 int x= 96, y= 32;
 u32 tid= 0, pb= 0; // (3) tile id, pal-bank
 OBJ_ATTR *metr= &obj_buffer[0];

 obj_set_attr(metr,
 ATTR0_SQUARE, // Square, regular sprite
 ATTR1_SIZE_64, // 64x64p,
 ATTR2_PALBANK(pb) | tid); // palbank 0, tile 0

 // (4) position sprite (redundant here; the _real_ position
 // is set further down
 obj_set_pos(metr, x, y);

 while(1)
 {
 vid_vsync();
 key_poll();

 // (5) Do various interesting things
 // move left/right
 x += 2*key_tri_horz();
 // move up/down
 y += 2*key_tri_vert();

 // increment/decrement starting tile with R/L
 tid += bit_tribool(key_hit(-1), KI_R, KI_L);

 // flip
 if(key_hit(KEY_A)) // horizontally
 metr->attr1 ^= ATTR1_HFLIP;
 if(key_hit(KEY_B)) // vertically
 metr->attr1 ^= ATTR1_VFLIP;

 // make it glow (via palette swapping)
 pb= key_is_down(KEY_SELECT) ? 1 : 0;

 // toggle mapping mode
 if(key_hit(KEY_START))
 REG_DISPCNT ^= DCNT_OBJ_1D;

Tonc - GBA Programming in rot13

157 / 757

Setting up sprites

Before any sprites show up, there are three things you have to do, although not

necessarily in this order. They are: copying sprite graphics to VRAM, setting up OAM to

use these graphics, and enabling sprites in the display control, REG_DISPCNT .

Display control

Starting with the last one, you enable sprites by setting bit 12 of REG_DISPCNT .

Usually you’ll also want to use 1D mapping, so set bit 6 as well. This is done at point

(2) of the code.

 // Hey look, it's one of them build macros!
 metr->attr2= ATTR2_BUILD(tid, pb, 0);
 obj_set_pos(metr, x, y);

 oam_copy(oam_mem, obj_buffer, 1); // (6) Update OAM (only one
now)
 }
}

int main()
{
 // (1) Places the tiles of a 4bpp boxed metroid sprite
 // into LOW obj memory (cbb == 4)
 memcpy(&tile_mem[4][0], metr_boxTiles, metr_boxTilesLen);
 memcpy(pal_obj_mem, metrPal, metrPalLen);

 // (2) Initialize all sprites
 oam_init(obj_buffer, 128);
 REG_DISPCNT= DCNT_OBJ | DCNT_OBJ_1D;

 obj_test();

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

158 / 757

Hiding all sprites

The other step performed here is a call to oam_init() . This isn’t strictly necessary,

but a good idea nonetheless. What oam_init() does is hide all the sprites. Why is this

a good idea? Well, because a fully zeroed out OAM does not mean the sprites are

invisible. If you check the attributes you’ll see that this will mean that they’re all 8×8-

pixel sprites, using tile 0 for their graphics, located at (0,0). If the first tile isn’t empty,

you’ll start with 128 versions of that tile in the top-le� corner, which looks rather

strange. So, make sure they’re all invisible first. The demo also comes with

obj_hide() and obj_unhide() functions, although they aren’t used here.

Loading sprite graphics

The first thing to do (point (1)) is to store the sprite graphics in object VRAM. As I’ve

already said a few times now, these graphics should be stored as 8×8-pixel tiles, not as

a flat bitmap. For example, my sprite here is 64×64p in size, so to store it I’ve had to

convert this to 8×8 separate tiles first. If you do not do this, your sprites will look very

strange indeed.

Exactly where you put these tiles is actually not all that relevant (apart from the

obvious, like mapping mode, and tile alignment, of course). Object VRAM works as a

texture pool and has nothing to do with the screen directly. You store the tiles that

you want to be available there, and it is by manipulating the OAM attributes that the

system knows which tiles you want to use and where you want them. There is no

reason why sprite 0 couldn’t start at tile 42, or why multiple sprites couldn’t use the

same tiles. This is also why OAMData , which is sometimes used for object VRAM, is

such a misnomer: object VRAM has nothing to do with OAM. Nothing! If your headers

use this name for 0601�0000 , or even 0601�4000 , change it. Please. And be

careful where you put things in the bitmap modes, as you can’t use tiles 0-511 there.

As I said, loading the sprites happens at point (1) in the code. If you paid attention to

the overview, you’ll remember that tile_mem[][] is a two dimensional array,

mapping charblocks and 4-bit tiles. You’ll also remember that object VRAM is

Tonc - GBA Programming in rot13

159 / 757

charblocks 4 and 5, so &tile_mem[4][0] points to the first tile in object VRAM. So I’m

loading my boxed metroid into the first 64 tiles of object VRAM.

I am also loading its palette into the sprite palette. That’s sprite palette (0500�0200
), not background palette. Load it to the wrong place and you won’t see anything.

FINDING TILE ADDRESSES

Use tile_mem or a macro to find the addresses to copy your tiles too, it’s much

more readable and maintainable than calculating them manually. You should

not have any hard-coded VRAM addresses in your code, ever.

OAMDATA

Headers from other sites sometimes #define OAMData as part of VRAM. It is

not. Rename it.

Setting attributes

Lastly, I’ll set up one OBJ_ATTR so that it actually uses the metroid tiles. This is done

at point (3), using the obj_set_attr() inline function. All it does is three

assignments to the attributes of the first argument, by the way, nothing spectacular.

This just saves typing doing it this way rather than three separate statements. With

this particular call, I tell this sprite that it’s a 64×64 pixel (8×8 tile) sprite, and its

starting tile is tid , which is 0. This means that it’ll use the 64 tiles, starting at tile 0.

Note that the sprite I’m setting is actually part of the OAM buffer, not the real OAM.

This means that even a�er I set the attributes there, nothing happens yet. To finalize

the sprite I need to update the real OAM, which is done by a call to oam_copy() (point

(6)). This carries two arguments: an index and a count denoting how many sprites to

Tonc - GBA Programming in rot13

160 / 757

update, and which sprite to start at. I also have obj_copy() , which only copies

attributes 0, 1 and 2, but not 3! This is necessary when you start using affine sprites,

which may be copied incorrectly otherwise.

The previous steps are enough to get the metroid sprite on-screen. The story doesn’t

end there, of course. Here are a few things that you can do with sprites.

Sprite positioning

The first order of business is usually to place it at some position on screen, or even off

screen. To do this you have to update the bits for the y and x positions in attributes 0

and 1, respectively. One mistake I o�en seem to make is fill x into attr0 and y into

attr1, when it should be the other way around. If your sprite moves strangely, this

might be why.

Note that these coordinates mark the top-le� of the sprite. Also, the number of bits

for the coordinates means we have 512 possible x-values and 256 y-values. The

coordinate ranges wrap around, so you could also say that these are signed integers,

with the ranges x ∈ [-256, 255] and y ∈ [-128, 127]. Yes, that would make the highest y-

value smaller than the height of the screen, but thanks to the wrapping it all works

out. Well, almost. Anyway, thanks to the 2s-complement nature of integers, simply

masking the x and y values by 0x01FF and 0x00FF , respectively, will give proper 9-

and 8-bit signed values. You can do this manually, or use the obj_set_pos() function

used at point (4).

You might see code that clears the lower bits of the attributes and then directly ORRs

in x and y. This is not a good idea, because negative values are actually represented by

upper half of a datatype’s range. −1 for example is all bits set (0xFFFFFFFF). Without

masking off the higher bits, negative values would overwrite the rest of the attribute

bits, which would be bad.

MASK YOUR COORDINATES

Tonc - GBA Programming in rot13

161 / 757

If you’re making a sprite positioning function or use someone else’s make sure

you mask off the bits in x and y before you insert them into the attributes. If not,

negative values will overwrite the whole attribute.

This is bad

This is good:

Position variables and using tribools

Instead of using an OBJ_ATTR to store the sprite’s position, it is better to keep them in

separate variables, in this case x and y . This avoids having to mask coordinate fields

all the time, but more importantly, the positions can extend beyond the size of the

screen. As most game worlds aren’t restricted to a single screen, this is an important

point. Then, when the time is right, these are fed to oam_set_pos() to update the

sprite.

Also, note the use of my tribool key functions to update the positions. Input

processing o�en follows a pattern of “key X pressed: increment, key opposite of Y

pressed, decrement” The tribool functions bring that kind of code down from four

lines to one, which makes the code easier to read (once you get over the initial

hurdle). For example, key_tri_horz() returns +1 if ‘right’ is pressed, −1 if ‘le�’ is

pressed, and 0 if neither or both are pressed. key_tri_vert() does something

similar for vertical movement and the line with bit_tribool() function makes a

variant using key_hit() and R and L to increment or decrement the tile index.

obj->attr0= (obj->attr0 &~ 0x00FF) | (y);

obj->attr0= (obj->attr0 &~ 0x00FF) | (y & 0x00FF);

Tonc - GBA Programming in rot13

162 / 757

Other attrs

Sprite coordinates are only two of the many sprite attributes that can be controlled

with via specific OAM bits, even while the sprite is already active. Some of the obvious

ones are flipping or mirroring it, which can be done using A and B here. Or, if you’re

using a 4bpp sprite, you can swap palettes so that all the colors change. Pressing

Select in the demo switches from palette bank 0 to 1, which happens to have a grey to

white gradient. Toggling between these palette banks quickly can make the sprite

flash. You could also change the priorities in which the sprites are rendered, or toggle

alpha blending, although I haven’t done those things here.

Now, these things don’t really change the overall image of the sprite. What you should

realize though is that it is possible to do that. As I’ve already noted before, it’s not true

that the contents of VRAM are the sprite, rather that a sprite uses parts of VRAM to

show something, anything, on screen. You could, for example, change the starting tile

tid that the sprite uses, which in this case can be done using L and R. Not only is this

legal, it’s the standard practice for animation (although you can also overwrite VRAM

for that – resetting the tile index is just faster). Understanding this is one of the points

of moving from a user to a developer perspective: the user only sees the surface; the

coder looks below it and sees what’s really going on.

And that’s it for regular sprites. Using multiple sprites isn’t much different – seen one,

seen them all. Basic animation shouldn’t be problematic either, until you run out of

VRAM to put them in. There are still a few regions le� untouched like blending and

mosaic, but I’ll deal with those later.

Tonc - GBA Programming in rot13

163 / 757

9. Regular tiled backgrounds

Tilemap introduction

Background control

Regular background tile-maps

Tilemap demos

In conclusion

Tilemap introduction

Tilemaps are the bread and butter for the GBA. Almost every commercial GBA game

makes use of tile modes, with the bitmap modes seen only in 3D-like games that use

ray-tracing. Everything else uses tiled graphics.

The reason why tilemaps are so popular is that they’re implemented in hardware and

require less space than bitmap graphics. Consider fig 9.1a. This is a 512 by 256 image,

which even at 8bpp would take up 128 KiB of VRAM, and we simply don’t have that. If

you were to make one big bitmap of a normal level in a game, you can easily get up to

1000×1000 pixels, which is just not practical. And then there’s the matter of scrolling

through the level, which means updating all pixels each frame. Even when your

scrolling code is fully optimized that’d take quite a bit of time.

Now, notice that there are many repeated elements in this image. The bitmap seems

to be divided into groups of 16×16 pixels. These are the tiles. The list of unique tiles is

the tileset, which is given in fig 9.1b. As you can see, there are only 16 unique tiles

making up the image. To create the image from these tiles, we need a tilemap. The

image is divided into a matrix of tiles. Each element in the matrix has a tile index

which indicates which tile should be rendered there; the tilemap can be seen in fig

9.1c.

Tonc - GBA Programming in rot13

164 / 757

Suppose both the tileset and map used 8-bit entries, the sizes are 16×(16×16) = 4096

bytes for the tileset and 32×16 = 512 bytes for the tilemap. So that’s 4.5 KiB for the

whole scene rather than the 128 KiB we had before; a size reduction of a factor of 28.

Fig 9.1a: image on screen.

The tile mapping process. Using the tileset of fig 9.1b, and the tile map of fig 9.1c,

the end-result is fig 9.1a.

Fig

9.1b:

the tile

set.

Fig 9.1c: the tile map (with the proper tiles as a backdrop).

Tonc - GBA Programming in rot13

165 / 757

That’s basically how tilemaps work. You don’t define the whole image, but group

pixels together into tiles and describe the image in terms of those groups. In the fig

9.1, the tiles were 16×16 pixels, so the tilemap is 256 times smaller than the bitmap.

The unique tiles are in the tileset, which can (and usually will) be larger than the

tilemap. The size of the tileset can vary: if the bitmap is highly variable, you’ll

probably have many unique tiles; if the graphics are nicely aligned to tile boundaries

already (as it is here), the tileset will be small. This is why tile-engines o�en have a

distinct look to them.

Tilemaps for the GBA

In the tiled video-modes (0, 1 and 2) you can have up to four backgrounds that display

tilemaps. The size of the maps is set by the control registers and can be between

128×128 and 1024×1024 pixels. The size of each tile is always 8×8 pixels, so fig 9.1 isn’t

quite the way it’d work on the GBA. Because accessing the tilemaps is done in units of

tiles, the map sizes correspond to 16×16 to 128×128 tiles.

Both the tiles and tilemaps are stored in VRAM, which is divided into charblocks and

screenblocks. The tileset is stored in the charblocks and the tilemap goes into the

screenblocks. In the common vernacular, the word “tile” is used for both the graphical

tiles and the entries of the tilemaps. Because this is somewhat confusing, I’ll use the

term screen entry (SE for short) as the items in the screenblocks (i.e., the map entries)

and restrict tiles to the tileset.

64 KiB of VRAM is set aside for tilemaps (0600:0000h - 0600:FFFFh). This is used for

both screenblocks and charblocks. You can choose which ones to use freely through

the control registers, but be careful that they can overlap (see table 9.1). Each

screenblock is 2048 (800h) bytes long, giving 32 screenblocks in total. All but the

smallest backgrounds use multiple screenblocks for the full tilemap. Each charblock

is 16 KiB (4000h bytes) long, giving four blocks overall.

Memory 0600:0000 0600:4000 0600:8000 0600:C000

charblock 0 1 2 3

Tonc - GBA Programming in rot13

166 / 757

screenblock 0 … 7 8 … 15 16 … 23 24 …

Table 9.1: charblock and screenblock overlap.

TILES VS ‘TILES’

Both the entries of the tilemap and the data in the tileset are o�en referred to

as ‘tiles’, which can make conversation confusing. I reserve the term ‘tile’ for the

graphics, and ‘screen(block) entry’ or ‘map entry’ for the map’s contents.

CHARBLOCKS VS SCREENBLOCKS

Charblocks and screenblocks use the same addresses in memory. Each

charblock overlaps eight screenblocks. When loading data, make sure the tiles

themselves don’t overwrite the map, or vice versa.

Size was one of the benefits of using tilemaps, speed was another. The rendering of

tilemaps in done in hardware and if you’ve ever played PC games in hardware and

so�ware modes, you’ll know that hardware is good. Another nice point is that

scrolling is done in hardware too. Instead of redrawing the whole scene, you just have

to enter some coordinates in the right registers.

As I said in the overview, there are three stages to setting up a tiled background:

control, mapping and image-data. I’ve already covered most of the image-data in the

overview, as well as some of the control and mapping parts that are shared by sprites

and backgrounds alike; this chapter covers only things specific to backgrounds in

general and regular backgrounds in particular. I’m assuming you’ve read the

overview.

ESSENTIAL TILEMAP STEPS

Tonc - GBA Programming in rot13

167 / 757

Load the graphics: tiles into charblocks and colors in the background

palette.

Load a map into one or more screenblocks.

Switch to the right mode in REG_DISPCNT and activate a background.

Initialize that background’s control register to use the right CBB, SBB and

bitdepth.

Background control

Background types

Just like sprites, there are two types of tiled backgrounds: regular and affine; these

are also known as text and rotation backgrounds, respectively. The type of the

background depends of the video mode (see table 9.2). At their cores, both regular

and affine backgrounds work the same way: you have tiles, a tile-map and a few

control registers. But that’s where the similarity ends. Affine backgrounds use more

and different registers than regular ones, and even the maps are formatted differently.

This page only covers the regular backgrounds. I’ll leave the affine ones till a�er the

page on the affine matrix.

mode BG0 BG1 BG2 BG3

0 reg reg reg reg

1 reg reg aff -

2 - - aff aff

Table 9.2: video modes and

background type

Tonc - GBA Programming in rot13

168 / 757

Control registers

All backgrounds have 3 primary control registers. The primary control register is

REG_BGxCNT , where x indicates the backgrounds 0 through 3. This register is where

you say what the size of the tilemap is, and which charblock and screenblock it uses.

The other two are the scrolling registers, REG_BGxHOFS and REG_BGxVOFS .

Each of these is a 16-bit register. REG_BG0CNT can be found at 0400:0008 , with the

other controls right behind it. The offsets are paired by background, forming

coordinate pairs. These start at 0400:0010

Register length address

REG_BGxCNT 2 0400:0008h + 2·x

REG_BGxHOFS 2 0400:0010h + 4·x

REG_BGxVOFS 2 0400:0012h + 4·x

Table 9.3: Background register addresses

The description of REG_BGxCNT can be found below. Most of it is pretty standard,

except for the size: there are actually two lists of possible sizes; one for regular maps

and one for affine maps. The both use the same bits you may have to be careful that

you’re using the right #define s.

REG_BGxCNT @ 0400�0008 + 2x

F E D C B A 9 8 7 6 5 4 3 2 1 0
Sz Wr SBB CM Mos - CBB Pr

bits name define description

0-

1

Pr BG_PRIO# Priority. Determines drawing order of

backgrounds.

2-

3

CBB BG_CBB# Character Base Block. Sets the charblock

that serves as the base for character/tile

indexing. Values: 0-3.

6 Mos BG_MOSAIC Mosaic flag. Enables mosaic effect.

Tonc - GBA Programming in rot13

169 / 757

7 CM BG_4BPP,

BG_8BPP

Color Mode. 16 colors (4bpp) if cleared; 256

colors (8bpp) if set.

8-

C

SBB BG_SBB# Screen Base Block. Sets the screenblock

that serves as the base for screen-entry/map

indexing. Values: 0-31.

D Wr BG_WRAP Affine Wrapping flag. If set, affine

background wrap around at their edges. Has

no effect on regular backgrounds as they

wrap around by default.

E-

F

Sz BG_SIZE#,

see below

Background Size. Regular and affine

backgrounds have different sizes available

to them. The sizes, in tiles and in pixels, can

be found in table 9.4.

Sz-flag define (tiles) (pixels)

00 BG_REG_32x32 32×32 256×256

01 BG_REG_64x32 64×32 512×256

10 BG_REG_32x64 32×64 256×512

11 BG_REG_64x64 64×64 512×512

Table 9.4a: regular bg sizes

Sz-flag define (tiles) (pixels)

00 BG_AFF_16x16 16×16 128×128

01 BG_AFF_32x32 32×32 256×256

10 BG_AFF_64x64 64×64 512×512

11 BG_AFF_128x128 128×128 1024×1024

Table 9.4b: affine bg sizes

Each background has two 16-bit scrolling registers to offset the rendering

(REG_BGxHOFS and REG_BGxVOFS). There are a number of interesting points about

these. First, because regular backgrounds wrap around, the values are essentially

Tonc - GBA Programming in rot13

170 / 757

modulo mapsize. This is not really relevant at the moment, but you can use this to

your benefit once you get to more advanced tilemaps. Second, these registers are

write-only! This is a little annoying, as it means that you can’t update the position by

simply doing REG_BG0HOFS++ and the like.

And now the third part, which may be the most important, namely what the values

actually do. The simplest way of looking at them is that they give the coordinates of

the screen on the map. Read that again, carefully: it’s the position of the screen on the

map. It is not the position of the map on the screen, which is how sprites work. The

difference is only a minus sign, but even something as small as a sign change can

wreak havoc on your calculations.

Fig 9.2: Scrolling offset dx sets is the position of the screen on the map. In this case, dx

= (192, 64).

So, if you increase the scrolling values, you move the screen to the right, which

corresponds to the map moving le� on the screen. In mathematical terms, if you have

map position p and screen position q, then the following is true:

(9.1)
𝑞 + 𝑑𝑥 = 𝑝

𝑞 = 𝑝 − 𝑑𝑥

DIRECTION OF OFFSET REGISTERS

Tonc - GBA Programming in rot13

171 / 757

The offset registers REG_BGxHOFS and REG_BGxVOFS indicate which map

location is mapped to the top-le� of the screen, meaning positive offsets scroll

the map le� and up. Watch your minus signs.

OFFSET REGISTERS ARE WRITE ONLY

The offset registers are write-only! That means that direct arithmetic like +=

will not work.

Useful types and #defines

Tonc’s code has several useful extra types and macros that can make life a little easier.

Tonc - GBA Programming in rot13

172 / 757

Strictly speaking, making a SCREEN_ENTRY typedef is not necessary, but makes its

use clearer. se_mem works much like tile_mem : it maps out VRAM into screenblocks

screen-entries, making finding a specific entry easier. The other typedefs are used to

map out arrays for the background registers. For example, REG_BGCNT is an array that

maps out all REG_BGxCNT registers. REG_BGCNT[0] is REG_BG0CNT , etc. The BG_POINT

and BG_AFFINE types are used in similar fashions. Note that REG_BG_OFS still covers

the same registers as REG_BGxHOFS and REG_BGxVOFS do, and the write-only-ness of

// === Additional types (tonc_types.h) ================================

//! Screen entry conceptual typedef
typedef u16 SCR_ENTRY;

//! Affine parameter struct for backgrounds, covered later
typedef struct BG_AFFINE
{
 s16 pa, pb;
 s16 pc, pd;
 s32 dx, dy;
} ALIGN4 BG_AFFINE;

//! Regular map offsets
typedef struct BG_POINT
{
 s16 x, y;
} ALIGN4 BG_POINT;

//! Screenblock struct
typedef SCR_ENTRY SCREENBLOCK[1024];

// === Memory map #defines (tonc_memmap.h) ============================

//! Screen-entry mapping: se_mem[y][x] is SBB y, entry x
#define se_mem ((SCREENBLOCK*)MEM_VRAM)

//! BG control register array: REG_BGCNT[x] is REG_BGxCNT
#define REG_BGCNT ((vu16*)(REG_BASE+0x0008))

//! BG offset array: REG_BG_OFS[n].x/.y is REG_BGnHOFS / REG_BGnVOFS
#define REG_BG_OFS ((BG_POINT*)(REG_BASE+0x0010))

//! BG affine params array
#define REG_BG_AFFINE ((BG_AFFINE*)(REG_BASE+0x0000))

Tonc - GBA Programming in rot13

173 / 757

them has not magically disappeared. The same goes for REG_BG_AFFINE , but that

discussion will be saved for another time.

In theory, it is also useful create a sort of background API, with a struct with the

temporaries for map positioning and functions for initializing and updating the

registers and maps. However, most of tonc’s demos are not complex enough to

warrant these things. With the types above, manipulating the necessary items is

already simplified enough for now.

Regular background tile-maps

The screenblocks form a matrix of screen entries that describe the full image on the

screen. In the example of fig 9.1, the tilemap entries just contained the tile index. The

GBA screen entries bahave a little differently.

For regular tilemaps, each screen entry is 16-bits long. Besides the tile index, it

contains flipping flags and a palette bank index for 4bpp / 16-color tiles. The exact

layout can be found in “Screen entry format” below. The affine screen entries are only

8 bits wide and just contain an 8-bit tile index.

Screen entry format for regular backgrounds

F E D C B A 9 8 7 6 5 4 3 2 1 0
PB VF HF TID

bits name define description

0-

9

TID SE_ID# Tile-index of the SE.

A-

B

HF,

VF

SE_HFLIP,

SE_VFLIP.

SE_FLIP#

Horizontal/vertical flipping flags.

C-

F

PB SE_PALBANK# Palette bank to use when in 16-color mode.

Has no effect for 256-color bgs

Tonc - GBA Programming in rot13

174 / 757

(REG_BGxCNT{6} is set).

Map layout

VRAM contains 32 screenblocks to store the tilemaps in. Each screenblock is 800h

bytes long, so you can fit 32×32 screen entries into it, which equals one 256×256 pixel

map. The bigger maps simply use more than one screenblock. The screenblock index

set in REG_BGxCNT is the screen base block which indicates the start of the tilemap.

Now, suppose you have a tilemap that’s tw×th tiles/SEs in size. You might expect that

the screen entry at tile-coordinates (tx, ty) could be found at SE-number n = tx+ty·tw,

because that’s how matrices always work, right? Well, you’d be wrong. At least, you’d

be partially wrong.

Within each screenblock the equation works, but the bigger backgrounds don’t

simply use multiple screenblocks, they’re actually accessed as four separate maps.

How this works can be seen in table 9.5: each numbered block is a contingent block in

memory. This means that to get the SE-index you have to find out which screenblock

you are in and then find the SE-number inside that screenblock.

32×32 64×32 32×64 64×64

0 0 1
0
1

0 1
2 3

Table 9.5: screenblock layout of
regular backgrounds.

This kind of nesting problem isn’t as hard as it looks. We know how many tiles fit in a

screenblock, so to get the SBB-coordinates, all we have to do divide the tile-coords by

the SBB width and height: sbx=tx/32 and sby=ty/32. The SBB-number can then be

found with the standard matrix→array formula. To find the in-SBB SE-number, we

have to use tx%32 and ty%32 to find the in-SBB coordinates, and then again the

conversion from 2D coords to a single element. This is to be offset by the SBB-number

tiles the size of an SBB to find the final number. The final form would be:

Tonc - GBA Programming in rot13

175 / 757

The general formula is le� as an exercise for the reader – one that is well worth the

effort, in my view. This kind of process crops up in a number of places, like getting the

offset for bitmap coordinates in tiles, and tile coords in 1D object mapping.

If all those operations make you queasy, there’s also a faster version specifically for a

2×2 arrangement. It starts with calculating the number as if it’s a 32×32t map. This will

be incorrect for a 64t wide map, which we can correct for by adding 0x0400−0x20 (i.e.,

tiles/block − tiles per row). We need another full block correction is the size is 64×64t.

I would like to remind you that n here is the SE-number, not the address. Since the

size of a regular SE is 2 bytes, you need to multiply n by 2 for the address. (Unless, of

course, you have a pointer/array of u16 s, in which case n will work fine.) Also, this

works for regular backgrounds only; affine backgrounds use a linear map structure,

which makes this extra work unnecessary there. By the way, both the screen-entry

and map layouts are different for affine backgrounds. For their formats, see the map

format section of the affine background page.

//! Get the screen entry index for a tile-coord pair
// And yes, the div and mods will be converted by the compiler
uint se_index(uint tx, uint ty, uint pitch)
{
 uint sbb= (ty/32)*(pitch/32) + (tx/32);
 return sbb*1024 + (ty%32)*32 + tx%32;
}

//! Get the screen entry index for a tile-coord pair.
/*! This is the fast (and possibly unsafe) way.
* \param bgcnt Control flags for this background (to find its size)
*/

uint se_index_fast(uint tx, uint ty, u16 bgcnt)
{
 uint n= tx + ty*32;
 if(tx >= 32)
 n += 0x03E0;
 if(ty >= 32 && (bgcnt&BG_REG_64x64)==BG_REG_64x64)
 n += 0x0400;
 return n;
}

Tonc - GBA Programming in rot13

176 / 757

Background tile subtleties

There are two additional things you need to be aware of when using tiles for tile-

maps. The first concerns tile-numbering. For sprites, numbering went according to 4-

bit tiles (s-tiles); for 8-bit tiles (d-tiles) you’d have use multiples of 2 (a bit like u16

addresses are always multiples of 2 in memory). In tile-maps, however, d-tiles are

numbered by the d-tile. To put it in other words, for sprites, using index id indicates

the same tile for both 4 and 8-bit tiles, namely the one that starts at id·20h. For tile-

maps, however, it starts at id·20h for 4-bit tiles, but at id·40h for 8-bit tiles.

memory offset 000h 020h 040h 060h 080h 100h ...

4bpp tile 0 1 2 3 4 5 ...

8bpp tile 0 1 2 ...

Table 9.6: tile counting for backgrounds, sticks to its

bit-depth.

The second concerns, well, also tile-numbering, but more how many tiles you can

use. Each map entry for regular backgrounds has 10 bits for a tile index, so you can

use up to 1024 tiles. However, a quick calculation shows that a charblock contains

4000h/20h= 512 s-tiles, or 4000h/40h= 256 d-tiles. So what’s the deal here? Well, the

charblock index you set in REG_BGxCNT is actually only the block where tile-counting

starts: its character base block. You can use the ones a�er it as well. Cool, huh? But

wait, if you can access subsequent charblocks as well; does this mean that, if you set

the base charblock to 3, you can use the sprite blocks (which are basically blocks 4

and 5) as well?

The answer is: yes. And NO!

Emulators from the early 2000s allow you to do this. However, a real GBA doesn’t. It

does output something, though: the screen-entry will be used as tile-data itself, but in

a manner that simply defies explanation. Trust me on this one, okay? Of the current

tonc demos, this is one of the times that VBA gets it wrong.

Tonc - GBA Programming in rot13

177 / 757

AVAILABLE TILES

For both 4bpp and 8bpp regular bgs, you can access 1024 tiles. The only caveat

here is that you cannot access the tiles in the object charblocks even if the

index would call for it.

Another thing you may be wondering is if you can use a particular screenblock that is

within a currently used charblock. For example, is it allowed to have a background

use charblock 0 and screenblock 1. Again, yes you can do this. This can be useful since

you’re not likely to fill an entire charblock, so using its later screenblocks for your map

data is a good idea. (A sign of True Hackerdom would be if you manage to use the

same data for both tiles and SEs and still get a meaningful image (this last part is

important). If you have done this, please let me know.)

TILEMAP DATA CONVERSION VIA CLI

A converter that can tile images (for objects), can also create a tileset for

tilemaps, although there will likely be many redundant tiles. A few converters

can also reduce the tileset to only the unique tiles, and provide the tilemap that

goes with it. The Brinstar bitmap from fig 9.1 is a 512×256 image, which could

be tiled to a 64×32 map with a 4bpp tileset reduced for uniqueness in tiles,

including palette info and mirroring.

Two notes on gfx2gba: First, it merges the palette to a single 16-color array,

rearranging it in the process. Second, while it lists metamapping options in the

gfx2gba
(C array; u8 foo_Tiles[], u16 foo_Map[],
u16 master_Palette[]; foo.raw.c, foo.map.c, master.pal.c)
 gfx2gba -fsrc -c16 -t8 -m foo.bmp

grit
(C array; u32 fooTiles[], u16 fooMap[], u16 fooPal[]; foo.c,
foo.h)
 grit foo.bmp -gB4 -mRtpf

Tonc - GBA Programming in rot13

178 / 757

readme, it actually doesn’t give a metamap and meta-tileset, it just formats the

map into different blocks.

Tilemap demos

There are four demos in this chapter. The first one is brin_demo, which is very, very

short and shows the basic steps of tile loading and scrolling. The next ones are called

sbb_reg and cbb_demo, which are tech demos, illustrating the layout of multiple

screenblocks and how tile indexing is done on 4bpp and 8bpp backgrounds. In both

these cases, the map data is created manually because it’s more convenient to do so

here, but using map-data created by map editors really isn’t that different.

Essential tilemap steps: brin_demo

As I’ve been using a 512×256 part of Brinstar throughout this chapter, I thought I

might as well use it for a demo.

There are a few map editors out there that you can use. Two good ones are Nessie’s

MapEd or Mappy, both of which have a number of interesting features. I have my own

map editor, mirach, but it’s just a very basic thing. Some tutorials may point you to

GBAMapEditor. Do not use this editor as it’s pretty buggy, leaving out half of the

tilemaps sometimes. Tilemaps can be troublesome enough for beginners without

having to worry about whether the map data is faulty.

In this cause, however, I haven’t used any editor at all. Some of the graphics

converters can convert to a tileset+tilemap – it’s not the standard method, but for

small maps it may well be easier. In this case I’ve used Usenti to do it, but grit and

gfx2gba work just as well. Note that because the map here is 64×32 tiles, which

requires splitting into screenblocks. In Usenti this is called the ‘sbb’ layout, in grit it’s

‘-mLs’ and for gfx2gba you’d use ‘-mm 32’ … I think. In any case, a�er a conversion

you’d have a palette, a tileset and a tilemap.

Tonc - GBA Programming in rot13

179 / 757

https://nessie.gbadev.org/
https://www.tilemap.co.uk/mappy.php
https://www.coranac.com/projects/#mirach

Fig 9.3a:

brin_demo

palette.

Fig 9.3b:

brin_demo

tileset.

In fig 9.3 you can see the full palette, the tileset and part of the map. Note that the

tileset of fig 9.3b is not the same as that of fig 9.1b because the former uses 8×8 tiles

while the latter used 16×16 tiles. Note also that the screen entries you see here are

either 0 (i.e., the empty tile) or of the form 0x3xxx . The high nybble indicates the

palette bank, in this case three. If you’d look to the palette (fig 9.3a) you’d see that this

gives bluish colors.

Now on to using these data. Remember the essential steps here:

Load the graphics: tiles into charblocks and colors in the background palette.

Load a map into one or more screenblocks.

Switch to the right mode in REG_DISPCNT and activate a background.

const unsigned short brinMap[2048]=
{
 // Map row 0

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x3001,0x3002,

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,

0x3001,0x3002,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,

0x3001,0x3002,0x0000,0x0000,0x3001,0x3002,0x0000,0x0000,

 // Map row 1

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x3003,0x3004,

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,

0x3003,0x3004,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,

0x3003,0x3004,0x0000,0x0000,0x3003,0x3004,0x0000,0x0000,

 // Map row 2

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
 0x3001,0x3002,0x3005,0x3006,0x3007,0x3008,
 // ... etc

Tonc - GBA Programming in rot13

180 / 757

Initialize that background’s control register to use the right CBB, SBB and

bitdepth.

If you do it correctly, you should have something showing on screen. If not, go to the

tile/map/memory viewers of your emulator; they’ll usually give you a good idea

where the problem is. A common one is having a mismatch between the CBB and SBB

in REG_BGxCNT and where you put the data, which most likely would leave you with

an empty map or empty tileset.

The full code of brin_demo is given below. The three calls to memcpy() load up the

palette, tileset and tilemap. For some reason, probably related to where the NES and

8-bit Game Boy put screenblocks in video memory, it’s become conventional to place

the maps in the last screenblocks on GBA as well. In this case, that’s 30 rather than 31

because we need two blocks for a 64×32t map. For the scrolling part, I’m using two

variables to store and update the positions because the scrolling registers are write-

only. I’m starting at (192, 64) here because that’s what I used for the scrolling picture

of fig 9.2 earlier.

Tonc - GBA Programming in rot13

181 / 757

#include <string.h>

#include "toolbox.h"
#include "input.h"
#include "brin.h"

int main()
{
 // Load palette
 memcpy(pal_bg_mem, brinPal, brinPalLen);
 // Load tiles into CBB 0
 memcpy(&tile_mem[0][0], brinTiles, brinTilesLen);
 // Load map into SBB 30
 memcpy(&se_mem[30][0], brinMap, brinMapLen);

 // set up BG0 for a 4bpp 64x32t map, using
 // using charblock 0 and screenblock 31
 REG_BG0CNT= BG_CBB(0) | BG_SBB(30) | BG_4BPP | BG_REG_64x32;
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 // Scroll around some
 int x= 192, y= 64;
 while(1)
 {
 vid_vsync();
 key_poll();

 x += key_tri_horz();
 y += key_tri_vert();

 REG_BG0HOFS= x;
 REG_BG0VOFS= y;
 }

 return 0;
}

Tonc - GBA Programming in rot13

182 / 757

Fig 9.4a: brin_demo at dx=(192, 64). Fig 9.4b: brin_demo at dx=(0, 0).

Interlude: Fast-copying of non sbb-prepared maps

This is not exactly required knowledge, but should make for an interesting read. In

this demo I use a multi-sbb map that was already prepared for that. The converter

made sure that the le� block of the map came before the right block. If this weren’t

the case then you couldn’t load the whole map in one go because the second row of

the le� block would use the first row of the right block and so on (see fig 9.5).

Fig 9.5 brin_demo without blocking out into SBB's first.

There are few simple and slow ways and one simple and fast way of copying a non

sbb-prepared map to a multiple screenblocks. The slow way would be to perform a

double loop to go row by row of each screenblock. The fast way is through struct-

copies and pointer arithmetic, like this:

Tonc - GBA Programming in rot13

183 / 757

A BLOCK struct-copy takes care of half a row, so two takes care of a whole screenblock

row (yes, you could define BLOCK as a 16-word struct, but that wouldn’t work out

anymore. Trust me). At that point, the src pointer has arrived at the right half of the

map, so we copy the next row into the right-hand side destination, dst1 . When done

with that, src points to the second row of the le� side. Now do this for all 32 lines.

Huzzah for struct-copies, and pointers!

A screenblock demo

The second demo, sbb_reg, uses a 64×64t background to indicate how multiple

screenblocks are used for bigger maps in more detail. While the brin_demo used a

multi-sbb map as well, it wasn’t easy to see what’s what because the map was

irregular; this demo uses a very simple tileset so you can clearly see the screenblock

boundaries. It’ll also show how you can use the REG_BG_OFS registers for scrolling

rather than REG_BGxHOFS and REG_BGxVOFS .

typedef struct { u32 data[8]; } BLOCK;

int iy;
BLOCK *src= (BLOCK*)brinMap;
BLOCK *dst0= (BLOCK*)se_mem[30];
BLOCK *dst1= (BLOCK*)se_mem[31];

for(iy=0; iy<32; iy++)
{
 // Copy row iy of the left half
 *dst0++= *src++; *dst0++= *src++;

 // Copy row iy of the right half
 *dst1++= *src++; *dst1++= *src++;
}

Tonc - GBA Programming in rot13

184 / 757

#include "toolbox.h"
#include "input.h"

#define CBB_0 0
#define SBB_0 28

#define CROSS_TX 15
#define CROSS_TY 10

BG_POINT bg0_pt= { 0, 0 };
SCR_ENTRY *bg0_map= se_mem[SBB_0];

uint se_index(uint tx, uint ty, uint pitch)
{
 uint sbb= ((tx>>5)+(ty>>5)*(pitch>>5));
 return sbb*1024 + ((tx&31)+(ty&31)*32);
}

void init_map()
{
 int ii, jj;

 // initialize a background
 REG_BG0CNT= BG_CBB(CBB_0) | BG_SBB(SBB_0) | BG_REG_64x64;
 REG_BG0HOFS= 0;
 REG_BG0VOFS= 0;

 // (1) create the tiles: basic tile and a cross
 const TILE tiles[2]=
 {
 {{0x11111111, 0x01111111, 0x01111111, 0x01111111,
 0x01111111, 0x01111111, 0x01111111, 0x00000001}},
 {{0x00000000, 0x00100100, 0x01100110, 0x00011000,
 0x00011000, 0x01100110, 0x00100100, 0x00000000}},
 };
 tile_mem[CBB_0][0]= tiles[0];
 tile_mem[CBB_0][1]= tiles[1];

 // (2) create a palette
 pal_bg_bank[0][1]= RGB15(31, 0, 0);
 pal_bg_bank[1][1]= RGB15(0, 31, 0);
 pal_bg_bank[2][1]= RGB15(0, 0, 31);
 pal_bg_bank[3][1]= RGB15(16, 16, 16);

 // (3) Create a map: four contingent blocks of
 // 0x0000, 0x1000, 0x2000, 0x3000.
 SCR_ENTRY *pse= bg0_map;
 for(ii=0; ii<4; ii++)
 for(jj=0; jj<32*32; jj++)

Tonc - GBA Programming in rot13

185 / 757

The init_map() contains all of the initialization steps: setting up the registers, tiles,

palettes and maps. Unlike the previous demo, the tiles, palette and the map are all

created manually because it’s just easier in this case. At point (1), I define two tiles.

The first one looks a little like a pane and the second one is a rudimentary cross. You

can see them clearly in the screenshot (fig 9.4). The pane-like tile is loaded into tile 0,

and is therefore the ‘default’ tile for the map.

 *pse++= SE_PALBANK(ii) | 0;
}

int main()
{
 init_map();
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0 | DCNT_OBJ;

 u32 tx, ty, se_curr, se_prev= CROSS_TY*32+CROSS_TX;

 bg0_map[se_prev]++; // initial position of cross
 while(1)
 {
 vid_vsync();

 key_poll();

 // (4) Moving around
 bg0_pt.x += key_tri_horz();
 bg0_pt.y += key_tri_vert();

 // (5) Testing se_index
 // If all goes well the cross should be around the center of
 // the screen at all times.
 tx= ((bg0_pt.x>>3)+CROSS_TX) & 0x3F;
 ty= ((bg0_pt.y>>3)+CROSS_TY) & 0x3F;

 se_curr= se_index(tx, ty, 64);
 if(se_curr != se_prev)
 {
 bg0_map[se_prev]--;
 bg0_map[se_curr]++;
 se_prev= se_curr;
 }

 REG_BG_OFS[0]= bg0_pt; // write new position
 }
 return 0;
}

Tonc - GBA Programming in rot13

186 / 757

Fig 9.6: sbb_reg. Compare table 9.5,

64×64t background. Note the little cross

in the top le� corner.

The palette is set at point (2). The colors are the

same as in table 9.5: red, green, blue and grey.

Take note of which palette entries I’m using: the

colors are in different palette banks so that I can

use palette swapping when I fill the map.

Speaking of which …

Loading the map itself (point (3)) happens through

a double loop. The outer loop sets the palette-

bank for the screen entries. The inner loop fills

1024 SEs with palette-swapped tile-0’s. Now, if big maps used a flat layout, the result

would be a big map in four colored bands. However, what actually happens is that

you see blocks, not bands, proving that indeed regular maps are split into

screenblocks just like table 9.5 said. Yes, it’s annoying, but that’s just the way it is.

That was creating the map, now we turn to the main loop in main() . The keys (point

(4)) let you scroll around the map. The RIGHT button is tied to a positive change in x,

but the map itself actually scrolls to the le�! When I say it like that it may seem

counter-intuitive, but if you look at the demo you see that it actually makes sense.

Think of it from a hypothetical player sprite point of view. As the sprite moves through

the world, you need to update the background to keep the sprite from going off-

screen. To do that, the background’s movement should be the opposite of the sprite’s

movement. For example, if the sprite moves to the right, you have to move the

background to the le� to compensate.

Finally, there’s one more thing to discuss: the cross that appears centered on the map.

To do this as you scroll along, I keep track of the screen-entry at the center of the

screen via a number of variables and the se_index() function. Variables tx and ty

are the tile coordinates of the center of the screen, found by shi�ing and masking the

background pixel coordinates. Feeding these to se_index() gives me the screen-

entry offset from the screen base block. If this is different than the previous offset, I

repaint the former offset as a pane, and update the new offset to the cross. That way,

the cross seems to move over the map; much like a sprite would. This was actually

Tonc - GBA Programming in rot13

187 / 757

designed as a test for se_index() ; if the function was flawed, the cross would just

disappear at some point. But it doesn’t. Yay me ^_^

The charblock demo

The third demo, cbb_demo, covers some of the details of charblocks and the

differences in 4bpp and 8bpp tiles. The backgrounds in question are BG 0 and BG 1.

Both will be 32×32t backgrounds, but BG 0 will use 4bpp tiles and CBB 0 and BG 2 uses

8bpp tiles and CBB 2. The exact locations and contents of the screenblocks are not

important; what is important is to load the tiles to the starts of all 6 charblocks and

see what happens.

Tonc - GBA Programming in rot13

188 / 757

#include <toolbox.h>
#include "cbb_ids.h"

#define CBB_4 0
#define SBB_4 2

#define CBB_8 2
#define SBB_8 4

void load_tiles()
{
 int ii;
 TILE *tl= (TILE*)ids4Tiles;
 TILE8 *tl8= (TILE8*)ids8Tiles;

 // Loading tiles. don't get freaked out on how it looks
 // 4-bit tiles to blocks 0 and 1
 tile_mem[0][1]= tl[1]; tile_mem[0][2]= tl[2];
 tile_mem[1][0]= tl[3]; tile_mem[1][1]= tl[4];
 // and the 8-bit tiles to blocks 2 though 5
 tile8_mem[2][1]= tl8[1]; tile8_mem[2][2]= tl8[2];
 tile8_mem[3][0]= tl8[3]; tile8_mem[3][1]= tl8[4];
 tile8_mem[4][0]= tl8[5]; tile8_mem[4][1]= tl8[6];
 tile8_mem[5][0]= tl8[7]; tile8_mem[5][1]= tl8[8];

 // And let's not forget the palette (yes, obj pal too)
 u16 *src= (u16*)ids4Pal;
 for(ii=0; ii<16; ii++)
 pal_bg_mem[ii]= pal_obj_mem[ii]= *src++;
}

void init_maps()
{
 // se4 and se8 map coords: (0,2) and (0,8)
 SB_ENTRY *se4= &se_mem[SBB_4][2*32], *se8= &se_mem[SBB_8][8*32];
 // show first tiles of char-blocks available to bg0
 // tiles 1, 2 of char-block CBB_4
 se4[0x01]= 0x0001; se4[0x02]= 0x0002;

 // tiles 0, 1 of char-block CBB_4+1
 se4[0x20]= 0x0200; se4[0x21]= 0x0201;

 // show first tiles of char-blocks available to bg1
 // tiles 1, 2 of char-block CBB_8 (== 2)
 se8[0x01]= 0x0001; se8[0x02]= 0x0002;

 // tiles 1, 2 of char-block CBB_8+1
 se8[0x20]= 0x0100; se8[0x21]= 0x0101;

 // tiles 1, 2 of char-block CBB_8+2 (== CBB_OBJ_LO)

Tonc - GBA Programming in rot13

189 / 757

The tilesets can be found in cbb_ids.c. Each tile contains two numbers: one for the

charblock I’m putting it and one for the tile-index in that block. For example, the tile

that I want in charblock 0 at tile 1 shows ‘01’, CBB 1 tile 0 shows ‘10’, CBB 1, tile 1 has

‘11’, etc. I have twelve tiles in total, 4 s-tiles to be used for BG 0 and 8 d-tiles for BG 1.

Now, I have six pairs of tiles and I intend to place them in the first tiles of each of the 6

charblock (except for CBBs 0 and 2, where tile 0 would be used as default tiles for the

background, which I want to keep empty). Yes six, I’m loading into the sprite

charblocks as well. I could do this by hand, calculating all the addresses manually

(0600:0020 for CBB 0, tile 1, etc) and hope I don’t make a mistake and can remember

what I’m doing when revisiting the demo later, or I can just use my tile_mem and

tile8_mem memory map matrices and get the addresses quickly and without any

hassle. Even better, C allows struct assignments so I can load the individual tiles with

a simple assignment! That is exactly what I’m doing in load_tiles() . The source

tiles are cast to TILE and TILE8 arrays for 4bpp and 8bpp tiles respectively. A�er

that, loading the tiles is very simple indeed.

 se8[0x40]= 0x0200; se8[0x41]= 0x0201;

 // tiles 1, 2 of char-block CBB_8+3 (== CBB_OBJ_HI)
 se8[0x60]= 0x0300; se8[0x61]= 0x0301;
}

int main()
{
 load_tiles();
 init_maps();

 // init backgrounds
 REG_BG0CNT= BG_CBB(CBB_4) | BG_SBB(SBB_4) | BG_4BPP;
 REG_BG1CNT= BG_CBB(CBB_8) | BG_SBB(SBB_8) | BG_8BPP;
 // enable backgrounds
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0 | DCNT_BG1 | DCNT_OBJ;

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

190 / 757

The maps themselves are created in init_maps() . The only thing I’m interested in for

this demo is to show how and which charblocks are used, so the particulars of the

map aren’t that important. The only thing I want them to do is to be able to show the

tiles that I loaded in load_tiles() . The two pointers I create here, se4 and se8 ,

point to screen-entries in the screenblocks used for BG 0 and BG 1, respectively.

BG 0’s map, containing s-tiles, uses 1 and 512 offsets; BG 1’s entries, 8bpp tiles, carries

1 and 256 offsets. If what I said before about tile-index for different bitdepths is true,

then you should see the contents of all the loaded tiles. And looking at the result of

the demo (fig 9.7), it looks as if I did my math correctly: background tile-indices follow

the bg’s assigned bitdepth, in contrast to sprites which always counts in 32 byte

offsets.

There is, however, one point of concern: on hardware, you won’t see the tiles that are

actually in object VRAM (blocks 4 and 5). While you might expect to be able to use the

sprite blocks for backgrounds due to the addresses, the actual wiring in the GBA

seems to forbid it. This is why you should test on hardware is important: emulators

aren’t always perfect. But if hardware testing is not available to you, test on multiple

emulators; if you see different behaviour, be wary of the code that produced it.

Fig 9.7a: cbb_demo on obsolete

emulators (such as VBA and Boycott

Adv).

Fig 9.7b: cbb_demo on hardware. Spot

the differences!

Bonus demo: the ‘text’ in text bg and introducing libtonc

Woo, bonus demo! This example will serve a number of purposes. The first is to

introduce libtonc, a library of code to make life on the GBA a bit easier. In past demos,

Tonc - GBA Programming in rot13

191 / 757

I’ve been using toolbox.h/c to store useful macros and functions. This is alright for

very small projects, but as code gets added, it becomes very hard to maintain

everything. It’s better to store common functionality in libraries that can be shared

among projects.

The second reason is to show how you can output text, which is obviously an

important ability to have. Tonclib has an extensive list of options for text rendering –

too much to explain here – but its interface is pretty easy. For details, visit the Tonc

Text Engine chapter.

Anyway, here’s the example.

Fig 9.8a: hello

demo.

Fig 9.8b: tileset of the hello demo.

Yes, it is indeed a “hello world” demo, the starting point of nearly every introductory

C/C++ tutorial. However, those are usually for meant for PC platforms, which have

native console functionality like printf() or cout . These do not exist for the GBA.

#include <stdio.h>
#include <tonc.h>

int main()
{
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 // Init BG 0 for text on screen entries.
 tte_init_se_default(0, BG_CBB(0)|BG_SBB(31));

 tte_write("#{P:72,64}"); // Goto (72, 64).
 tte_write("Hello World!"); // Print "Hello world!"

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

192 / 757

https://en.wikipedia.org/wiki/Library_(computing)

(Or “didn’t”, I should say; there are ways to make use of them nowadays. See tte:conio

for details.)

Tonc’s support for text goes through tte_ functions. In this case,

tte_init_se_default() sets up background 0 for tile-mapped text. It also loads the

default 8×8 font into charblock 0 (see fig 9.8b). A�er that, you can write to text with

tte_write . The sequence #{P:x,y} is the formatting command that TTE uses to

position the cursor. There are a number of these, some of which you’ll also see in later

chapters.

From this point on, I’ll make liberal use of libtonc’s text capabilities in examples for

displaying values and the like. This will mostly happen without explanation, because

that won’t be part of the demo. Again, to see the internals, go to the TTE chapter.

Creating and using code libraries

Using the functions themselves is pretty simple, but they are spread out over multiple

files and reference even more. This makes it a hassle to find which files you need to

add to the list of sources to compile a project. You could add everything, of course,

but that’s not a pleasant prospect either. The best solution is to pre-compile the utility

code into a library.

Libraries are essentially clusters of object files. Instead of linking the objects into an

executable directly, you archive them with arm-none-eabi-ar. The command is similar

to the link step as well. Here is how you can create the library libfoo.a from objects

foo.o, bar.o and baz.o.

The three flags stand for create archive, replace member and create symbol table,

respectively. For more on these and other archiving flags, I will refer you to the

archive rule
libfoo : foo.o bar.o baz.o
 arm-none-eabi-ar -crs libfoo.a foo.o bar.o baz.o
shorthand rule: $(AR) rcs $@ $^

Tonc - GBA Programming in rot13

193 / 757

manual, which is part of the binutils toolset. The flags are followed by the library

name, which is followed by all the objects (the ‘members’ you want to archive).

To use the library, you have to link it to the executable. There are two linker flags of

interest here: -L and -l . Upper- and lowercase ‘L’. The former, -L adds a library

path. The lowercase version, -l , adds the actual library, but there is a twist here: only

need the root-name of the library. For example, to link the library libfoo.a, use -lfoo .

The prefix lib and extension .a are assumed by the linker.

Of course, these archives can get pretty big if you dump a lot of stuff in there. You

might wonder if all of it is linked when you add a library to your project. The answer is

no, it is not. The linker is smart enough to use only the files which functions you’re

actually referencing. In the case of this demo, for example, I’m using various text

functions, but none of the affine functions or tables, so those are excluded. Note that

the exclusion goes by file, not by function. If you only have one file in the library (or

#include d everything, which amounts to the same thing), everything will be linked.

I intend to use libtonc in a number of later demos. In particular, the memory map, text

and copy routines will be present o�en. Don’t worry about what they do for the demo;

just focus on the core content itself. Documentation of libtonc can be found in the

libtonc folder (tonc/code/libtonc) and at Tonclib’s website.

BETTER COPY AND FILL ROUTINES: MEMCPY16/32 AND MEMSET16/32

Now that I am using libtonc as a library for its text routines, I might as well use it

for its copy and fill routines as well. Their names are memcpy16() and

memcpy32() for copies and memset16() and memset32() for fill routines. The

16 and 32 denote their preferred datatypes: halfwords and words, respectively.

Their arguments are similar to the conventional memcpy() and memset() , with

using libfoo (assume it's in ../lib)
$(PROJ).elf : $(OBJS)
 $(LD) $^ $(LDFLAGS) -L../lib -lfoo -o $@

Tonc - GBA Programming in rot13

194 / 757

https://sourceware.org/binutils/
https://www.coranac.com/man/libtonc/

the exception that the size is the number of items to be copied, rather than in

bytes.

These routines are optimized assembly so they are fast. They are also safer than

the dma routines, and the BIOS routine CpuFastSet() . Basically, I highly

recommend them, and I will use them wherever I can.

LINKER OPTIONS: OBJECT FILES BEFORE LIBRARIES

In most cases, you can change the order of the options and files freely, but in

the linker’s case it is important the object files of the projects are mentioned

before the linked libraries. If not, the link will fail. Whether this is standard

behaviour or if it is an oversight in the linker’s workings I cannot say, but be

aware of potential problems here.

In conclusion

Tilemaps are essential for most types of GBA games. They are trickier to get to grips

with than the bitmap modes or sprites because there are more steps to get exactly

right. And, of course, you need to be sure the editor that gave you the map actually

supplied the data you were expecting. Fool around with the demos a little: run them,

change the code and see what happens. For example, you could try to add scrolling

code to the brin_demo so you can see the whole map. Change screen blocks, change

charblock, change the bitdepth, mess up intentionally so you can see what can go

void memset16(void *dest, u16 hw, uint hwcount);
void memcpy16(void *dest, const void *src, uint hwcount);

void memset32(void *dest, u32 wd, uint wcount) IWRAM_CODE;
void memcpy32(void *dest, const void *src, uint wcount)
IWRAM_CODE;

Tonc - GBA Programming in rot13

195 / 757

wrong, so you’ll be prepared for it when you try your own maps. Once you’re

confident enough, only then start making your own. I know it’s the boring way, but

you will benefit from it in the long run.

Tonc - GBA Programming in rot13

196 / 757

10. The Affine Transformation Matrix

(a.k.a. P)

About this page

Texture mapping and affine transformations.

“Many of the truths we cling to depend greatly upon our own point of view.”

Finishing up

Tonc’s affine functions

About this page

As you probably know, the GBA is capable of applying geometric transformations like

rotating and/or scaling to sprites and backgrounds. To set them apart from the regular

items, the transformable ones are generally referred to as Rot/Scale sprites and

backgrounds. The transformations are described by four parameters, pa , pb , pc

and pd . The locations and exact names differ for sprites and backgrounds but that

doesn’t matter for now.

There are two ways of interpreting these numbers. The first is to think of each of them

as individual offsets to the sprite and background data. This is how the reference

documents like GBATEK and CowBite Spec describe them. The other way is to see

them as the elements of a 2x2 matrix which I will refer to as P. This is how pretty much

all tutorials describe them. These tutorials also give the following matrix for rotation

and scaling:

(10.1) 𝗣 = [
𝑝
𝑎

𝑝
𝑏

𝑝
𝑐

𝑝
𝑑

] = [
𝑠𝑥 cos(α) 𝑠𝑦 sin(α)
-𝑠𝑥 sin(α) 𝑠𝑦 cos(α)

]

Tonc - GBA Programming in rot13

197 / 757

https://problemkaputt.de/gbatek.htm
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm

Now, this is indeed a rotation and scale matrix. Unfortunately, it’s also the wrong one!

Or at least, it probably does not do what you’d expect. For example, consider the case

with a scaling of 𝑠𝑥 = 1.5, 𝑠𝑦 = 1.0 and a rotation of α= 45. You’d probably expect

something like fig 10.2a, but what you’d actually get is fig 10.2b. The sprite has

rotated, but in the wrong direction, it has shrunk rather than expanded and there’s an

extra shear as well. Of course, you can always say that you meant for this to happen,

but that’s probably not quite true.

Fig 10.2a: when you say

‘rotate and scale’, you

probably expect this…

Fig 10.2b: but with P from

eq 10.1, this is what you

get.

Unfortunately, there is a lot of incorrect or misleading information on the

transformation matrix around; the matrix of eq 10.1 is just one aspect of it. This

actually starts with the moniker “Rot/Scale”, which does not fit with what actually

occurs, continues with the fact that the terms used are never properly defined and

that most people o�en just copy-paste from others without even considering

checking whether the information is correct or not. The irony is that the principle

reference document, GBATEK, gives the correct descriptions of each of the elements,

but somehow it got lost in the translation to matrix form in the tutorials.

In this chapter, I’ll provide the correct interpretation of the P-matrix; how the GBA

uses it and how to construct one yourself. To do this, though, I’m going into full math-

mode. If you don’t know your way around vector and matrix calculations you may

have some difficulties understanding the finer points of the text. There is an appendix

on linear algebra for some pointers on this subject.

Tonc - GBA Programming in rot13

198 / 757

This is going to be a purely theoretical page: you will find nothing that relates directly

to sprites or backgrounds here; that’s what the next two sections are for. Once again,

we will be assisted by the lovely metroid (keep in cold storage for safe use). Please

mind the direction of the y-axis and the angles, and do not leave without reading the

finishing up paragraph. This contains several key implementation details that will be

ignored in the text preceding it, because they will only get in the way at that point.

BE WARY OF DOCUMENTS COVERING AFFINE PARAMETERS

It’s true. Pretty much every document I’ve seen that deals with this subject is

problematic in some way. A lot of them give the wrong rotate-scale matrix

(namely, the one in eq 10.1), or misname and/or misrepresent the matrix and

its elements.

Texture mapping and affine transformations.

General 2D texture mapping

What the GBA does to get sprites and tiled backgrounds on screen is very much like

texture mapping. So forget about the GBA right now and look at how texture mapping

is done. In fig 10.4a, we see a metroid texture. For convenience I am using the

standard Cartesian 2D coordinate system (y-axis points up) and have normalised the

texture, which means that the right and top side of the texture correspond precisely

with the unit-vectors 𝑒𝑥 and 𝑒𝑦 (which are of length 1). The texture mapping brings p

(in texture space) to a point q (in screen space). The actual mapping is done by a 2×2

matrix A:

𝗾 = 𝗔 · 𝗽

So how do you find A? Well, that’s actually not that hard. The matrix is formed by

lining up the transformed base vectors, which are u and v (this works in any number

Tonc - GBA Programming in rot13

199 / 757

of dimensions, btw), so that gives us:

𝗔 = [
𝑢𝑥 𝑣𝑥
𝑢𝑦 𝑣𝑦

]

Fig 10.4a: a texture.

A

→ Fig 10.4b: a texture

mapped

A forward texture mapping via affine matrix A.

Affine transformations

The transformations you can do with a 2D matrix are called affine transformations.

The technical definition of an affine transformation is one that preserves parallel

lines, which basically means that you can write them as matrix transformations, or

that a rectangle will become a parallelogram under an affine transformation (see fig

10.4b).

Affine transformations include rotation and scaling, but also shearing. This is why I

object to the name “Rot/Scale”: that term only refers to a special case, not the general

transformation. It is akin to calling colors shades of red: yes, reds are colors too, but

not all colors are reds, and to call them that would give a distorted view of the subject.

As I said, there are three basic 2d transformations, though you can always describe

one of these in terms of the other two. The transformations are: rotation (R), scaling

(S) and shear (H). Table 10.1 shows what each of the transformations does to the

regular metroid sprite. The black axes are the normal base vectors (note that y points

down!), the blue axes are the transformed base vectors and the cyan variables are the

Tonc - GBA Programming in rot13

200 / 757

https://en.wikipedia.org/wiki/Affine_geometry

arguments of the transformation. Also given are the matrix and inverse matrix of each

transformation. Why? You’ll see.

(10.2) 𝗔 = [𝑎 𝑏
𝑐 𝑑

] 𝗔-1 ≡ 1
𝑎𝑑 - 𝑏𝑐[

𝑑 -𝑏
-𝑐 𝑎

]

Table 10.1: transformation matrices and their inverses.

Identity Rotation Scaling S

𝗜 = [1 0
0 1

] 𝗥(θ) = [
cos(θ) -sin(θ)
sin(θ) cos(θ)

] 𝗦(𝑠𝑥 , 𝑠𝑦) = [
𝑠𝑥 0
0 𝑠𝑦

] 𝗛(ℎ𝑥 , ℎ𝑦)

𝗜-1 = 𝗜 𝗥-1 (θ) = 𝗥(-θ) 𝗦-1 (𝑠𝑥 , 𝑠𝑦) = 𝗦(1
𝑠𝑥

, 1
𝑠𝑦) 𝗛-1 (ℎ𝑥 , ℎ𝑦

We can now use these definitions to find the correct matrix for enlargements by 𝑠𝑥
and 𝑠𝑦 , followed by a counter-clockwise rotation by α (=−θ), by matrix multiplication.

(10.3) 𝗔 = 𝗥(-α) ·𝗦(𝑠𝑥 , 𝑠𝑦) = [
𝑠𝑥 cos(α) 𝑠𝑦 sin(α)
-𝑠𝑥 sin(α) 𝑠𝑦 cos(α)

]

… ermm, wait a sec … I’m having this strange sense of déja-vu here …

CLOCKWISE VS COUNTERCLOCKWISE

It’s a minor issue, but I have to mention it. If the definition of R uses a clockwise

rotation, why am I suddenly using a counter-clockwise one? Well, traditionally

R is given as that particular matrix, in which the angle runs from the x-axis

towards the y-axis. Because y is downward, this comes down to clockwise.

Tonc - GBA Programming in rot13

201 / 757

Fig 10.5: Mapping process

as seen by humans. u and

v are the columns of A (in

screen space).

However, the affine routines in BIOS use a counter-clockwise rotation, and I

thought it’d be a good idea to use that as a guideline for my functions.

NOMENCLATURE: AFFINE VS ROT/SCALE

The matrix P is not a rotation matrix, not a scaling matrix, but a general affine

transformation matrix. Rotation and scaling may be what the matrix is mostly

used for, but that does not mean they’re the only things possible, as the term

‘Rot/Scale’ would imply.

To set them apart from regular backgrounds and sprites, I suppose ‘Rotation’ or

‘Rot/Scale’ are suitable enough, just not entirely accurate. However, calling the

P-matrix by those names is simply wrong.

“Many of the truths we cling to depend greatly upon

our own point of view.”

As you must have noticed, eq 10.3 is identical to eq 10.1,

which I said was incorrect. So what gives? Well, if you enter

this matrix into the pa-pd elements you do indeed get

something different than what you’d expect. Only now I’ve

proven what you were supposed to expect in the first place

(namely a scaling by 𝑠𝑥 and 𝑠𝑦 , followed by a counter-

clockwise rotation by α). The real question is of course, why

doesn’t this work? To answer this I will present two different

approaches to the 2D mapping process.

Human point of view

“Hello, I am Cearn’s brain. I grok geometry and can do matrix- transformations in my

head. Well, his head actually. When it comes to texture mapping I see the original map

Tonc - GBA Programming in rot13

202 / 757

Fig 10.6: Mapping process

as seen by computers. u

and v (in texture space)

are the columns of B and

are mapped to the

principle axes in screen

space.

(in texture space) and then visualize the transformation. I look at the original map and

look at where the map’s pixels end up on screen. The transformation matrix for this is

A, which ties texel p to screen pixel q via q= A · p. The columns of A are simply the

transformed unit matrices. Easy as π.”

Computer point of view

“Hello, I am Cearn’s GBA. I’m a lean, mean gaming machine

that fits in your pocket, and I can push pixels like no one else.

Except perhaps my owner’s GeForce 4 Ti4200, the bloody

show-off. Anyway, one of the things I do is texture mapping.

And not just ordinary texture-mapping, I can do cool stuff like

rotation and scaling as well. What I do is fill pixels, all I need

to know is for you to tell me where I should get the pixel’s

color from. In other words, to fill screen pixel q, I need a

matrix B that gives me the proper texel p via p = B · q. I’ll

happily use any matrix you give me; I have complete

confidence in your ability to supply me with the matrix for

the transformation you require.”

Resolution

I hope you spotted the crucial difference between the two points of view. A maps from

texture space to screen space, while B does the exact opposite (i.e., 𝗕 = 𝗔-1). I think

you know which one you should give the GBA by now. That’s right: P = B, not A. This

one bit of information is the crucial piece of the affine matrix puzzle.

So now you can figure out P’s elements in two ways. You can stick to the human POV

and invert the matrix at the end. That’s why I gave you the inverses of the affine

transformations as well. You could also try to see things in the GBA’s way and get the

right matrix directly. Tonc’s main affine functions (tonc_video.h, tonc_obj_affine.c and

tonc_bg_affine.c) do things the GBA way, setting P directly; but inverted functions are

also available using an “ _inv ” affix. Mind you, these are a little slower. Except for

when scaling is involved; then it’s a lot slower.

Tonc - GBA Programming in rot13

203 / 757

In case you’re curious, the proper matrix for scale by (𝑠𝑥 , 𝑠𝑦) and counter-clockwise

rotation by α is:

𝗔 = 𝗥(-α) ·𝗦(𝑠𝑥 , 𝑠𝑦)

𝗣 = 𝗔-1

= (𝗥(-α) ·𝗦(𝑠𝑥 , 𝑠𝑦))
-1

= 𝗦-1 (𝑠𝑥 , 𝑠𝑦) ·𝗥-1 (-α)

Using the inverse matrices given earlier, we find

(10.4) 𝗣 = [
𝑝
𝑎

𝑝
𝑏

𝑝
𝑐

𝑝
𝑑

] = [
cos(α)
𝑠𝑥

-sin(α)
𝑠𝑥

sin(α)
𝑠𝑦

cos(α)
𝑠𝑦

]

Just to make it perfectly clear:

The affine matrix P maps from screen space to texture space, not the other way

around!

In other words:

 𝑝
𝑎
: texture x-increment / pixel

 𝑝
𝑏
: texture x-increment / scanline

 𝑝
𝑐
: texture y-increment / pixel

 𝑝
𝑑
: texture y-increment / scanline

Finishing up

Knowing what the P-matrix is used for is one thing, knowing how to use them

properly is another. There are three additional points you need to remember when

you’re going to deal with affine objects/backgrounds and the affine matrices.

1. Datatypes

2. Luts

Tonc - GBA Programming in rot13

204 / 757

3. Initialisation

Data types of affine elements

Affine transformations are part of mathematics and, generally speaking, math

numbers will be real numbers. That is to say, floating point numbers. However, if you

were to use floating points for the P elements, you’d be in for two rude surprises.

The first one is that the matrix elements are not floats, but integers. The reason

behind this is that the GBA has no floating point unit! All floating-point operations

have to be done in so�ware and without an FPU, that’s going to be pretty slow. Much

slower than integer math, at any rate. Now, when you think about this, it does create

some problems with precision and all that. For example, the (co)sine and functions

have a range between −1 and 1, a range which isn’t exactly large when it comes to

integers. However, the range would be much greater if one didn’t count in units of 1,

but in fractions, say in units of 1/256. The [−1, +1] range then becomes [−256, +256],

This strategy of representing real numbers with scaled integers is known as fixed

point arithmetic, which you can read more about in this appendix and on wikipedia.

The GBA makes use of fixed point for its affine parameters, but you can use it for other

things as well. The P-matrix elements are 8.8 fixed point numbers, meaning a

halfword with 8 integer bits and 8 fractional bits. To set a matrix to identity (1s on the

diagonals, 0s elsewhere), you wouldn’t use this:

but this:

 // Floating point == Bad!!
 pa= pd= 1.0;
 pb= pc= 0.0;

 // .8 Fixed-point == Good
 pa= pd= 1<<8;
 pb= pc= 0;

Tonc - GBA Programming in rot13

205 / 757

https://en.wikipedia.org/wiki/Fixed-point_arithmetic

In a fixed point system with Q fractional bits, ‘1’ (‘one’) is represented by 2𝑄 or 1<<Q,

because simply that’s how fractions work.

Now, fixed point numbers are still just integers, but there are different types of

integers, and it is important to use the right ones. 8.8f are 16bit variables, so the

logical choice there is short . However, this should be a signed short: s16 , not u16 .

Sometimes is doesn’t matter, but if you want to do any arithmetic with them they’d

better be signed. Remember that internally the CPU works in words, which are 32bit,

and the 16bit variable will be converted to that. You really want, say, a 16bit “−1”

(0xFFFF) to turn into a 32bit “−1” (0xFFFFFFFF), and not “65535” (0x0000FFFF),

which is what happens if you use unsigned shorts. Also, when doing fixed point math,

it is recommended to use signed ints (the 32bit kind) for them, anything else will slow

you down and you might get overflow problems as well.

USE 32-BIT SIGNED INTS FOR AFFINE TEMPORARIES

Of course you should use 32bit variables for everything anyway (unless you

actually want your code to bloat and slow down). If you use 16bit variables

(short or s16), not only will your code be slower because of all the extra

instructions that are added to keep the variables 16bit, but overflow problems

can occur much sooner.

Only in the final step to hardware should you go to 8.8 format. Before that, use

the larger types for both speed and accuracy.

LUTs

So fixed point math is used because floating point math is just to slow for efficient

use. That’s all fine and good for your own math, but what about mathematical

functions like sin() and cos()? Those are still floating point internally (even worse,

double s!), so those are going to be ridiculously slow.

Tonc - GBA Programming in rot13

206 / 757

Rather than using the functions directly, we’ll use a time-honored tradition to weasel

our way out of using costly math functions: we’re going to build a look-up table (LUT)

containing the sine and cosine values. There are a number of ways to do this. If you

want an easy strategy, you can just declare two arrays of 360 8.8f numbers and fill

them at initialization of your program. However, this is a poor way of doing things, for

reasons explained in the section on LUTs in the appendix.

Tonclib has a single sine lut which can be used for both sine and cosine values. The lut

is called sin_lut , a const short array of 512 4.12f entries (12 fractional bits),

created by my excellut lut creator. In tonc_math.h you can find two inline functions

that retrieve sine and cosine values:

Now, note the angle range: 0-10000h. Remember you don’t have to use 360 degrees

for a circle; in fact, on computers it’s better to divide the circle in a power of two

instead. In this case, the angle is in 216 parts for compatibility with BIOS functions,

which is brought down to a 512 range inside the look-up functions.

Initialization

When flagging a background or object as affine, you must enter at least some values

into pa-pd . Remember that these are zeroed out by default. A zero-offset means it’ll

use the first pixel for the whole thing. If you get a single-colored background or sprite,

this is probably why. To avoid this, set P to the identity matrix or any other non-zero

matrix.

//! Look-up a sine and cosine values
/*! \param theta Angle in [0,FFFFh] range
* \return .12f sine value
*/

INLINE s32 lu_sin(uint theta)
{ return sin_lut[(theta>>7)&0x1FF]; }

INLINE s32 lu_cos(uint theta)
{ return sin_lut[((theta>>7)+128)&0x1FF]; }

Tonc - GBA Programming in rot13

207 / 757

http://www.coranac.com/projects/#excellut

Tonc’s affine functions

Tonclib contains a number of functions for manipulating the affine parameters of

objects and backgrounds, as used by the OBJ_AFFINE and BG_AFFINE structs.

Because the affine matrix is stored differently in both structs you can’t set them with

the same function, but the functionality is the same. In table 10.2 you can find the

basic formats and descriptions; just replace foo with obj_aff or bg_aff and FOO

with OBJ or BG for objects and backgrounds, respectively. The functions themselves

can be found in tonc_obj_affine.c for objects, tonc_bg_affine.c for backgrounds, and

inlines for both in tonc_video.h … somewhere.

Function Description

void foo_copy(FOO_AFFINE *dst, const

FOO_AFFINE *src, uint count);
Copy affine parameters

void foo_identity(FOO_AFFINE *oaff); 𝑃 = 𝐼

void foo_postmul(FOO_AFFINE *dst, const

FOO_AFFINE *src);
Post-multiply: 𝐷 = 𝐷 · 𝑆

void foo_premul(FOO_AFFINE *dst, const

FOO_AFFINE *src);
Pre-multiply: 𝐷 = 𝑆 ·𝐷

void foo_rotate(FOO_AFFINE *aff, u16

alpha);

Rotate counter-clockwise by

α·π/8000h.

void foo_rotscale(FOO_AFFINE *aff, FIXED

sx, FIXED sy, u16 alpha);

Scale by 1
𝑠𝑥

 and 1
𝑠𝑦
, then rotate

counter-clockwise by α·π/8000h.

void foo_rotscale2(FOO_AFFINE *aff, const

AFF_SRC *as);

As foo_rotscale() , but input

stored in an AFF_SRC struct.

void foo_scale(FOO_AFFINE *aff, FIXED sx,

FIXED sy);
Scale by 1

𝑠𝑥
 and 1

𝑠𝑦

void foo_set(FOO_AFFINE *aff, FIXED pa,

FIXED pb, FIXED pc, FIXED pd);
Set P's elements

void foo_shearx(FOO_AFFINE *aff, FIXED

hx);
Shear top-side right by ℎ𝑥

Tonc - GBA Programming in rot13

208 / 757

Function Description

void foo_sheary(FOO_AFFINE *aff, FIXED

hy);
Shear le�-side down by ℎ𝑦

Table 10.2: affine functions

Sample rot/scale function

My code for a object version of the scale-then-rotate function (à la eq 10.4) is given

below. Note that it is from the computer’s point of view, so that sx and sy scale

down. Also, the alpha alpha uses 10000h/circle (i.e., the unit of α is π/8000h = 0.096

mrad, or 180/8000h = 0.0055°) and the sine lut is in .12f format, which is why the shi�s

by 12 are required. The background version is identical, except in name and type. If

this were C++, templates would have been mighty useful here.

With the information in this chapter, you know most of what you need to know about

affine matrices, starting with why they should be referred to affine matrices, rather

than merely rotation or rot/scale or the other names you might see elsewhere. You

should now know what the thing actually does, and how you can set up a matrix for

the effects you want. You should also know a little bit about fixed point numbers and

luts (for more, look in the appendices) and why they’re Good Things; if it hadn’t been

clear before, you should be aware that the choice of the data types you use actually

matters, and you should not just use the first thing that comes along.

What has not been discussed here is how you actually set-up objects and

backgrounds to use affine transformation, which is what the next two chapters are for.

For more on affine transformations, try searching for ‘linear algebra’

void obj_aff_rotscale(OBJ_AFFINE *oaff, int sx, int sy, u16 alpha)
{
 int ss= lu_sin(alpha), cc= lu_cos(alpha);

 oaff->pa= cc*sx>>12; oaff->pb=-ss*sx>>12;
 oaff->pc= ss*sy>>12; oaff->pd= cc*sy>>12;
}

Tonc - GBA Programming in rot13

209 / 757

11. Affine sprites

Affine sprite introduction

Affine sprite initialization

Graphical artifacts

A very (af)fine demo

Off-center reference points and object combos

Affine sprite introduction

Essentially, affine sprites are still sprites. The difference with regular sprites is that

you can perform an affine transformation (hence the name) on them before the

rendering stage by setting the right bits in the object attributes and filling in the P

matrix. You can read about affine transformations and the P matrix here. It is required

reading for this section, as are the sprite and background overview and the regular

sprite page.

You may wonder whether this is really worth a separate section. The short answer is

yes. A longer answer is yes, because using affine sprites involves a lot more math than

regular sprites and I didn’t want to freak out the, erm, ‘mathematically challenged’.

The section on regular sprites can stand on its own and you can use it in blissful

ignorance of the nasty math that it required for affine sprites.

In this chapter we’ll see how to set-up object to use affine transformations. This in

itself is rather easy. Also discussed are a number of potential graphical problems you

might run into sooner or later –one of them almost immediately, actually– and how to

correct the sprite’s position to make it seem like the transformation’s origin is at an

arbitrary point. And, as usual, there will be demo-code illustrating the various topics

raised in this chapter.

Tonc - GBA Programming in rot13

210 / 757

Affine sprite initialization

To turn a regular sprite into an affine sprite you need to do two things. First, set

OBJ_ATTR.attr0{8} to indicate this is a affine sprite. Second, put a number between

0 and 31 into OBJ_ATTR.attr1{8-C} . This number indicates which of the 32 Object

Affine Matrices (OBJ_AFFINE structures) should be used. In case you’ve forgotten, the

OBJ_AFFINE looks like this:

The signed 16-bit members pa , pb , pc and pd are 8.8 fixed point numbers that

form the actual matrix, which I will refer to as P, in correspondence with the elements’

names. For more information about this matrix, go to the affine matrix section. Do so

now if you haven’t already, because I’m not going to repeat it here. If all you are a�er

is a simple scale-then-rotate matrix, try this: for a zoom by sx and sy followed by a

counter-clockwise rotation by α, the correct matrix is this:

𝑃 = [
𝑝
𝑎

𝑝
𝑏

𝑝
𝑐

𝑝
𝑑

] = [
cos (𝛼) / 𝑠𝑥 −sin (𝛼) / 𝑠𝑥

−sin (𝛼) / 𝑠𝑦 cos (𝛼) / 𝑠𝑦
]

Note that the origin of the transformation is center of the sprite, not the top-le�

corner. This is worth remembering if you want to align your sprite with other objects,

which we’ll do later.

ESSENTIAL AFFINE SPRITE STEPS

typedef struct OBJ_AFFINE
{
 u16 fill0[3];
 s16 pa;
 u16 fill1[3];
 s16 pb;
 u16 fill2[3];
 s16 pc;
 u16 fill3[3];
 s16 pd;
} ALIGN4 OBJ_AFFINE;

Tonc - GBA Programming in rot13

211 / 757

Set-up an object as usual: load graphics and palette, set REG_DISPCNT ,

set-up an OAM entry.

Set bit 8 of attribute 0 to enable affinity for that object, and choose an

object affine matrix to use (attribute 1, bits 8-12).

Set that obj affine matrix to something other than all zeroes, for example

the identity matrix.

Graphical artifacts

The clipping and discretization artifacts

The procedure that the GBA uses for drawing sprites is as follows: the sprite forms a

rectangle on the screen defined by its size. To paint the screen pixels in that area (q)

uses texture-pixel p, which is calculated via:

(11.1) 𝑝 − 𝑝0 = 𝑃 ⋅ (𝑞 − 𝑞0)

where p0 and q0 are the centers of the sprite in texture and screen space, respectively.

The code below is essentially what the hardware does; it scans the screen-rectangle

between plus and minus the half-width and half-height (half-sizes because the center

is the reference point), calculates the texture-pixel and plots that color.

Tonc - GBA Programming in rot13

212 / 757

Fig 11.1: a partially

defanged metroid, since

the parts outside the blue

square are clipped off.

This has two main consequences, the clipping artifact and a discretization artifact.

The clipping artifact is caused by scanning only over the

rectangle on-screen. But almost all transformations will

cause the texture pixels to exceed that rectangle, and the

pixels outside the rectangle will not be rendered. Fig 11.1

shows the screen rect (grey, blue border) and a rotated

object (inside the red border). The parts that extend the blue

borderlines will not be cut off.

As this is an obvious flaw, there is of course a way around it:

set the sprite’s affine mode to double-sized affine

(ATTR0_AFF_DBL , OBJ_ATTR.attr0{8,9}). This will double

the screen range of valid q coordinates, so you’d have + and − the width and height to

play with instead of the half-sizes. This double (well quadruple, really) area means

that you can safely rotate a sprite as the maximum distance from the center is ½√2 ≈

0.707. Of course, you can still get the clipping artifact if you scale up beyond the

doubled ranges. Also, note that the sprites’ origin is shi�ed to the center of this

rectangle, so that q0 is now one full sprite-size away from the top-le� corner.

The double-size flag also has a second use. Or perhaps I should say misuse. If you set

it for a regular sprite, it will be hidden. This is an alternative way to hide unused

sprites.

// pseudocode for affine objects
hwidth= width/2; // half-width of object screen canvas
hheight= hheight/2; // half-height of object screen canvas
for(iy=-hheight; iy<hheight; iy++)
{
 for(ix=-hwidth; ix<hwidth; ix++)
 {
 px= (pa*ix + pb*iy)>>8; // get x texture coordinate
 py= (pc*ix + pd*iy)>>8; // get y texture coordinate
 color= GetPixel(px0+px, py0+py); // get color from (px,py)
 SetPixel(qx0+ix, qy0+iy, color); // set color to (qx, qy)
 }
}

Tonc - GBA Programming in rot13

213 / 757

Fig 11.2: pixels are between, not on,

coordinates.

Fig 11.3: Rotations in 90° increments.

The second artifact, if you can call it that, is a discretization artifact. This is a more

subtle point than the clipping artifact and you might not even ever notice it. The

problem here is that the transformation doesn’t actually take place at the center of

the object, but at the center pixel, rounded up. As an example, look at fig 11.2. Here

we have a number-line from 0 to 8; and in between them 8 pixels from 0 to 7. The

number at the center is 4, of course. The central pixel is 4 as well, however its location

is actually halfway between numbers 4 and 5. This creates an unbalance between the

number of pixels on the le� and on the right.

The center pixel is the reference point of the transformation algorithm, which has

indices (ix, iy) = (0, 0). Fill that into the equations and you’ll see that this is invariant

under the transformation, even though mathematically it should not be. This has

consequences for the offsets, which are calculated from the pixel, not the position. In

fig 11.2, there are 4 pixels on the le�, but only 3 on the right. A mirroring operation

that would center on pixel 4 would effectively move the sprite one pixel to the right.

Fig 11.3 shows how this affects rotations. It displays lines every grey gridlines every 8

pixels and a 16×16 sprite of a box. Note that at the start the right and le� sides do not

lie on the gridlines, because the sprite’s width and height is 16, not 17. The other

figures are rotations in increments of 90°, which gives nice round numbers in the

matrix. When rotating, the center pixel (the red dot in the middle) stays in the same

position, and the rest rotate around it, and this process will carry the edges out of the

designated 16×16 box of the sprite (the dashed lines).

THE OFFSETS MEASURE DISTANCE FROM THE CENTER PIXEL, NOT CENTER

POSITION.

Tonc - GBA Programming in rot13

214 / 757

The offsets that are calculated from the affine matrix use the distances from the

center pixel (w/2, h/2), not the center point. As such, there is a half a pixel

deviation from the mathematical transformation, which may result in a ±pixel

offset for the sprite as a whole and lost texture edges.

The wrapping artifact

Apart from the clipping artifact, there seems to be another; one that I have actually

never seen mentioned anywhere. It’s what I call the wrapping artifact. As you know,

the position for sprites is given in a 9-bit x-value and an 8-bit y-value, which values

wrap around the screen. For x, you can just interpret this as having the [-256, 255]

range. For y values, you can’t really do that because the top value for a signed 8-bit

integer is 127, which would mean that you’d never be able to put a sprite at the

bottom 32 lines. But since the values wrap around, it all works out in the end anyway.

With one exception.

There’s never any trouble with regular sprites, and hardly any for affine sprites; the

one exception is when you have a 64×64 or 32×64 affine sprite with the double size

flag switched on. Such a sprite has a bounding box of 128×128. Now there are three

different ways of interpreting the meaning of y > 128:

1. Full-wrap: the top of the sprite would show at the bottom of the screen, and vice

versa.

2. Positive precedence: consider the [128, 159] range as indicative of the bottom of

the screen, and forget the wrap.

3. Negative precedence: if y value would make the sprite appear partially at the

top, consider it to be negative, again neglecting the wrap.

As it happens, the GBA uses the third interpretation. In other words, it uses

// pseudo code
if(oam.y + bbox_height > 256)
 oam.y -= 256;

Tonc - GBA Programming in rot13

215 / 757

Note, by the way, that some older emulators (VBA and BoycottAdvance) both use

interpretation #2, which may seem more logical, but is incorrect. As you can tell, it can

only happen with a 32×64 or 64×64, double-sized sprite, and even then you’ll only

notice it under very specific conditions, namely if the transformed sprite has visible

pixels inside the top 32 lines of the bounding box. In the case that you have this

problem, as far as I can tell the only way to get the sprite showing at the bottom of the

screen is if you reduce the height to 32 for the time being.

A very (af)fine demo

I have a really interesting demo for you this time called obj_aff. It features a normal

(boxed) metroid, which can be scaled, rotated and scaled. Because these

transformations are applied to the current state of the matrix, you can end up with

every kind of affine matrix possible by concatenating the different matrices. The

controls are as follows:

L,R Rotates the sprite CCW and CW, respectively.

D-pad Shears the sprite.

D-

pad+Sel
Moves sprite around.

A,B Expands horizontally or vertically, respectively.

A,B+Sel
Shrinks horizontally or vertically, respectively. (I ran out of buttons, so

had to do it like this).

Start
Toggles double-size flag. Note that a) the corners of a rotated sprite are

no longer clipped and b) the position shi�s by 1/2 sprite size.

Start+Sel Resets P to normal.

Select Control button (see A, B and Start).

The interesting point of seeing the transformations back to back is that you can

actually see the difference between, for example, a scaling followed by a rotation

Tonc - GBA Programming in rot13

216 / 757

Fig 11.4: obj_aff, via S(1,2), then

R(45°)

Fig 11.5: obj_aff, via R(45°), then

S(1,2)

(A=S·R), and a rotate-then-scale (A=R·S). Fig 11.4 and fig 11.5 show this difference for a

45° rotation and a 2× vertical scale. Also, note that the corners are cut off here: the

clipping artifact at work – even though I’ve already set the double-size flag here.

The full source code for the obj_aff demo is given below. It’s quite long, mostly

because of the amount of code necessary for managing the different affine states that

can be applied. The functions that actually deal with affine sprites are init_metr() ,

get_aff_new() and part of the game loop in objaff_test() ; the rest is essentially

fluff required to making the whole thing work.

Tonc - GBA Programming in rot13

217 / 757

// obj_aff.c

#include <tonc.h>
#include <stdio.h>

#include "metr.h"

OBJ_ATTR obj_buffer[128];
OBJ_AFFINE *obj_aff_buffer= (OBJ_AFFINE*)obj_buffer;

// affine transformation constants and variables
enum eAffState
{
 AFF_NULL=0, AFF_ROTATE, AFF_SCALE_X, AFF_SCALE_Y,
 AFF_SHEAR_X, AFF_SHEAR_Y, AFF_COUNT
};

// 'speeds' of transformations
const int aff_diffs[AFF_COUNT]= { 0, 128, 4, 4, 4, 4 };
// keys for transformation direction
const int aff_keys[AFF_COUNT]=
{ 0, KEY_L, KEY_SELECT, KEY_SELECT, KEY_RIGHT, KEY_UP };
int aff_state= AFF_NULL, aff_value= 0;

void init_metr()
{
 // Places the tiles of a 4bpp metroid sprite into LOW obj VRAM
 memcpy32(tile_mem[4], metr_boxTiles, metr_boxTilesLen/4);
 memcpy32(pal_obj_mem, metrPal, metrPalLen/4);

 // Set up main metroid
 obj_set_attr(obj_buffer,
 ATTR0_SQUARE | ATTR0_AFF, // Square affine sprite
 ATTR1_SIZE_64 | ATTR1_AFF_ID(0), // 64x64, using obj_aff[0]
 0 | 0); // palbank 0, tile 0
 obj_set_pos(obj_buffer, 96, 32);
 obj_aff_identity(&obj_aff_buffer[0]);

 // Set up shadow metroid
 obj_set_attr(&obj_buffer[1],
 ATTR0_SQUARE | ATTR0_AFF, // Square affine sprite
 ATTR1_SIZE_64 | ATTR1_AFF_ID(31), // 64x64, using obj_aff[0]
 ATTR2_PALBANK(1) | 0); // palbank 1, tile 0
 obj_set_pos(&obj_buffer[1], 96, 32);
 obj_aff_identity(&obj_aff_buffer[31]);

 oam_update_all();
}

Tonc - GBA Programming in rot13

218 / 757

int get_aff_state()
{
 if(key_is_down(KEY_L | KEY_R))
 return AFF_ROTATE;
 if(key_is_down(KEY_A))
 return AFF_SCALE_X;
 if(key_is_down(KEY_B))
 return AFF_SCALE_Y;
 if(key_is_down(KEY_LEFT | KEY_RIGHT))
 return AFF_SHEAR_X;
 if(key_is_down(KEY_UP | KEY_DOWN))
 return AFF_SHEAR_Y;
 return AFF_NULL;
}

void get_aff_new(OBJ_AFFINE *oa)
{
 int diff= aff_diffs[aff_state];
 aff_value += (key_is_down(aff_keys[aff_state]) ? diff : -diff);

 switch(aff_state)
 {
 case AFF_ROTATE: // L rotates left, R rotates right
 aff_value &= SIN_MASK;
 obj_aff_rotate(oa, aff_value);
 break;
 case AFF_SCALE_X: // A scales x, +SELECT scales down
 obj_aff_scale_inv(oa, (1<<8)-aff_value, 1<<8);
 break;
 case AFF_SCALE_Y: // B scales y, +SELECT scales down
 obj_aff_scale_inv(oa, 1<<8, (1<<8)-aff_value);
 break;
 case AFF_SHEAR_X: // shear left and right
 obj_aff_shearx(oa, aff_value);
 break;
 case AFF_SHEAR_Y: // shear up and down
 obj_aff_sheary(oa, aff_value);
 break;
 default: // shouldn't happen
 obj_aff_identity(oa);
 }
}

void objaff_test()
{
 OBJ_ATTR *metr= &obj_buffer[0], *shadow= &obj_buffer[1];
 OBJ_AFFINE *oaff_curr= &obj_aff_buffer[0];
 OBJ_AFFINE *oaff_base= &obj_aff_buffer[1];
 OBJ_AFFINE *oaff_new= &obj_aff_buffer[2];

Tonc - GBA Programming in rot13

219 / 757

 int x=96, y=32;
 int new_state;

 // oaff_curr = oaff_base * oaff_new
 // oaff_base changes when the aff-state changes
 // oaff_new is updated when it doesn't
 obj_aff_identity(oaff_curr);
 obj_aff_identity(oaff_base);
 obj_aff_identity(oaff_new);

 while(1)
 {
 key_poll();

 // move sprite around
 if(key_is_down(KEY_SELECT) && key_is_down(KEY_DIR))
 {
 // move
 x += 2*key_tri_horz();
 y += 2*key_tri_vert();

 obj_set_pos(metr, x, y);
 obj_set_pos(shadow, x, y);
 new_state= AFF_NULL;
 }
 else // or do an affine transformation
 new_state= get_aff_state();

 if(new_state != AFF_NULL) // no change
 {
 if(new_state == aff_state) // increase current
transformation
 {
 get_aff_new(oaff_new);
 obj_aff_copy(oaff_curr, obj_aff_base, 1);
 obj_aff_postmul(oaff_curr, oaff_new);
 }
 else // switch to different transformation type
 {
 obj_aff_copy(oaff_base, oaff_curr, 1);
 obj_aff_identity(oaff_new);
 aff_value= 0;
 }
 aff_state= new_state;
 }

 // START: toggles double-size flag
 // START+SELECT: resets obj_aff to identity
 if(key_hit(KEY_START))

Tonc - GBA Programming in rot13

220 / 757

 {
 if(key_is_down(KEY_SELECT))
 {
 obj_aff_identity(oaff_curr);
 obj_aff_identity(oaff_base);
 obj_aff_identity(oaff_new);
 aff_value= 0;
 }
 else
 {
 metr->attr0 ^= ATTR0_DBL_BIT;
 shadow->attr0 ^= ATTR0_DBL_BIT;
 }
 }

 vid_vsync();

 // we only have one OBJ_ATTR, so update that
 obj_copy(obj_mem, obj_buffer, 2);

 // we have 3 OBJ_AFFINEs, update these separately
 obj_aff_copy(obj_aff_mem, obj_aff_buffer, 3);

 // Display the current matrix
 tte_printf("#{es;P:8,136}P = "
 "#{y:-7;Ps}| %04X\t%04X#{Pr;x:72}|"
 "#{Pr;y:12}| %04X\t%04X#{Pr;p:72,12}|",
 (u16)oaff_curr->pa, (u16)oaff_curr->pb,
 (u16)oaff_curr->pc, (u16)oaff_curr->pd);
 }
}

int main()
{
 REG_DISPCNT= DCNT_BG0 | DCNT_OBJ | DCNT_OBJ_1D;
 oam_init(obj_buffer, 128);
 init_metr();

 tte_init_chr4_b4_default(0, BG_CBB(2)|BG_SBB(28));
 tte_init_con();
 tte_set_margins(8, 128, 232, 160);

 objaff_test();

 return 0;
}

Tonc - GBA Programming in rot13

221 / 757

Making the metroid an affine sprite is all done inside init_metr() . As you’ve seen

how bits are set a number of times by now, it should be understandable. That said, do

note that I am filling the first OBJ_AFFINE (the one that the sprite uses) to the identity

matrix I. If you keep this fully zeroed-out, you’ll just end up with a 64×64-pixel

rectangle of uniform color. Remember that P contains pixel offsets; if they’re all zero,

there is no offset and the origin’s color is used for the whole thing. In essence, the

sprite is scaled up to infinity.

To be frank though, calling obj_aff_identity() isn’t necessary a�er a call to

oam_init() , as that initializes the matrices as well. Still, you need to be aware of

potential problems.

That’s the set-up, now for how the demo does what it does. At any given time, you will

have some transformation matrix, P. By pressing a button (or not), a small

transformation of the current state will be performed, via matrix multiplication.

 𝑃new = 𝑃old ⋅𝐷
−1

where D is either a small rotation (R), scaling (S) or shear (H). Or a no-op (I). However,

there is a little hitch here. This would work nice in theory, but in practice, it won’t

work well because the fixed point matrix multiplications will result in unacceptable

round-off errors very very quickly. Fortunately, all these transformations have the

convenient property that

 𝐷(𝑎) ⋅𝐷(𝑏) = 𝐷(𝑐)

That is to say, multiple small transformations work as one big one. All you have to do

is keep track of the current chosen transformation (the variable aff_state , in

get_aff_state()), modify the state variable (aff_value), then calculate full

transformation matrix (get_aff_new()) and apply that (with obj_aff_postmul()).

When a different transformation type is chosen, the current matrix is saved, the state

value is reset and the whole thing continues with that state until yet another is picked.

Tonc - GBA Programming in rot13

222 / 757

Fig 11.6: rotation of object around an

off-center point.

The majority of the code is for keeping track of these changes; it’s not pretty, but it

gets the job done.

Off-center reference points and object combos

As mentioned earlier, affine sprites always use

their centers as affine origins, but there are times

when one might want to use something else to

rotate around – to use another point as the

reference point. Now, you can’t actually do this,

but you can make it look as if you can. To do this, I

need to explain a few things about what I like to

call anchoring. The anchor is the position that is

supposed to remain ‘fixed’; the spot where the

texture (in this case the object) is anchored to the screen.

For anchoring, you actually need one set of coordinates for each coordinate-space

you’re using. In this case, that’s two: the texture space and the screen space. Let’s call

these points p0 and q0, respectively. Where these actually point from is largely

immaterial, but for convenience’ sake let’s use the screen and texture origins for this.

These points are only the start. In total, there are seven vectors that we need to take

into account for the full procedure, and they are all depicted in fig 11.6. Their

meanings are explained in the table below.

point description

p0, q0 Anchors in texture and screen space.

cp, cq Object centers in texture and screen space. With the object sizes, s=

(w,h), we have cp=½s and cq=ms, where m is ½ or 1, depending on

the double-size flag.

Tonc - GBA Programming in rot13

223 / 757

rp, rq Distances between object centers and anchors. By definition, rp =

P·rq

x Desired object coordinates.

Yes, it is a whole lot of vectors, but funnily enough, most are already known. The

center points (cp and cq) can be derived from the objects size and double-size status,

the anchors are known in advance because those are the input values, and rp and rq

fit the general equation for the affine transformation, eq 11.2, so this links the two

spaces. All that’s le� now is to write down and solve the set of equations.

(11.2)

𝑥 + 𝑐𝑞 + 𝑟𝑞 = 𝑞0
𝑐𝑝 + 𝑟𝑝 = 𝑝

0
𝑟𝑝 = 𝑃 ⋅ 𝑟𝑞

Three equations with three unknowns, means it is solvable. I won’t post the entire

derivation because that’s not all that difficult; what you see in eq 11.3 is the end result

in the most usable form.

(11.3) 𝑥 = 𝑞0 − 𝑚𝑠 − 𝑃−1 ⋅ (𝑝0 − 1
2𝑠)

The right-hand side here has three separate vectors, two of which are part of the

input, a scaling flag for the double-size mode, and the inverted affine matrix. Yes, I did

say inverted. This is here because the translations to position the object correctly

mostly take place in screen-space. The whole term using it is merely rq, the

transformed difference between anchor and center in texture space, which you need

for the final correction.

Now, this matrix inversion means two things. First, that you will likely have to set up

two matrices: the affine matrix itself, and its inverse. For general matrices, this might

take a while, especially when considering that if you want scaling, you will have to do

a division somewhere. Secondly, because you only have 16 bits for the matrix

elements, the inverse won’t be the exact inverse, meaning that aligning the objects

Tonc - GBA Programming in rot13

224 / 757

exactly will be difficult, if not actually impossible. This is pretty much guaranteed by

the hardware itself and I’ll return to this point later on. For now, let’s look at a

function implementing eq 11.3 in the case of a 2-way scaling followed by a rotation.

Tonc - GBA Programming in rot13

225 / 757

// === in tonc_types.h ===

// This is the same struct that's used in BgAffineSet,
// where it is called BGAffineSource, even though its uses go
// beyond just backgrounds.
typedef struct tagAFF_SRC_EX
{
 s32 tex_x, tex_y; // vector p0: anchor in texture space (.8f)
 s16 scr_x, src_y; // vector q0: anchor in screen space (.0f)
 s16 sx, sy; // scales (Q.8)
 u16 alpha; // CCW angle (integer in [0,0xFFFF])
} AFF_SRC_EX;

// === in tonc_core.c ===
// Usage: oam_sizes[shape][size] is (w,h)
const u8 oam_sizes[3][4][2]=
{
 { { 8, 8}, {16,16}, {32,32}, {64,64} },
 { {16, 8}, {32, 8}, {32,16}, {64,32} },
 { { 8,16}, { 8,32}, {16,32}, {32,64} },
};

// === in tonc_obj_affine.c ===
void obj_rotscale_ex(OBJ_ATTR *obj, OBJ_AFFINE *oa, AFF_SRC_EX *asx)
{
 int sx= asx->sx, sy= asx->sy;
 int sina= lu_sin(asx->alpha)>>4, cosa= lu_cos(asx->alpha)>>4;

 // (1) calculate P
 oa->pa= sx*cosa>>8; oa->pb= -sx*sina>>8;
 oa->pc= sy*sina>>8; oa->pd= sy*cosa>>8;

 // (2) set-up and calculate A= P^-1
 // sx = 1/sx, sy = 1/sy (.12f)
 sx= Div(1<<20, sx);
 if(sx != sy)
 sy= Div(1<<20, sy);
 else
 sy= sx;
 FIXED aa, ab, ac, ad; // .8f
 aa= sx*cosa>>12; ab= sy*sina>>12;
 ac= -sx*sina>>12; ad= sy*cosa>>12;

 // (3) get object size
 sx= oam_sizes[obj->attr0>>14][obj->attr1>>14][0];
 sy= oam_sizes[obj->attr0>>14][obj->attr1>>14][1];

 // (4) calculate dx = q0 - ms - A*(p0-s/2)
 int dx= asx->src_x, dy= asx->src_y; // .0f
 if(obj->attr0&ATTR0_DBL_BIT)

Tonc - GBA Programming in rot13

226 / 757

Fig 11.7:

object for

oacombo
.

The AFF_SRC_EX struct and oam_sizes arrays are supporting entities of the function

that does the positioning, which is obj_rotscale_ex() . This creates the affine matrix

(pa-pd), and carries out all the necessary steps for eq 11.3, namely create the inverse

matrix A (aa-ad), calculate all the offsets and correcting for the sizes, and finally

updating the OBJ_ATTR . Note that the fixed point accuracy varies a lot, so it is

important to comment o�en on this

As I said, this is not a particularly fast function; it takes roughly a scanline worth of

cycles. If you need more speed, I also have a Thumb assembly version which is about

40% faster.

Affine object combo demo

The demo for this section, oacombo, will display three versions of

essentially the same object, namely the circle of fig 11.7. The difference

between them is in how they are constructed

0. 1 32×32p object, full circle.

1. 2 32×16p objects, two semi-circles.

2. 4 16×16p objects, four quarter-circles.

The point of this demo will be to rotate them and position the components of the

combined sprites (object combos) as if they were a single sprite. This requires off-

center anchors and therefore ties in nicely with the subject of this section. To manage

the combos, I make use of the following struct.

 { dx -= sx; dy -=sy; }
 else
 { dx -= sx>>1; dy -= sy>>1; }

 sx= asx->tex_x - (sx<<7); // .8f
 sy= asx->tex_y - (sy<<7); // .8f
 dx -= (aa*sx + ab*sy)>>16; // .0 - (.8f*.8f/.16f)
 dy -= (ac*sx + ad*sy)>>16; // .0 - (.8f*.8f/.16f)

 // (5) update OBJ_ATTR
 obj_set_pos(obj, dx, dy);
}

Tonc - GBA Programming in rot13

227 / 757

Each combo is composed of sub_count objects; sub_oe is a pointer to the array

storing these objects, and sub_pos is a pointer to the list of (top-le�) coordinates of

these objects, relative to the top-le� of the full sprite. This global position is in pos .

The anchor (in anchor) is also relative to this position. The global screen-anchor

would be at pos+anchor , and the texture-anchor of sub-object ii at anchor-

sub_pos[ii] .

The rotation will take place around the center of the circle, so that’s an anchor of

(16,16). Or, rather (16,16)*256 because they’re .8 fixed point numbers, but that’s not

important right now. For the full circle, this will be the center of the object, but it’ll still

need to be corrected for the double-size flag. For the other combos, the anchor will

not be at the center of their sub-objects.

Because the sub-objects share the same P matrix, it’d be a waste to recalculate it the

whole time, so I’m using a modified version of it especially tailored to OACOMBO

structs called oac_rotscale() . The code is basically the same though. The oacs[]

array forms the three combos, which are initialized at definition because that makes

things so much easier. The full circle is at (16,20), the semis at (80,20) and the one

composed of quarter circles is at (48,60). The obj_data[] array contains the data for

our seven objects, and is copied to obj_buffer in the initialization function. While it

is generally true that magic numbers (such as using hex for OAM attributes) are evil, it

is also true that they really aren’t central to this story and to spend a lot of space on

initializing all of them in the ‘proper’ fashion may actually do more harm than good …

typedef struct OACOMBO
{
 OBJ_ATTR *sub_obj; // obj pointer for sub-objects
 POINT *sub_pos; // Local sub-object coords (.8f)
 int sub_count; // Number of sub-objects
 POINT pos; // Global position (.8f)
 POINT anchor; // Local anchor (.8f)
 s16 sx, sy; // scales (.8f)
 u16 alpha; // CCW angle
} OACOMBO;

Tonc - GBA Programming in rot13

228 / 757

this time. I am still using #define s for the anchor and a reference point though,

because they appear multiple times in the rest of the code.

Tonc - GBA Programming in rot13

229 / 757

// oacombo.c

#include <stdio.h>
#include <tonc.h>

#include "oac_gfx.h"

#define AX (16<<8) // X-anchor
#define AY (16<<8) // Y-anchor
#define X0 120 // base X
#define Y0 36 // base Y

// === GLOBALS ==

OBJ_ATTR obj_buffer[128];
OBJ_AFFINE *obj_aff_buffer= (OBJ_AFFINE*)obj_buffer;

// Obj templates
const OBJ_ATTR obj_data[7]=
{
 // obj[0] , oaff[0]: 1 full 32x32p double-affine circle
 { 0x0300, 0x8200, 0x0000, 0x0000 },
 // obj[1-2], oaff[1]: 2 32x16p double-affine semi-circles
 { 0x4300, 0x8200, 0x0000, 0x0000 },
 { 0x4300, 0x8200, 0x0008, 0x0000 },
 // obj[3-7], oaff[1]: 4 16x16p double-affine quarter-circles
 { 0x0300, 0x4400, 0x0010, 0x0000 },
 { 0x0300, 0x4400, 0x0014, 0x0000 },
 { 0x0300, 0x4400, 0x0018, 0x0000 },
 { 0x0300, 0x4400, 0x001C, 0x0000 },
};

POINT sub_pos[7]=
{
 {0,0},
 {0,0},{0,AY},
 {0,0},{AX,0}, {0,AY},{AX,AY},
};

OACOMBO oacs[3]=
{
 // full 32x32p double-affine circle
 { &obj_buffer[0], &sub_pos[0], 1,
 {(X0-48)<<8, Y0<<8}, {AX, AY}, 256, 256, 0 },
 // 2 32x16p double-affine semi-circles
 { &obj_buffer[1], &sub_pos[1], 2,
 {(X0+16)<<8, Y0<<8}, {AX, AY}, 256, 256, 0 },
 // 4 16x16p double-affine quarter-circles
 { &obj_buffer[3], &sub_pos[3], 4,

Tonc - GBA Programming in rot13

230 / 757

 {(X0-16)<<8, (Y0+40)<<8}, {AX, AY}, 256, 256, 0 },
};

void oac_rotscale(OACOMBO *oac)
{
 int alpha= oac->alpha;
 int sx= oac->sx, sy= oac->sy;
 int sina= lu_sin(alpha)>>4, cosa= lu_cos(alpha)>>4;

 // --- create P ---
 OBJ_AFFINE *oaff=
 &obj_aff_buffer[BF_GET(oac->sub_obj->attr1, ATTR1_AFF_ID)];
 oaff->pa= cosa*sx>>8; oaff->pb= -sina*sx>>8;
 oaff->pc= sina*sy>>8; oaff->pd= cosa*sy>>8;

 // --- create A ---
 // sx = 1/sx, sy = 1/sy (.12f)
 sx= Div(1<<20, sx);
 if(sx != sy)
 sy= Div(1<<20, sy);
 else
 sy= sx;
 FIXED aa, ab, ac, ad;
 aa= sx*cosa>>12; ab= sy*sina>>12; // .8f
 ac= -sx*sina>>12; ad= sy*cosa>>12; // .8f

 int ii;
 OBJ_ATTR *obj= oac->sub_obj;
 POINT *pt= oac->sub_pos;
 // --- place each sub-object ---
 for(ii=0; ii<oac->sub_count; ii++)
 {
 int dx, dy; // all .8f
 sx= oam_sizes[obj->attr0>>14][obj->attr1>>14][0]<<7;
 sy= oam_sizes[obj->attr0>>14][obj->attr1>>14][1]<<7;

 dx= oac->pos.x+oac->anchor.x - sx; // .8f
 dy= oac->pos.y+oac->anchor.y - sy; // .8f

 if(obj->attr0&ATTR0_DBL_BIT)
 { dx -= sx; dy -= sy; }

 sx= oac->anchor.x - pt->x - sx;
 sy= oac->anchor.y - pt->y - sy;

 dx -= (aa*sx + ab*sy)>>8; // .8f
 dy -= (ac*sx + ad*sy)>>8; // .8f
 BF_SET(obj->attr0, dy>>8, ATTR0_Y);
 BF_SET(obj->attr1, dx>>8, ATTR1_X);

Tonc - GBA Programming in rot13

231 / 757

Fig 11.8 on the right shows a screenshot of the demo. There are three main things to

point out here. First, all three objects are indeed roughly the same shape, meaning

that the function(s) work. But this was never really much in doubt anyway, since it just

follows the math. The second point is that there appear to be gaps in the semi- and

 obj++; pt++;
 }
}

void init_main()
{
 memcpy32(pal_obj_mem, oac_gfxPal, oac_gfxPalLen/4);
 memcpy32(tile_mem[4], oac_gfxTiles, oac_gfxTilesLen/4);

 // init objs and obj combos
 oam_init();
 memcpy32(obj_buffer, obj_data, sizeof(obj_data)/4);

 REG_DISPCNT= DCNT_BG0 | DCNT_OBJ | DCNT_OBJ_1D;

 tte_init_chr4_b4_default(0, BG_CBB(2)|BG_SBB(28));
 tte_init_con();

 // Some labels
 tte_printf("#{P:%d,%d}1 full #{P:%d,%d}2 semi #{P:%d,%d}4 quarts",
 X0-48, Y0-16, X0+20, Y0-16, X0-20, Y0+74);
}

int main()
{
 init_main();

 int ii, alpha=0;
 while(1)
 {
 vid_vsync();
 key_poll();
 alpha -= 128*key_tri_shoulder();

 for(ii=0; ii<3; ii++)
 {
 oacs[ii].alpha= alpha;
 oac_rotscale(&oacs[ii]);
 }
 oam_copy(oam_mem, obj_buffer, 128);
 }
 return 0;
}

Tonc - GBA Programming in rot13

232 / 757

Fig 11.8: oacombo in action. Note the gaps.

quarter-circle combos. If you play with the

demo yourself for a while, you’ll see these

gaps appear and disappear seemingly at

random. Meanwhile, the full-circle object

looks fine throughout. Well mostly anyway.

The cause of this is related to the third point.

Compare the pixel clusters of all three circles,

in particular the smaller circles within each of

them. Note that even though they use the

exact same P matrix, their formations are different! The reason for this is that while

we may have positioned the sub-objects to make them form a bigger object, the pixel-

mapping for each of them still starts at their centers. This means that the cumulative

offsets that determine which source pixel is used for a given screen pixel will be

different and hence you’ll get a different picture, which is especially visible at the

seams.

If this is a little hard to visualize, try this: open a bitmap editor and draw a single-

width diagonal line. Now duplicate this with a (1, 1) pixel offset. Instead of a single

thick line, you’ll have two thin ones with a slit in between. The same thing happens

here.

The point is that getting affine objects to align perfectly at the seams will be pretty

much impossible. Alright, I suppose in some simple cases you might get away with it,

and you could spend time writing code that corrects the textures to align properly,

but generally speaking you should expect a hardware-caused uncertainty of about a

pixel. This will be a noticeable effect at the off-center reference point, which will tend

to wobble a bit, or at the seams of affine object combos, where you’ll see gaps. A

simple solution to the former would be to rearrange the object’s tiles so that the ref-

point is not off-center (sounds cheap I know, but works beautifully), or to have

transparent pixels there – you can’t notice something wobbling if it’s invisible, a�er

all. This would also work for the combo, which might also benefit from having the

objects overlap slightly, although I haven’t tried that yet. It may be possible to gain

Tonc - GBA Programming in rot13

233 / 757

some accuracy by adding rounding terms to the calculations, but I have a hunch that

it won’t do that much. Feel free to try though.

Don’t let all this talk of the pitfalls of affine objects get to you too much, I’m just

pointing out that it might not be quite as simple as you might have hoped. So they

come with a few strings, they’re still pretty cool effects. When designing a game that

uses them, take the issues raised in this chapter to heart and make sure your math is

in order, it might save you a lot of work later on.

Tonc - GBA Programming in rot13

234 / 757

12. Affine backgrounds

Introduction

Affine background registers

Positioning and transforming affine backgrounds

Mapping format

sbb_aff demo

Introduction

This section covers affine backgrounds: the ones on which you can perform an affine

transformation via the P matrix. And that’s all it does. If you haven’t read – and

understood! – the sprite/bg overview and the sections on regular backgrounds and

the affine transformation matrix, do so before continuing.

If you know how to build a regular background and have understood the concepts

behind the affine matrix, you should have little problems here. The theory behind an

affine backgrounds are the same as for regular ones, the practice can be different at a

number of very crucial points. For example, you use different registers for positioning

and both the map-layout and their format are different.

Of the four backgrounds the GBA has, only the last two can be used as affine

backgrounds, and only in specific video modes (see table 12.1). The sizes are also

different for affine backgrounds. You can find a list of sizes in table 12.2.

mode 0 1 2

bg0 reg reg -

bg1 reg reg -

bg2 reg aff aff

Sz define (tiles) (

00 BG_AFF_16x16 16x16 1

01 BG_AFF_32x32 32x32 2

10 BG_AFF_64x64 64x64 5

Tonc - GBA Programming in rot13

235 / 757

bg3 reg - aff

Table 12.1: video modes and

background type

11 BG_AFF_128x128 128x128 10

Table 12.2: affine bg sizes

Affine background registers

Like their regular counterparts, the primary control for affine backgrounds is

REG_BGxCNT . If you’ve forgotten what it does, you can read a description here. The

differences with regular backgrounds are the sizes, and that BG_WRAP actually does

something now. The other important registers are the displacement vector dx

(REG_BGxX and REG_BGxY), and the affine matrix P (REG_BGxPA - REG_BGxPD). You can

find their addresses in table 12.3.

Register length address

REG_BGxCNT 2 0400:0008h + 2·x

REG_BGxPA-PD 2 0400:0020h + 10h·(x-2)

REG_BGxX 4 0400:0028h + 10h·(x-2)

REG_BGxY 4 0400:002ch + 10h·(x-2)

Table 12.3: Affine background register addresses.

Note that x is 2 or 3 only!

There are a couple of things to take note of when it comes to displacement and

transformation of affine backgrounds. First, the displacement dx uses different

registers than regular backgrounds: REG_BGxX and REG_BGxY instead of

REG_BGxHOFS and REG_BGxVOFS . A second point here is that they are 24.8 fixed

numbers rather than pixel offsets. (Actually, they are 20.8 fixed numbers but that’s not

important right now.)

I usually use the affine parameters via BG_AFFINE struct instead of REG_BGxPA , etc.

The memory map in tonc_memmap.h contains a REG_BG_AFFINE for this purpose.

Tonc - GBA Programming in rot13

236 / 757

Setting the registers this way is advantageous at times because you’ll usually have a

BG_AFFINE struct set up already, which you can then copy to the registers with a

single assignment. An example of this is given below.

The elements of the affine transformation matrix P works exactly like they do for

affine sprites: 8.8 fixed point numbers that describe the transformation from screen to

texture space. However for affine backgrounds they are stored consecutively (2 byte

offset), whereas those of sprites are at an 8 byte offset. You can use the bg_aff_foo

functions from tonc_bg_affine.c to set them to the transformation you want.

REGULAR VS AFFINE TILEMAP SCROLLING

Affine tilemaps use different scrolling registers! Instead of REG_BGxHOFS and

REG_BGxVOFS, they use REG_BGxX and REG_BGxY. Also, these are 32bit fixed

point numbers, not halfwords.

typedef struct tagBG_AFFINE
{
 s16 pa, pb;
 s16 pc, pd;
 s32 dx, dy
} ALIGN4 BG_AFFINE;

//! BG affine params array
#define REG_BG_AFFINE ((BG_AFFINE*)(REG_BASE+0x0000))

// Default BG_AFFINE data (tonc_core.c)
const BG_AFFINE bg_aff_default= { 256, 0, 0, 256, 0, 0 };

// Initialize affine registers for bg 2
REG_BG_AFFINE[2] = bg_aff_default;

Tonc - GBA Programming in rot13

237 / 757

Positioning and transforming affine backgrounds

Now that we know what the displacement and transformation registers are, now let’s

look at what they do. This is actually a lot trickier subject that you might think, so pay

attention. Warning: this is gonna get mathematical again.

The displacement vector dx works the same as for regular backgrounds: dx contains

the background-coordinates that are mapped to the screen origin. (And not the other

way around!) However, this time dx is in fixed number notation. Likewise, the affine

transformation matrix P works the same as for affine sprites: P describes the

transformation from screen space to texture space. To put it mathematically, if we

define

(12.1a)
T(dx)p := p + dx

T−1(dx) = T(−dx)

(12.1b) P = A−1

then

(12.2a) T(dx)q = p

(12.2b) P · q = p

where

p is a point in texture space,

q is a point in screen space,

dx is the displacement vector (REG_BGxX and REG_BGxY).

A is the transformation from texture to screen space,

P is the transformation screen from to texture space, (REG_BGxPA - REG_BGxPD).

The problem with eq 12.2 is that these only describe what happens if you use either a

displacement or a transformation. So what happens if you want to use both? This is

Tonc - GBA Programming in rot13

238 / 757

an important question because the order of transformation matters (like we have

seen in the affine sprite demo), and this is true for the order of transformation and

displacement as well. As it happens, translation goes first:

(12.3)

q = A · T(−dx) p

T(dx) P · q = p

dx + P · q = p

Another way to say this is that the transformation always uses the top le� of the

screen as its origin and the displacement tells which background pixels is put there.

Of course, this arrangement doesn’t help very much if you want to, say, rotate around

some other point on the screen. To do that you’ll have to pull a few tricks. To cover

them all in one swoop, we’ll combine eq 12.3 and the general coordinate

transformation equation:

(12.4)

dx + P · q = p

P · (q − q0) = p − p0 −

dx + P · q0 = p0

dx = p0 − P · q0

So what the hell does that mean? It means that if you use this dx for your

displacement vector, you perform your transformation around texture point p0, which

then ends up at screen point q0; the P·q0 term is the correction in texture-space you

have to perform to have the rotation point at q0 instead of (0,0). So what the hell does

that mean? It means that before you try to use this stuff you should think about which

effect you are actually trying to pull off and that you have two coordinate systems to

work with, not one. When you do, the meaning of eq 12.4 will become apparent. In

any case, the function I use for this is bg_rotscale_ex() , which basically looks like

this:

Tonc - GBA Programming in rot13

239 / 757

This is very similar to the obj_rotscale_ex() function covered in the off-center

object transformation section. The math is identical, but the terms have been

reshuffled a bit. The background version is actually simpler because the affine offset

correction can be done in texture space instead of screen space, which means no

messing about with P’s inverse matrix. Or with sprite-size corrections, thank IPU. For

the record, yes you can apply the function directly to REG_BG_AFFINE .

Internal reference point registers

There’s one more important thing le� to mention about the displacement and

transformation registers. Quoting directly from GBATEK (except the bracketed parts):

The above reference points [the displacement registers] are automatically

copied to internal registers during each vblank, specifying the origin for the first

scanline. The internal registers are then incremented by dmx [REG_BGxPB] and

dmy [REG_BGxPD] a�er each scanline. Caution: Writing to a reference point

typedef struct tagAFF_SRC_EX
{
 s32 tex_x, tex_y; // vector p0: origin in texture space (24.8f)
 s16 scr_x, scr_y; // vector q0: origin in screen space (16.0f)
 s16 sx, sy; // scales (8.8f)
 u16 alpha; // CCW angle (integer in [0,0xFFFF])
} ALIGN4 AFF_SRC_EX;

void bg_rotscale_ex(BG_AFFINE *bgaff, const AFF_SRC_EX *asx)
{
 int sx= asx->sx, sy= asx->sy;
 int sina= lu_sin(asx->alpha), cosa= lu_cos(asx->alpha);

 FIXED pa, pb, pc, pd;
 pa= sx*cosa>>12; pb=-sx*sina>>12; // .8f
 pc= sy*sina>>12; pd= sy*cosa>>12; // .8f

 bgaff->pa= pa; bgaff->pb= pb;
 bgaff->pc= pc; bgaff->pd= pd;

 bgaff->dx= asx->tex_x - (pa*asx->scr_x + pb*asx->scr_y);
 bgaff->dy= asx->tex_y - (pc*asx->scr_x + pd*asx->scr_y);
}

Tonc - GBA Programming in rot13

240 / 757

https://problemkaputt.de/gbatek.htm#lcdiobgrotationscaling

register by so�ware outside of the Vblank period does immediately copy the

new value to the corresponding internal register, that means: in the current

frame, the new value specifies the origin of the current scanline (instead of the

topmost scanline).

Normally this won’t matter to you, but if you try to write to REG_BGxY during an

HBlank things, might not go as expected. As I learned the hard way when I tried to get

my Mode 7 stuff working. This only affects affine backgrounds, though; regular ones

use other registers.

Mapping format

Both the map layout and screen entries for affine backgrounds are very different from

those of regular backgrounds. Ironically, they are also a lot simpler. While regular

backgrounds divide the full map into quadrants (each using one full screenblock), the

affine backgrounds use a flat map, meaning that the normal equation for getting a

screenentry-number n works, making things a whole lot easier.

(12.5) n = tx + ty·tw

The screen entries themselves are also different from those of regular backgrounds as

well. In affine maps, they are 1 byte long and only contain the index of the tile to use.

Additionally, you can only use 256 color tiles. This gives you access to all the tiles in

the base charblock, but not the one(s) a�er it.

And that’s about it, really. No, wait there’s one more issue: you have to be careful

when filling or changing the map because VRAM can only be accessed 16 or 32 bits at a

time. So if you have your map stored in an array of bytes, you’ll have to cast it to u16

or u32 first. Or use DMA. OK, now I’m done.

Tonc - GBA Programming in rot13

241 / 757

Fig 12.1: sbb_aff demo.

REGULAR VS AFFINE TILEMAP MAPPING DIFFERENCES

There are two important differences between regular and affine map formats.

First, affine screen entries are merely one-byte tile indices. Secondly, the maps

use a linear layout, rather than the division into 32x32t maps that bigger regular

maps use.

sbb_aff demo

sbb_aff is to affine backgrounds what sbb_reg was

to regular ones, with a number of extras. The

demo uses a 64x64 tile affine background, shown

in fig 12.1. This is divided into 16 parts of 256

bytes, each of which is filled with tiles of one color

and the number of that part on it. Now, if the map-

layout for affine backgrounds was the same as

regular ones, each part would form a 16x16t

square. If it is a flat memory layout, each part would be a 64x16t strip. As you can see

in fig 12.1, it is the latter. You can also see that, unlike regular backgrounds, this map

doesn’t wrap around automatically at the edges.

The most interesting thing about the demo are the little black and white crosshairs.

The white crosshairs indicates the rotation point (the anchor). As I said earlier, you

cannot simply pick a map-point p0 and say that that is ‘the’ rotation point. Well you

could, but it wouldn’t give the desired effect. Simply using a map-point will give you a

rotating map around that point, but on screen it’ll always be in the top-le� corner. To

move the map anchor to a specific location on the screen, you need an anchor there

as well. This is q0. Fill both into eq 12.4 to find the displacement vector you need:

Tonc - GBA Programming in rot13

242 / 757

dx = p0−P·q0. This dx is going to be quite different from both p0 and q0. Its path is

indicated by the black crosshairs.

The demo lets you control both p0 and q0. And rotation and scaling, of course. The full

list of controls is.

D-pad move map rotation point, p0

D-pad + A move screen rotation point, q0

L,R rotate the background.

B(+Se) scale up and down.

St Toggle wrapping flag.

St+Se Reset anchors and P

Tonc - GBA Programming in rot13

243 / 757

#include <stdio.h>
#include <tonc.h>
#include "nums.h"

#define MAP_AFF_SIZE 0x0100

// --
// GLOBALS
// --

OBJ_ATTR *obj_cross= &oam_mem[0];
OBJ_ATTR *obj_disp= &oam_mem[1];

BG_AFFINE bgaff;

// --
// FUNCTIONS
// --

void win_textbox(int bgnr, int left, int top, int right, int bottom, int
bldy)
{
 REG_WIN0H= left<<8 | right;
 REG_WIN0V= top<<8 | bottom;
 REG_WIN0CNT= WIN_ALL | WIN_BLD;
 REG_WINOUTCNT= WIN_ALL;

 REG_BLDCNT= (BLD_ALL&~BIT(bgnr)) | BLD_BLACK;
 REG_BLDY= bldy;

 REG_DISPCNT |= DCNT_WIN0;

 tte_set_margins(left, top, right, bottom);
}

void init_cross()
{
 TILE cross=
 {{
 0x00011100, 0x00100010, 0x01022201, 0x01021201,
 0x01022201, 0x00100010, 0x00011100, 0x00000000,
 }};
 tile_mem[4][1]= cross;

 pal_obj_mem[0x01]= pal_obj_mem[0x12]= CLR_WHITE;
 pal_obj_mem[0x02]= pal_obj_mem[0x11]= CLR_BLACK;

 obj_cross->attr2= 0x0001;
 obj_disp->attr2= 0x1001;
}

Tonc - GBA Programming in rot13

244 / 757

void init_map()
{
 int ii;

 memcpy32(&tile8_mem[0][1], nums8Tiles, nums8TilesLen/4);
 memcpy32(pal_bg_mem, numsPal, numsPalLen/4);

 REG_BG2CNT= BG_CBB(0) | BG_SBB(8) | BG_AFF_64x64;
 bgaff= bg_aff_default;

 // fill per 256 screen entries (=32x4 bands)
 u32 *pse= (u32*)se_mem[8];
 u32 ses= 0x01010101;
 for(ii=0; ii<16; ii++)
 {
 memset32(pse, ses, MAP_AFF_SIZE/4);
 pse += MAP_AFF_SIZE/4;
 ses += 0x01010101;
 }
}

void sbb_aff()
{
 AFF_SRC_EX asx=
 {
 32<<8, 64<<8, // Map coords.
 120, 80, // Screen coords.
 0x0100, 0x0100, 0 // Scales and angle.
 };

 const int DX=256;
 FIXED ss= 0x0100;

 while(1)
 {
 vid_vsync();
 key_poll();

 // dir + A : move map in screen coords
 if(key_is_down(KEY_A))
 {
 asx.scr_x += key_tri_horz();
 asx.scr_y += key_tri_vert();
 }
 else // dir : move map in map coords
 {
 asx.tex_x -= DX*key_tri_horz();
 asx.tex_y -= DX*key_tri_vert();
 }

Tonc - GBA Programming in rot13

245 / 757

 // rotate
 asx.alpha -= 128*key_tri_shoulder();

 // B: scale up ; B+Se : scale down
 if(key_is_down(KEY_B))
 ss += (key_is_down(KEY_SELECT) ? -1 : 1);

 // St+Se : reset
 // St : toggle wrapping flag.
 if(key_hit(KEY_START))
 {
 if(key_is_down(KEY_SELECT))
 {
 asx.tex_x= asx.tex_y= 0;
 asx.scr_x= asx.scr_y= 0;
 asx.alpha= 0;
 ss= 1<<8;
 }
 else
 REG_BG2CNT ^= BG_WRAP;
 }

 asx.sx= asx.sy= (1<<16)/ss;

 bg_rotscale_ex(&bgaff, &asx);
 REG_BG_AFFINE[2]= bgaff;

 // the cross indicates the rotation point
 // (== p in map-space; q in screen-space)
 obj_set_pos(obj_cross, asx.scr_x-3, (asx.scr_y-3));
 obj_set_pos(obj_disp, (bgaff.dx>>8)-3, (bgaff.dy>>8)-3);

 tte_printf("#{es;P}p0\t: (%d, %d)\nq0\t: (%d, %d)\ndx\t: (%d,
%d)",
 asx.tex_x>>8, asx.tex_y>>8, asx.scr_x, asx.scr_y,
 bgaff.dx>>8, bgaff.dy>>8);
 }
}

int main()
{
 init_map();
 init_cross();

 REG_DISPCNT= DCNT_MODE1 | DCNT_BG0 | DCNT_BG2 | DCNT_OBJ;

 tte_init_chr4_b4_default(0, BG_CBB(2)|BG_SBB(28));
 tte_init_con();
 win_textbox(0, 8, 120, 232, 156, 8);

Tonc - GBA Programming in rot13

246 / 757

 sbb_aff();

 return 0;
}

Tonc - GBA Programming in rot13

247 / 757

13. Graphic Effects

Mosaic

Blending

Windowing

Conclusions

So you know how to put sprites and backgrounds on screen, do ya? Now, how about

some extra effects to liven up the place? When discussing sprites and backgrounds,

we le� some flags untouched, namely the mosaic and blending flags. There will be

covered here. We’ll also be looking into windowing, with which you can create regions

to mask out backgrounds or sprites.

Mosaic

The best description of mosaic is that it makes sprites or tiles look blocky. A mosaic

works in two dimensions with parameters wm and hm. These numbers divide your

sprite or background into blocks of wm × hm pixels. The top-le� pixel of each block is

used to fill the rest of that block, which makes it blocky. Fig 13.1 shows a 1x4 mosaic

for a metroid sprite. The blue lines indicate the vertical block-boundaries. The first

line of each block is copied to the rest of the block, just like I said. Other examples of

the mosaic effect are Zelda:LTTP when you hit an electric baddie, or Metroid Fusion

when an X changes shape.

Tonc - GBA Programming in rot13

248 / 757

Fig 13.1: a 1×4 mosaiced metroid.

Using mosaic: sprite/bg flags and REG_MOSAIC

To use mosaic you must do two things. First, you need to enable mosaic. For

individual sprites, set OBJ_ATTR.attr0 {C}. For backgrounds, set REG_BGxCNT {7}. The

set the mosaic levels through REG_MOSAIC , which looks like this:

REG_MOSAIC @ 0400�004Ch

F E D C B A 9 8 7 6 5 4 3 2 1 0
Ov Oh Bv Bh

bits name define description

0-

3

Bh MOS_BH# Horizontal BG stretch.

4-

7

Bv MOS_BV# Vertical BG stretch.

8-

B

Oh MOS_OH# Horizontal object stretch.

C-

F

Ov MOS_OV# Vertical object stretch.

The stretch is across how many pixels the base-pixel is stretched. This corresponds to

wm−1 or *hm*−1. With a nybble for each effect, you have stretches between 0 and

15, giving mosaic widths and heights between 1 and 16.

Tonc - GBA Programming in rot13

249 / 757

ENABLING MOSAIC

For backgrounds, set bit 7 of REG_BGxCNT. For sprites, set bit 12 in attribute 0.

Then set the mosaic levels in REG_MOSAIC.

A small mosaic demo

There is a demo called mos_demo that illustrates the use of mosaic for both objects

and backgrounds.

Tonc - GBA Programming in rot13

250 / 757

// mos_demo.c
// bg 0, cbb 0, sbb 31, pb 0: text
// bg 1, cbb 1, sbb 30, pb 1: bg metroid
// oam 0: tile 0-63: obj metroid

#include <stdio.h>
#include <tonc.h>
#include "metr.h"

void test_mosaic()
{
 tte_printf("#{P:48,8}obj#{P:168,8}bg");
 tte_set_margins(4, 130, 128, 156);

 POINT pt_obj={0,0}, pt_bg={0,0};
 POINT *ppt= &pt_obj;
 while(1)
 {
 vid_vsync();

 // control the mosaic
 key_poll();

 // switch between bg or obj mosaic
 ppt= key_is_down(KEY_A) ? &pt_bg : &pt_obj;
 ppt->x += key_tri_horz(); // inc/dec h-mosaic
 ppt->y -= key_tri_vert(); // inc/dec v-mosaic

 ppt->x= clamp(ppt->x, 0, 0x80);
 ppt->y= clamp(ppt->y, 0, 0x80);

 REG_MOSAIC= MOS_BUILD(pt_bg.x>>3, pt_bg.y>>3, pt_obj.x>>3,
pt_obj.y>>3);

 tte_printf("#{es;P}obj h,v: %2d,%2d\n bg h,v: %2d,%2d",
 pt_obj.x>>3, pt_obj.y>>3, pt_bg.x>>3, pt_bg.y>>3);
 }
}

void load_metr()
{
 int ix, iy;

 memcpy32(&tile_mem[1][0], metrTiles, metrTilesLen/4);
 memcpy32(&tile_mem[4][0], metrTiles, metrTilesLen/4);
 memcpy32(pal_obj_mem, metrPal, metrPalLen/4);

 // create object: oe0
 OBJ_ATTR *metr= &oam_mem[0];
 obj_set_attr(metr, ATTR0_SQUARE | ATTR0_MOSAIC, ATTR1_SIZE_64, 0);

Tonc - GBA Programming in rot13

251 / 757

Fig 13.2: mos_demo.

I use two metroids in this demo. The sprite

metroid is on the le�, and the background

metroid with inverted colors is on the right. I’ve

shown how to set-up sprites and backgrounds

before, so you should be able to follow the steps

here because it’s nothing new. Well, except setting

the mosaic flags in OBJ_ATTR.attr0 and

REG_BG0CNT, which I’ve put in bold here.

The mosaic effect is regulated inside the test_mosaic() . I use two 2d points to keep

track of the current level of mosaic. The D-pad is used to increase or decrease the

mosaic levels; just the D-pad sets the object’s mosaic and holding down A sets that of

the background.

 obj_set_pos(metr, 32, 24); // left-center

 // create bg map: bg1, cbb1, sbb 31

 for(ix=1; ix<16; ix++)
 pal_bg_mem[ix+16]= pal_obj_mem[ix] ^ CLR_WHITE;

 SCR_ENTRY *pse= &se_mem[30][3*32+18]; // right-center
 for(iy=0; iy<8; iy++)
 for(ix=0; ix<8; ix++)
 pse[iy*32+ix]= (iy*8+ix) | SE_PALBANK(1);

 REG_BG1CNT= BG_CBB(1) | BG_SBB(30) | BG_MOSAIC;
}

int main()
{
 // setup sprite
 oam_init(oam_mem, 128);
 load_metr();
 REG_DISPCNT= DCNT_BG0 | DCNT_BG1 | DCNT_OBJ | DCNT_OBJ_1D;

 // set-up text: bg0, cbb0, sbb31
 tte_init_chr4_b4_default(0, BG_CBB(2)|BG_SBB(31));
 tte_init_con();

 test_mosaic();
 return 0;
}

Tonc - GBA Programming in rot13

252 / 757

On a code design note, I could have used two if-blocks here, one for objects and one

for the background, but I can also switch the mosaic context via a pointer, which

saves me some code. Hurray for pointers. Also, the coordinates are in .3 fixed point

format, which is how I slow down the changes in the mosaic levels. Again, I could have

used timer variables and more checks to see if they had reached their thresholds, but

fixed-point timers are much easier and in my view cleaner too.

You should really see the demo on hardware, by the way. Somehow both VBA and

no$gba are both flawed when it comes to mosaic. A�er VBA 1.7.2, it has a problem

with horizontal sprite mosaic. I do believe I’ve seen inconsistencies between

hardware and scrolling mosaiced backgrounds, but can’t remember where I saw it. As

for no$gba, vertical mosaic appears to be disabled for both sprites and backgrounds.

EMULATORS AND MOSAIC

VBA and no$gba, the most popular GBA emulators both have problems with

mosaic. Watch your step.

Blending

If you’re not completely new to gaming or graphics, you may have heard of alpha

blending. It allows you to combine the color values two overlapping layers, thus

creating transparency (also known as semi-transparency, because something that’s

completely transparent is invisible). Some bitmap types also come with an alpha

channel, which indicates either the transparency or opacity of the pixel in question.

The basic idea behind blending is this. You have two layers, A and B, that overlap each

other. Consider A to be on top of B. The color-value of the a pixel in this region is

defined as

Tonc - GBA Programming in rot13

253 / 757

(13.1) C = wA·A + wB·B,

where wA and wB are the weights of the layers. The weights are generally normalised

(between 0 and 1), with 0 being fully transparent and 1 being fully visible. It is also

convenient to think of color-components in this way. Here’s a few things you can do

with them:

wA wB effect

1 0 layer A fully visible (hides B; standard)

0 1 layer B fully visible (or A is invisible)

α 1−α Alpha blending. α is opacity in this case.

Note that in these examples the sum of the weights is 1, so that the final color C is

between 0 (black) and 1 (white) as well. As we’ll see, there are instances where you

can drop out of these ranges; if this happens the values will be clipped to the standard

range.

GBA Blending

Backgrounds are always enabled for blending. To enable sprite-blending, set

OBJ_ATTR.attr0 {a}. There are three registers that control blending, which

unfortunately go by many different names. The ones I use are REG_BLDCNT ,

REG_BLDALPHA and REG_BLDY . Other names are REG_BLDMOD , REG_COLEV and

REG_COLEY , and sometimes the ‘E’ in the last two is removed. Be warned. Anyway, the

first says how and on which layers the blend should be performed, the last two

contain the weights. Oh, since the GBA doesn’t do floating point, the weights are

fixed-point numbers in 1.4 format. Still limited by 0 and 1, of course, so there are 17

blend levels.

REG_BLDCNT (REG_BLDMOD) @ 0400�0050h

F E D C B A 9 8 7 6 5 4 3 2 1
- bBD bOBJ bBG3 bBG2 bBG1 bBG0 BM aBD aObj aBG3 aBG2 aBG1 a

Tonc - GBA Programming in rot13

254 / 757

bits name define description

0-

5

aBG0-

aBD

BLD_TOP# The A (top) layers. BD, by the way, is the

back drop, a solid plane of color 0. Set the

bits to make that layer use the A-weights.

Note that these layers must actually be in

front of the B-layers, or the blend will fail.

6-

7

BM BLD_OFF,

BLD_STD,

BLD_WHITE,

BLD_BLACK,

BLD_MODE#

Blending mode.

00: blending is off.

01: normal blend using the weights

from REG_ALPHA .

10: blend A with white (fade to

white) using the weight from

REG_BLDY

11: blend A with black (fade to black)

using the weight from REG_BLDY

8-

D

bBG0-

bBD

BLD_BOT# The B (bottom) layers. Use the B-weights.

Note that these layers must actually lie

behind the A-layers, or the blend will not

work.

The REG_BLDALPHA and REG_BLDY registers hold the blending weights in the form of

eva, evb and ey, all in 1.4 fixed-point format. And no, I do not know why they are

called that; they just are.

REG_BLDALPHA (REG_COLEV) @ 0400�0052h

F E D C B A 9 8 7 6 5 4 3 2 1 0
- evb - eva

bits name define description

0-

4

eva BLD_EVA# Top blend weight. Only used for normal

blending

Tonc - GBA Programming in rot13

255 / 757

8-

C

evb BLD_EVB# Bottom blend weight. Only used for normal

blending

REG_BLDY (REG_COLEY) @ 0400�0054h

F E D C B A 9 8 7 6 5 4 3 2 1 0
- ey

bits name define description

0-

4

ey BLDY# Top blend fade. Used for white and black fades.

Blending caveats

Blending is a nice feature to have, but keep these points in mind.

The A layers must be in front of the B layers. Only then will the blend actually

occur. So watch your priorities.

In the alpha-blend mode (mode 1) the blend will only take place on the

overlapping, non-transparent pixels of layer A and layer B. Non-overlapping

pixels will still have their normal colors.

Sprites are affected differently than backgrounds. In particular, the blend mode

specified by REG_BLDCNT {6,7} is applied only to the non-overlapping sections (so

that effectively only fading works). For the overlapping pixels, the standard

blend is always in effect, regardless of the current blend-mode.

If you are using windows, you need to set the bits 5 and/or 13 in REG_WININ or

REG_WINOUT for the blending to work.

Tonc - GBA Programming in rot13

256 / 757

The obligatory demo

// bld_demo.c

// bg 0, cbb 0, sbb 31, pb 15: text
// bg 1, cbb 2, sbb 30, pb 1: metroid
// bg 2, cbb 2, sbb 29, pb 0: fence
// oam 0: tile 0-63: obj metroid

#include <stdio.h>
#include <tonc.h>
#include "../gfx/metr.h"

void test_blend()
{
 tte_printf("#{P:48,8}obj#{P:168,8}bg");
 tte_set_margins(16, SCR_H-4-4*12, SCR_W-4, SCR_H-4);

 u32 mode=0;
 // eva, evb and ey are .4 fixeds
 // eva is full, evb and ey are empty
 u32 eva=0x80, evb= 0, ey=0;

 REG_BLDCNT= BLD_BUILD(
 BLD_OBJ | BLD_BG0, // Top layers
 BLD_BG1, // Bottom layers
 mode); // Mode

 while(1)
 {
 vid_vsync();
 key_poll();

 // Interactive blend weights
 eva += key_tri_horz();
 evb -= key_tri_vert();
 ey += key_tri_fire();

 mode += bit_tribool(key_hit(-1), KI_R, KI_L);

 // Clamp to allowable ranges
 eva = clamp(eva, 0, 0x81);
 evb = clamp(evb, 0, 0x81);
 ey = clamp(ey, 0, 0x81);
 mode= clamp(mode, 0, 4);

 tte_printf("#{es;P}mode :\t%2d\neva :\t%2d\nevb :\t%2d\ney
:\t%2d",
 mode, eva/8, evb/8, ey/8);

Tonc - GBA Programming in rot13

257 / 757

 // Update blend mode
 BFN_SET(REG_BLDCNT, mode, BLD_MODE);

 // Update blend weights
 REG_BLDALPHA= BLDA_BUILD(eva/8, evb/8);
 REG_BLDY= BLDY_BUILD(ey/8);
 }
}

void load_metr()
{
 // copy sprite and bg tiles, and the sprite palette
 memcpy32(&tile_mem[2][0], metrTiles, metrTilesLen/4);
 memcpy32(&tile_mem[4][0], metrTiles, metrTilesLen/4);
 memcpy32(pal_obj_mem, metrPal, metrPalLen/4);

 // set the metroid sprite
 OBJ_ATTR *metr= &oam_mem[0]; // use the first sprite
 obj_set_attr(metr, ATTR0_SQUARE | ATTR0_BLEND, ATTR1_SIZE_64, 0);
 obj_set_pos(metr, 32, 24); // mid-center

 // create the metroid bg
 // using inverted palette for bg-metroid
 int ix, iy;
 for(ix=0; ix<16; ix++)
 pal_bg_mem[ix+16]= pal_obj_mem[ix] ^ CLR_WHITE;

 SCR_ENTRY *pse= &se_mem[30][3*32+18]; // right-center
 for(iy=0; iy<8; iy++)
 for(ix=0; ix<8; ix++)
 pse[iy*32+ix]= iy*8+ix + SE_PALBANK(1);

 REG_BG0CNT= BG_CBB(0) | BG_SBB(30);
}

// set-up the fence background
void load_fence()
{

 // tile 0 / ' ' will be a fence tile
 const TILE fence=
 {{
 0x00012000, 0x00012000, 0x00022200, 0x22220222,
 0x11122211, 0x00112000, 0x00012000, 0x00012000,
 }};
 tile_mem[2][64]= fence;
 se_fill(se_mem[29], 64);

 pal_bg_mem[0]= RGB15(16, 10, 20);

Tonc - GBA Programming in rot13

258 / 757

Fig 13.3: blend demo; mode=2, eva=0,

evb=0, ey=10.

As always, there’s a demo that goes with all this

stuff. bld_demo features 2 metroids (the le� one is

a sprite, the right one (palette inverted) is on

background 0) on a fence-like background (bg 1 to

be precise) and lets you modify the mode, and the

3 weights independently. The mode, by the way, is

given in the top le� corner. The controls are:

le�,

right

changes eva . Note that eva is at

maximum initially.

down,up changes evb .

B,A Changes ey

L,R Changes mode.

The function of interest is test_blend() . This is where the key handling takes place

and where the blend settings are altered. Similar to mos_demo, .3 fixeds are used for

the blend weight variables to slow the rate of change to more comfortable levels. To

 pal_bg_mem[1]= RGB15(0, 0, 31);
 pal_bg_mem[2]= RGB15(16, 16, 16);

 REG_BG2CNT= BG_CBB(2) | BG_SBB(29);
}

int main()
{
 oam_init(oam_mem, 128);
 load_metr();
 load_fence();

 tte_init_chr4_b4_default(0, BG_CBB(0)|BG_SBB(31));
 tte_init_con();

 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0 | DCNT_BG1 | DCNT_BG2 |
 DCNT_OBJ | DCNT_OBJ_1D;

 test_blend();

 return 0;
}

Tonc - GBA Programming in rot13

259 / 757

set the blend registers themselves I’m using BUILD() macros and BF_SET() , which

work well enough for these purposes. It would be trivially easy to write wrapper

functions here of course. Most of the code is pretty standard; just play around with the

blend modes and weights and see what happens.

Do take note of how, like I said earlier, the sprite metroid is affected differently than

the bg-metroid. The background-background blend behaves exactly as the mode says

it should; the sprite, on the other hand, always has a blend if they overlap with the

fence’s pixels, and the rest obeys the mode, which is what I told you in the caveats.

Windowing

Windowing allows you to divide the screen into rectangular areas known as, well,

windows. There are two basic windows: win0 and win1. There’s also a third type of

window, the object window. This creates a window out of the visible pixels of the

sprites. You can enable the windows by setting REG_DISPCNT {d,e,f}, respectively.

A rectangular window is defined by its le�, right, top and bottom sides. Unless you’re

one of those people, who think it’s funny to say that a rectangle has only two sides: an

inside and an outside. In fact, this is truer than you think. The union of win0 and win1

is the inside window. There’s also the outside window, which is everything else. In

other words:

winIn = win0 | win1

winOut = ~(winIn)

Tonc - GBA Programming in rot13

260 / 757

Fig 13.4a: showing win0, win1, and

win_out windows.

Fig 13.4b: win0 in red, win1 in

green, winIn is win0 | win1

(blue edge), winOut in grey.

Window boundaries

Both win0 and win1 have 2 registers that define their boundaries. In order these are

REG_WIN0H (0400:0040h), REG_WIN1H (0400:0042h), REG_WIN0V (0400:0044h) and

REG_WIN1V (0400:0046h), which have the following layout:

REG_WINxH and REG_WINxV @ 0400�0040-0400�0047h

reg F E D C B A 9 8 7 6 5 4 3 2 1 0
REG_WINxH left right
REG_WINxV top bottom

bits name description

0-

7

right Right side of window (exclusive)

8-

F

le� Le� side of window (inclusive)

-

0-

7

bottom Bottom side of window (exclusive)

8-

F

top Top side of window (inclusive)

Tonc - GBA Programming in rot13

261 / 757

So you have one byte for each value. That’s bytes as in unsigned chars. The contents

of a window are drawn from starting at the top-le� up to, but not including, the

bottom-right. What you have to realize is that this is also true when, say, the right

value is lower than the le� value. In such a case, there’s a wrap-around and

everything on that line is inside the window, except the pixels between R and L. If both

R < L and B < T then you get a window in the shape of a cross.

Window content

The possible content for the windows are backgrounds 0-3 and objects. No suprise

there, right? In total, we have regions: win0, win1, winOut and winObj. REG_WININ

(0400:0048h) controls win0 and win1, REG_WINOUT (0400:004ah) takes care of

winOut and winObj. There’s one bit for each content-type, plus one for blending,

which you will need if you intend to use blending on the contents of that particular

window.

register F E D C B A 9 8 7 6 5 4 3 2 1
bits - Bld Obj BG3 BG2 BG1 BG0 - Bld Obj BG3 BG2 BG

REG_WININ - win1 - win0
REG_WINOUT - winObj - winOut

bits name define description

0-

5

BGx,

Obj,

Bld

WIN_BGx,

WIN_OBJ,

WIN_BLD,

WIN_LAYER#

Windowing flags. To be used with all bytes

in REG_WININ and REG_WINOUT.

There is little in the way of macros or bit-defines here because they’re not really

necessary. Do have these in tonc_memdef.h though:

Tonc - GBA Programming in rot13

262 / 757

There are still a few things you should know about windows. First of all, when you

turn on windowing in REG_DISPCNT , nothing will show up. There are two reasons for

this. Firstly, the boundary registers are all 0, so the whole screen is basically winOut.

Secondly, and this is really important: a background or object will only show up in the

windows in which it is enabled! This means that unless at least some bits have been

set in REG_WININ or REG_WINOUT nothing will show. This presents you with an

effective way of hiding stuff, as we’ll see in the demo. There is a third thing that you

must remember, namely that win0 takes precedence over win1, which in turn takes

precedence over winOut. I’m not sure how winObj fits into this yet.

WINDOWING NECESSITIES

To make windowing work for you, you need to do the following things:

Enable windows in REG_DISPCNT

Indicate in which window you want things to show up by setting the

appropriate bits in REG_WININ and REG_WINOUT . You must set at least

some bits here if you have windowing enabled, or nothing will show up at

all!

Set the desired window sizes in REG_WINxH/V . If you don’t, everything will

be considered in the Out-window.

Caveats

There’s something really weird going on when either the top or bottom is outside of

the screen. Multiple somethings in fact, see the demo on hardware! for details.

#define WIN_BUILD(low, high) \
 (((high)<<8) | (low))

#define WININ_BUILD(win0, win1) WIN_BUILD(win0, win1)

#define WINOUT_BUILD(out, obj) WIN_BUILD(out, obj)

Tonc - GBA Programming in rot13

263 / 757

If the top is in the [-29, 0⟩ range (i.e., [227, 255]), the window will not be rendered

at all. Likewise, if the bottom is inside this range, the window covers the height

of the screen. I cannot say exactly what the cause is, but since the VCount also

stops at 227, that might have something to do with it.

Also, if you move the bottom from, 161 to 160, the window will also cover the

whole length, but only for a frame or so.

The points mentioned above assume T<B. If the top is bigger, then the effect is

reversed.

WINDOWING WEIRDNESS NOT ON EMULATORS

This behaviour does not appear on the emulators I’ve tested on.

VBA clips the windows, like common sense would lead you to believe. (Of

course, common sense also tells you that the Sun orbits the Earth or that the

stars are pinpricks on a large black canvas. Common sense is hardly common).

MappyVM and BoycottAdvance simply remove the window if any of the

boundaries goes off the screen.

Demo: there’s a rocket in my pocket

In case you hadn’t noticed yet, I like the Metroid series. I really like the Metroid series.

If you have ever played Super Metroid chances are that you’ve used the X-ray scope,

which let’s you see through the layers and find items and secret passages with much

more ease. Guess how that was done? Yup, windowing. The windowing demo

win_demo essentially does the same thing. There’s a rocket-item hidden behind the

background layers and you have an X-ray rectangle which you can move around the

screen so you can find it.

The controls are simple: use the D-pad to move the window around; START

repositions the rocket. I’ve also added finer movement (A + D-pad) so you can see the

strange behaviour the windows seem to exhibit at certain positions.

Tonc - GBA Programming in rot13

264 / 757

dir Moves the rectangle.

A + dir Move rectangle by tapping for finer control.

start Randomly change the position of the rocket.

What follows below is the majority of the demo’s code. I have removed the functions

that set up the backgrounds and sprite because there’s nothing in them that you

haven’t seen before already. The earlier fig 13.4a is a screenshot of the demo in

action.

Tonc - GBA Programming in rot13

265 / 757

// win_demo.c

// bg 0, cbb 0, sbb 2, pb 0: numbered forground
// bg 1, cbb 0, sbb 3, pb 0: fenced background
// oam 0: tile 0-3: rocket

// win 0: objects
// win 1: bg 0
// win out : bg 1

#include <tonc.h>
#include "nums.h"
#include "rocket.h"

typedef struct tagRECT_U8 { u8 ll, tt, rr, bb; } ALIGN4 RECT_U8;

// window rectangle regs are write only, so buffers are necessary
// Objects in win0, BG 0 in win1
RECT_U8 win[2]=
{
 { 36, 20, 76, 60 }, // win0: 40x40 rect
 { 12, 12 ,228, 148 } // win1: screen minus 12 margin.
};

// gfx loaders omitted for clarity
void init_front_map(); // numbers tiles
void init_back_map(); // fence
void init_rocket(); // rocket

void win_copy()
{
 REG_WIN0H= win[0].ll<<8 | win[0].rr;
 REG_WIN1H= win[1].ll<<8 | win[1].rr;
 REG_WIN0V= win[0].tt<<8 | win[0].bb;
 REG_WIN1V= win[1].tt<<8 | win[1].bb;
}

void test_win()
{
 win_copy();
 while(1)
 {
 key_poll();
 vid_vsync();

 // key_hit() or key_is_down() 'switch'
 // A depressed: move on direction press (std movement)
 // A pressed : moves on direction hit (fine movement)
 int keys= key_curr_state();
 if(key_is_down(KEY_A))

Tonc - GBA Programming in rot13

266 / 757

Initializing the windows is done at point 2: both win0 and win1 in REG_DISPCNT ,

objects in win 0, bg 0 in win 1 and bg1 in winOut. The windows’ sizes are set using

win_copy() in each frame. I am using two rectangle variables to keep track of where

 keys &= ~key_prev_state();

 if(keys & KEY_RIGHT)
 { win[0].ll++; win[0].rr++; }
 else if(keys & KEY_LEFT)
 { win[0].ll--; win[0].rr--; }
 if(keys & KEY_DOWN)
 { win[0].tt++; win[0].bb++; }
 else if(keys & KEY_UP)
 { win[0].tt--; win[0].bb--; }

 // (1) randomize rocket position
 if(key_hit(KEY_START))
 obj_set_pos(&oam_mem[0],
 qran_range(0, 232), qran_range(0, 152));

 win_copy();
 }
}

int main()
{
 // obvious inits
 oam_init();
 init_front_map();
 init_back_map();
 init_rocket();

 // (2) windowing inits
 REG_DISPCNT= DCNT_BG0 | DCNT_BG1 | DCNT_OBJ | DCNT_OBJ_1D |
 DCNT_WIN0 | // Enable win 0
 DCNT_WIN1; // Enable win 1

 REG_WININ= WININ_BUILD(WIN_OBJ, (WIN_BG0);
 REG_WINOUT= WINOUT_BUILD(WIN_BG1, 0);

 win_copy(); // Initialize window rects

 test_win();

 return 0;
}

Tonc - GBA Programming in rot13

267 / 757

the windows are, because the window-rectangle registers themselves are write only.

See fig 13.4 again for the result.

Usually, objects are shown in front of backgrounds. However, because objects are

now only set to appear inside win 0, they are effectively hidden everywhere else: you

will only see the rocket or parts of it if the rocket and win 0’s rectangle overlap.

Furthermore, you will notice that because only objects are set for win 0, the window

itself is completely black.

The rest of the demo is rather uneventful. I could explain that the way mask the

variable keys with the previous keystate when A is held down lets me switch

between the key_hit() and key_is_down() functions, giving me the functionality I

require to switch between direct and fine motion for the X-ray window, but it’s not all

that interesting and quite besides the point of the demo. What’s also beside the point

of the demo, but is interesting to mention, is the randomization of the rocket’s

position.

Random numbers

Random numbers on a computer is a somewhat quaint notion. The whole point of a

computer is to have a reliable calculator, and random numbers are pretty much the

antithesis of that. Computer generated random numbers are also called pseudo-

random, because they aren’t intrinsically random, just deterministically generated to

seem that way. There are statistical tests to see if a given routine is sufficiently

random. However, this isn’t nuclear physics we’re talking about, this is game

programming. We mostly need something that can, say, make an enemy zig or zag

without any discernable pattern; that it can kill a Monte Carlo simulation is totally

irrelevant.

One class of generators are linear congruential generators, which follow the pattern

Ni+1 = (a·Ni + c)%m, with Ni∈[0, m⟩. With properly picked parameters a, c and m, the

routine can be quite adequate. If you ever encounter a rand() function in any kind of

Tonc - GBA Programming in rot13

268 / 757

standard library, chances are it’s one of these. Not only are these easy to implement,

they are likely to be fast as well.

The following routine qran() is taken from my numerical methods book, Numerical

Recipes, pp 275, where it is labelled a quick and dirty generator, but an adequate one.

Consisting of one addition and one multiply (m=232, so done automatically), it is very

fast. The actual number returned are the top 15 bits from N, because the upper bits

are apparently more random than the lower, and also because 15 gives a [0,32767]

range, which is something of an unofficial standard, AFAIK. Note that there is a second

function, sqran() used to seed the generator. Since the process itself is still

deterministic, you need a seed to ensure that you don’t get the same sequence every

time. Unless, that is, you actually want that to happen. This isn’t such a strange idea if

you think about it: you could use it to generate maps, for example. Instead of storing

the whole map so that it looks the same every time you load it, you just store the seed

and you’re done. This is how the planetary terrains in Star Control 2 are made; I very

much doubt it would have been possible to store bitmaps of all the 1000+ planets it

had. This is why sqran() also returns the current N, so you can reset it later if

necessary.

Tonc - GBA Programming in rot13

269 / 757

http://www.amazon.com/gp/product/0521431085/103-4874440-3995059
http://www.amazon.com/gp/product/0521431085/103-4874440-3995059
https://sc2.sourceforge.net/

I’ll say again, this is not a very advanced random generator, but it’ll be enough for

what I need. If you want a better (but slower) one, try the Mersenne Twister. You can

find a nice implementation on it on PERN’s new sprite page.

Ranged random numbers

Getting a random number is one thing; getting a random number in a particular range

is another. It seems simple enough, of course: for a number between, say, 0 and 240

you’d use modulo 240. However, as the GBA doesn’t have a hardware divide, it’ll cost

quite a number of cycles. Fortunately, there is a simple way out of it.

I said that qran() , like stdlib’s rand() has a range between 0 and 0x8000. You can

also see this as a range between 0 and 1, if you interpret them as .15 fixed point

numbers. By multiplying with 240, you’ll have the desired ranged random number,

and it only costs a multiplication and a shi�. This technique works for every random

number generator, as long as you pay attention to its maximum range and integer

// from tonc_core.h/.c
// A Quick (and dirty) random number generator and its seeder

int __qran_seed= 42; // Seed / rnd holder

// Seed routine
int sqran(int seed)
{
 int old= __qran_seed;
 __qran_seed= seed;
 return old;
}

//! Quick (and very dirty) pseudo-random number generator
/*! \return random in range [0,8000h>
*/
INLINE int qran()
{
 __qran_seed= 1664525*__qran_seed+1013904223;
 return (__qran_seed>>16) & 0x7FFF;
}

Tonc - GBA Programming in rot13

270 / 757

https://en.wikipedia.org/wiki/Mersenne_twister
https://web.archive.org/web/20160323220658/http://www.drunkencoders.com/tutorials/GBA/day_3.html

overflow (which you should pay attention to anyway). Tonclib’s version of this is

called qran_range() .

In the demo, I’m using qran_range() twice to keep the sprite position inside the

screen at all times. While the position itself could be predicted beforehand with some

investigation, I don’t think it’ll be that easy. And if you really put that kind of effort in

it, I’d say you would deserve something for your troubles. If you reload the demo a

few times, you will notice that the sequence of positions is always the same. This is

why they’re called pseudo-random. To get a different sequence, the seed value should

be different. I haven’t even seeded it once here because it’s not really important for

this, but the usual trick to seed it with something involving time: for example, the

number of frames or cycles before one actually starts a game, counted from the

various intro screens that may precede it. Even a small difference in the seed can

produce wildly varying sequences.

Conclusions

Technically speaking you probably won’t really need mosaic, blending or windowing

in games, but they’re great for subtle effects, like a ‘shock-hit’ or spotlights. They’re

also of great use for various types of scene transitions; a fade to black can be easily

implemented using the blend registers. Also fun are various HBlank effects using

windows, changing the rectangles every HBlank to give beams, side-way wipes or

circlular windows. However, to be able to do that you need to know how to work with

interrupts. Or a special case of DMA known as HDMA, which just happens to be up

next.

//! Ranged random number
/*! \return random in range [\a min, \a max>
* \note (max-min) must be lower than 8000h
*/
INLINE int qran_range(int min, int max)
{ return (qran()*(max-min)>>15)+min; }

Tonc - GBA Programming in rot13

271 / 757

14. Direct Memory Access

DMA … que?

DMA registers

Some DMA routines

DMA demo : circular windows

DMA … que?

Direct Memory Access (DMA) is fast way of copying data from one place to another. Or,

rather, a way of transferring data fast; as it can be used for copying data, but also

filling memory. When you activate DMA the so-called DMA controller takes over the

hardware (the CPU is actually halted), does the desired transfer and hands control

back to the CPU before you even knew it was missing.

There are four DMA channels. Channel 0 has the highest priority; it is used for time-

critical operations and can only be used with internal RAM. Channels 1 and 2 are used

to transfer sound data to the right sound buffers for playback. The lowest priority

channel, channel 3, is for general-purpose copies. One of the primary uses for this

channel is loading in new bitmap or tile data.

DMA registers

Every kind of transfer routine needs 3 things: a source, a destination and the amount

of data to copy. The whence, whither and how much. For DMA, the source address is

put into REG_DMAxSAD and destination address into REG_DMAxDAD . A third register,

REG_DMAxCNT , not only indicates the amount to transfer, but also controls other

Tonc - GBA Programming in rot13

272 / 757

features possible for DMA, like when it should start the transfer, chunk-size, and how

the source and destination addresses should be updated a�er each individual chunk

of data. All the DMA registers are 32bits in length, though they can be divided into two

16bit registers if so desired. Those of channel 0 start at 0400:00B0h ; subsequent

channels start at an offset of 12 (see table 14.1).

reg function address

REG_DMAxSAD source 0400:00B0h + 0Ch ·x

REG_DMAxDAD destination 0400:00B4h + 0Ch ·x

REG_DMAxCNT control 0400:00B8h + 0Ch ·x

Table 14.1: DMA register addresses

DMA controls

The use of the source and destination registers should be obvious. The control

register needs some explaining. Although the REG_DMAxCNT registers themselves are

32bits, they are o�en split into two separate registers: one for the count, and one for

the actual control bits.

REG_DMAxCNT @ 0400�00B8+12x

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F E D C B A 9 8 7
En I TM - CS R SA DA - N

bits name define description

00-

0F

N Number of transfers.

15-

16

DA DMA_DST_INC,

DMA_DST_DEC,

DMA_DST_FIXED,

DMA_DST_RELOAD

Destination adjustment.

00: increment a�er each

transfer (default)

01: decrement a�er each

transfer

10: none; address is fixed

Tonc - GBA Programming in rot13

273 / 757

11: increment the destination

during the transfer, and reset it

so that repeat DMA will always

start at the same destination.

17-

18

SA DMA_SRC_INC,

DMA_SRC_DEC,

DMA_SRC_FIXED,

Source Adjustment. Works just like

the two bits for the destination. Note

that there is no DMA_SRC_RESET ;
code 3 for source is forbidden.

19 R DMA_REPEAT Repeats the copy at each VBlank or

HBlank if the DMA timing has been

set to those modes.

1A CS DMA_16, DMA_32 Chunk Size. Sets DMA to copy by

halfword (if clear) or word (if set).

1C-

1D

TM DMA_NOW,

DMA_AT_VBLANK,

DMA_AT_HBLANK,

DMA_AT_REFRESH

Timing Mode. Specifies when the

transfer should start.

00: start immediately.

01: start at VBlank.

10: start at HBlank.

11: Never used it so far, but

here's how I gather it works. For

DMA1 and DMA2 it'll refill the

FIFO when it has been emptied.

Count and size are forced to 1

and 32bit, respectively. For

DMA3 it will start the copy at the

start of each rendering line, but

with a 2 scanline delay.

1E I DMA_IRQ Interrupt request. Raise an interrupt

when finished.

Tonc - GBA Programming in rot13

274 / 757

1F En DMA_ENABLE Enable the DMA transfer for this

channel.

Source and destination addresses

The registers for source and destination addresses work just as you’d expect: just put

in the proper addresses. Oh, I should tell you that the sizes for the source and

destination addresses are 28 and 27 bits wide, respectively, and not the full 32. This is

nothing to worry about though, you can’t access addresses above 1000:0000h

anyway. For destination addresses, you can’t use the section above 0800:0000h . But

then, being able to copy to ROM would be kind of strange, wouldn’t it?

DMA flags

The REG_DMAxCNT registers can be split in two parts: one with actual flags, and one for

the number of copies to do. Either way will work but you must be careful how the

flags are defined: using 32-bit #defines for 16-bit registers or vice versa is not a good

idea.

There are options to control what will be the next source and destination addresses

when one chunk has been transferred. By default, both will increment so that it works

as a copier. But you could also keep the source constant so that it’d work more as a

memory fill.

What goes into the lower half of REG_DMAxCNT is the number of transfers. This is the

number of chunks, not bytes! Best be careful when using sizeof() or something

similar here, missing a factor 2 or 4 is very easy. A chunk can be either 16 or 32 bit,

depending on bit 26.

More on DMA timing

What the immediate DMA does is easy to imagine, it works as soon as you enable the

DMA. Well actually it takes 2 cycles before it’ll set in, but it’s close enough. The other

Tonc - GBA Programming in rot13

275 / 757

timing settings aren’t that more difficult conceptually, but there is one point of

confusion.

Consider the following situation: you want to do something cool to your otherwise

standard backgrounds; specifically, you want to do something that requires the

background registers to be updated every scanline. I just said that you can copy data

at every HBlank (via the DMA_AT_HBLANK timing flag), which seems perfect for the job.

If you think about it for a minute, however, you may ask yourself the following

question:

When you set the timing to, say, DMA_AT_HBLANK , does it do all the N copies at

the next HBlank, or one copy at each HBlank until the list is done?

There is a crucial difference between the two. The first option seems pointless

because all copied would be done at once; if your destination is fixed (like they are for

background registers), all copies except the last would be lost. In the case of the

second one, how would you do more than one copy per HBlank? Clearly, something’s

amiss here. There is, on two counts.

For the record, I’m not 100% sure about what I’m going to say here, but I think it’s

pretty close to what’s actually going on. The main thing to realize is that as long as the

channel is not enabled (REG_DMAxCNT {1f} is cleared), that channel won’t do squat;

only a�er REG_DMAxCNT {1f} has been set will the DMA process be initiated. At the

appropriate time (determined by the timing bits), DMA will do all N copies and then

shut itself off again.

Unless, that is, the repeat-bit (REG_DMAxCNT {19}) is set. In that case, it will keep doing

the copies at the right time until you disable the channel yourself.

Tonc - GBA Programming in rot13

276 / 757

Some DMA routines

While it’s not that much trouble to set the three registers manually, it is preferable to

hide the direct interaction in subroutines. Now, in older code, you might come across

something like this:

This will work, but it’s not a nice way of doing things. If your switch-cases differ by a

single number, you can usually replace it by a simpe lookup. There are a number of

ways of fixing this, but the easiest is by mapping a struct array over the DMA registers,

similar to what I did for tile memory. A�er that, you can just select the channel with

the channel variable and simply fill in the addresses and flags.

The following are my three of my DMA routines. First the DMA_TRANSER() macro,

which is the overall macro that can be used for anything. Then two routines for

general memory copies and fills using 32bit transfers with DMA 3.

// Don't do this. Please.
void dma_copy(int ch, void* src, void* dest, uint count, u32 mode)
{
 switch(ch)
 {
 case 0:
 // set DMA 0
 case 1:
 // set DMA 1
... // etc
 }
}

typedef struct DMA_REC
{
 const void *src;
 void *dst;
 u32 cnt;
} DMA_REC;

#define REG_DMA ((volatile DMA_REC*)0x040000B0)

Tonc - GBA Programming in rot13

277 / 757

In all cases, I disable any previously operating transfers first. This may seem

redundant if DMA stops the CPU, but remember that DMA transfers can be timed as

well – you wouldn’t want it to start in the middle of setting the registers. A�er that, it’s

simply a matter of filling the registers. Now, it so happens that there is a 2-cycle delay

before any transfer really begins. This means that you could lose a transfer if you ask

// in tonc_core.h

//! General DMA transfer macro
#define DMA_TRANSFER(_dst, _src, count, ch, mode) \
do { \
 REG_DMA[ch].cnt= 0; \
 REG_DMA[ch].src= (const void*)(_src); \
 REG_DMA[ch].dst= (void*)(_dst); \
 REG_DMA[ch].cnt= (count) | (mode); \
} while(0)

//! General DMA copier
INLINE void dma_cpy(void *dst, const void *src, uint count, int ch, u32
mode)
{
 REG_DMA[3].cnt = 0; // shut off any previous transfer
 REG_DMA[3].src = src;
 REG_DMA[3].dst = dst;
 REG_DMA[3].cnt = count;
}

//! General DMA full routine
INLINE void dma_fill(void *dst, volatile u32 src, uint count, int ch,
u32 mode)
{
 REG_DMA[3].cnt = 0; // shut off any previous transfer
 REG_DMA[3].src = (const void*)&src;
 REG_DMA[3].dst = dst;
 REG_DMA[3].cnt = count | DMA_SRC_FIXED;
}

//! Word copy using DMA 3
INLINE void dma3_cpy(void *dst, const void *src, u32 size)
{ dma_cpy(dst, src, size/4, 3, DMA_CPY32); }

//! Word fill using DMA 3
INLINE void dma3_fill(void *dst, const void *src, u32 size)
{ dma_fill(dst, src, size/4, 3, DMA_CPY32); }

Tonc - GBA Programming in rot13

278 / 757

for transfers in immediate succession. I’m not sure if this is very likely though:

memory wait-states themselves already take that much time so you should be safe.

Other notes on these routines: the DMA_TRANSFER() macro’s code sits between a do

{} while(0); loop. The problem with macros is that when expanded multiple

statements might break nesting-blocks. For example, calling it in the body of an if

without braces around it would have the first line as the body, but the rest fall outside

it. This kind of loop is one of the ways of preventing that. Another problem with

macros is that if the arguments’ names may hide other parts of the macro’s code. Like

the src and dst members of the DMA_REC struct; which is why they’re underscored.

The fill routines also have something remarkable going on, which you can read about

in the next subsection. Lastly, the dma3 inlines use word-transfers and take the byte-

size as their last arguments, making them very similar to the standard memcpy() and

memset() .

I used to have the following macro for my transfers. It uses one of the more exotic

capabilities of the preprocessor: the merging-operator ‘##’, which allows you to create

symbol names at compile-time. It’s scary, totally unsafe and generally unruly, but it

does work. The other macro I gave is better, but I still like this thing too.

As long as you are using a literal number for _ch it’ll form the correct register names.

And yes, those comma operators between the statements actually work. They keep

the statements separate, and also guard against wrongful nesting just like the do{}

while(0) construct does.

On DMA fills

DMA can be used to fill memory, but there are two problems that you need to be

aware of before you try it. The first can be caught by simply paying attention. DMA fills

#define DMA_TRANSFER(_dst, _src, _count, _ch, _mode) \
 REG_DMA##_ch##SAD = (u32)(_src), \
 REG_DMA##_ch##DAD = (u32)(_dst), \
 REG_DMA##_ch##CNT = (_count) | (_mode) \

Tonc - GBA Programming in rot13

279 / 757

don’t work quite in the same way as memset() does. What you put into REG_DMAxSAD

isn’t the value you want to fill with, but its address!

“Very well, I’ll put the value in a variable and use its address.” Yes, and that brings us

to our second problem, a bug which is almost impossible to find. If you try this, you’ll

find that it doesn’t work. Well it fills with something, but usually not what you wanted

to fill with. The full explanation is somewhat technical, but basically because you’re

probably only using the variable’s address and not its value, the optimizer doesn’t

ever initialize it. There is a simple solution, one that we’ve seen before, make it

volatile. Or you can use a (inline) function like dma_fill() , which has its source

argument set as volatile so you can just insert a number just as you’d expect. Note

that if you remove the volatile keyword there, it’ll fail again.

In short: DMA fills need addresses, not direct values. Globals will always work, but if

you use local variables or arguments you’ll need to make them volatile. Note that the

same thing holds true for the BIOS call CpuFastSet().

DMA; don’t wear it out

DMA is fast, there’s no question about that. It can be up to ten times as fast as array

copies. However, think twice about using it for every copy. While it is fast, it doesn’t

quite blow every other transfer routine out of the water. CpuFastSet() comes within

10% of it for copies and is actually 10% faster for fills. The speed gain isn’t that big a

deal. Another problem is that it stops the CPU, which can screw up interrupts, causing

seemingly random bugs. It does have its specific uses, usually in conjunction with

timers or interrupts, but for general copies, you might consider other things as well.

CpuFastSet() is a good routine, but libtonc also comes with memcpy16()/32() and

memset16()/32() routines that are safer than that, and less restrictions. They are

assembly routines, though, so you’ll need to know how to assemble or use libraries.

Tonc - GBA Programming in rot13

280 / 757

Fig 14.1: palette for dma_demo .

DMA demo : circular windows

The demo for this chapter may seem a little

complicated, but the effect is worth it. The basic

use of DMA transfers is so easy that it’s hardly

worth having a demo of. Use of triggered DMA is

another matter. In this case, we’ll look at HBlank-

triggered DMA, or HDMA for short. We’ll use it to

update the window sized inside the HBlank to give

a circular window effect.

This is easier said than done, of course. The first step in the design is how to use HDMA

for this in the first place. Because we need to copy to REG_WIN0H each HBlank, we

need to keep the destination fixed. Technically, it needs to be reset to the original

destination, but with only one halfword to copy this means the same thing. For the

source, we’ll keep track of the data that needs to be copied there in an array with one

entry for each scanline, and we’ll progress through the array one scanline at a time

(i.e, incrementing source). And of course, the transfer has to occur at each scanline, so

we set it to repeat. so basically we need this:

As for the circle, we need a routine that can calculate the le� and right edges of a

circle. There are a couple of algorithms around that can draw circles, for example

Bresenham’s version. We’ll use a modified version of it because we only need to store

the le� and right points instead of drawing a pixel there. Why le�-right and not top-

bottom? Because the array is scanline-based, so that indicates the y-values already.

It doesn’t really matter what you use actually, as long as you can find the edges. Once

you have, all you need to do is setup the DMA in the VBlank and you’re done.

The end result will show something like fig 14.1. It’s the Brinstar background (again)

inside the window, and a striped bg outside. The text indicates the position and radius

#define DMA_HDMA (DMA_ENABLE | DMA_REPEAT | DMA_AT_HBLANK |
DMA_DST_RELOAD)

Tonc - GBA Programming in rot13

281 / 757

http://www.gamedev.net/reference/articles/article767.asp

of the window, which can be moved with the D-pad and scaled by A and B.

Tonc - GBA Programming in rot13

282 / 757

#include
#include

#include "brin.h"

// From tonc_math.h
//#define IN_RANGE(x, min, max) ((x) >= (min) && (x) < (max))

// The source array
u16 g_winh[SCREEN_HEIGHT+1];

//! Create an array of horizontal offsets for a circular window.
/*! The offsets are to be copied to REG_WINxH each HBlank, either
* by HDMA or HBlank isr. Offsets provided by modified
* Bresenham's circle routine (of course); the clipping code is not
* optional.
* \param winh Pointer to array to receive the offsets.
* \param x0 X-coord of circle origin.
* \param y0 Y-coord of circle origin.
* \param rr Circle radius.
*/
void win_circle(u16 winh[], int x0, int y0, int rr)
{
 int x=0, y= rr, d= 1-rr;
 u32 tmp;

 // clear the whole array first.
 memset16(winh, 0, SCREEN_HEIGHT+1);

 while(y >= x)
 {
 // Side octs
 tmp = clamp(x0+y, 0, SCREEN_WIDTH);
 tmp += clamp(x0-y, 0, SCREEN_WIDTH)<<8;

 if(IN_RANGE(y0-x, 0, SCREEN_HEIGHT)) // o4, o7
 winh[y0-x]= tmp;
 if(IN_RANGE(y0+x, 0, SCREEN_HEIGHT)) // o0, o3
 winh[y0+x]= tmp;

 // Change in y: top/bottom octs
 if(d >= 0)
 {
 tmp = clamp(x0+x, 0, SCREEN_WIDTH);
 tmp += clamp(x0-x, 0, SCREEN_WIDTH)<<8;

 if(IN_RANGE(y0-y, 0, SCREEN_HEIGHT)) // o5, o6
 winh[y0-y]= tmp;

Tonc - GBA Programming in rot13

283 / 757

 if(IN_RANGE(y0+y, 0, SCREEN_HEIGHT)) // o1, o2
 winh[y0+y]= tmp;

 d -= 2*(--y);
 }
 d += 2*(x++)+3;
 }
 winh[SCREEN_HEIGHT]= winh[0];
}

void init_main()
{
 // Init BG 2 (basic bg)
 dma3_cpy(pal_bg_mem, brinPal, brinPalLen);
 dma3_cpy(tile_mem[0], brinTiles, brinTilesLen);
 dma3_cpy(se_mem[30], brinMap, brinMapLen);

 REG_BG2CNT= BG_CBB(0)|BG_SBB(30);

 // Init BG 1 (mask)
 const TILE tile=
 {{
 0xF2F3F2F3, 0x3F2F3F2F, 0xF3F2F3F2, 0x2F3F2F3F,
 0xF2F3F2F3, 0x3F2F3F2F, 0xF3F2F3F2, 0x2F3F2F3F
 }};
 tile_mem[0][32]= tile;
 pal_bg_bank[4][2]= RGB15(12,12,12);
 pal_bg_bank[4][3]= RGB15(8, 8, 8);
 pal_bg_bank[4][15]= RGB15(0, 0, 0);
 se_fill(se_mem[29], 0x4020);

 REG_BG1CNT= BG_CBB(0)|BG_SBB(29);

 tte_init_chr4_b4_default(0, BG_CBB(2)|BG_SBB(28));
 tte_init_con();
 tte_set_margins(8, 8, 232, 40);

 // Init window
 REG_WIN0H= SCREEN_WIDTH;
 REG_WIN0V= SCREEN_HEIGHT;

 // Enable stuff
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0 | DCNT_BG1 | DCNT_BG2 |
DCNT_WIN0;
 REG_WININ= WIN_BUILD(WIN_BG0|WIN_BG2, 0);
 REG_WINOUT= WIN_BUILD(WIN_BG0|WIN_BG1, 0);
}

int main()
{

Tonc - GBA Programming in rot13

284 / 757

The initialization function is mostly just fluff. Mostly, because there is one thing of

interest: the calls to dma_cpy to copy the Brinstar palette, tiles and map. Aside from

that, nothing to see here.

The main function itself is also pretty standard. Of interest here are the call to

win_circle() , which sets up the source-array, and to DMA_TRANSFER() to initialize

the HDMA. Note that I’m actually making it start at g_winh[1] instead of just

g_winh[0] . The reason for this is that the HBlank occurs a�er a given scanline, not

before it, so we’ll lag one otherwise. The g_winh array is actually 160+1 long, and

both entry 0 and 160 describe the data for scanline 0. What’s also important, but not

exactly visible here, is that HDMA only occurs on the visible HBlanks, not the ones in

the VBlank. This saves up a whole lot of trouble determining how many scanlines to

correct for when setting it up.

 int rr=40, x0=128, y0=120;

 init_main();

 while(1)
 {
 vid_vsync();
 key_poll();

 rr += key_tri_shoulder(); // size with B/A
 x0 += key_tri_horz(); // move left/right
 y0 += key_tri_vert(); // move up/down

 if(rr<0)
 rr= 0;

 // Fill circle array
 win_circle(g_winh, x0, y0, rr);

 // Init win-circle HDMA
 DMA_TRANSFER(®_WIN0H, &g_winh[1], 1, 3, DMA_HDMA);

 tte_printf("#{es;P}(%d,%d) | %d", x0, y0, rr);
 }

 return 0;
}

Tonc - GBA Programming in rot13

285 / 757

And then there’s win_circle() . If you’re aware of how the Bresenham circle

algorithm work, you know it calculates an offset for one octant and then uses it for

the 7 others via symmetry rules. This happens here as well. What doesn’t happen in

the original probably is all the clipping (the clamp() s and IN_RANGE()s). However,

these steps are absolutely vital here. Going out of bounds horizontally would mean

wrong windowing offsets which would make the window turn in on itself. Going out of

bounds vertically means going OOB on g_winh for all kind of horrible. Trust me, they

are necessary.

Also, notice that I wipe the whole array clean first; this can be done inside the loop,

but sometimes it’s just faster to fill the whole thing first and then only update the

parts you need. Lastly, as mentioned before, the first scanline’s data is copied to the

final entry of the array to account for the way HBlanks happen.

And here ends the chapter on DMA. The use of HDMA in this manner is great for all

kinds of effects, not just circular windows. All you need is an array containing

scanline-data and a function that sets it up beforehand. Be careful you don’t get your

channels mixed up, though.

DMA is the fastest method of copying, but as you block interrupts using memcpy32() is

probably safer. The speed difference is only 10% anyway. DMA is also used for sound

FIFO, in conjunction with timers. I can’t really show you how to use it for sound, but I

can tell you how timers work, and will do so in the next chapter.

Tonc - GBA Programming in rot13

286 / 757

15. Timers

Timing is everything

GBA Timers

Timer demo : like clockwork

Timing is everything

Think of every time you’ve heard a joke ruined because the punch line came too late

or too early; think of all the failed jumps in Super Mario Bros (or any other platform

game); all the occasions that you skidded at the start of a Mario Kart race for revving

too soon; that your invincibility wore off just before you got a red shell up your

a[censored]s; that you didn’t quite dodge that hail of bullets in old-skool shooters

because of a sudden slow-down. Think of all this and situations like them and you’ll

agree that in games, as in life, Timing Is Everything.

Ironically, timers are of less importance. Throughout video-game history

programmers have built their games around one timing mechanism: the vertical

refresh rate of the screen. In other words, the VBlank. This is a machine-oriented timer

(you count frames) rather than a human-oriented one (where you’d count seconds).

For consoles, this works very well as the hardware is always the same. (Except, of

course, that some countries use NTSC televisions (@ 60 Hz) and others use PAL TVs (@

50 Hz). Everyone living in the latter category and has access to both kinds knows the

difference and curses the fact that it’s the NTSC countries that most games stem

from.) While the VBlank timer is pervasive, it is not the only one. The GBA has four

clock timers at your disposal. This section covers these timers.

Tonc - GBA Programming in rot13

287 / 757

GBA Timers

All conceivable timers work in pretty much the same way. You have something that

oscillates with a certain fixed frequency (like a CPU clock or the swing of a pendulum).

A�er every full period, a counter is incremented and you have yourself a timer. Easy,

innit?

The basic frequency of the GBA timers is the CPU frequency, which is 224 ≈ 16.78 Mhz.

In other words, one clock cycle of the CPU takes 2−24 ≈ 59.6 ns. Since this is a very

lousy timescale for us humans, the GBA allows for 4 different frequencies (or, rather

periods): 1, 64, 256 and 1024 cycles. Some details of these frequencies are shown in

table 15.1. By clever use of the timer registers, you can actually create timers of any

frequency, but more on that later. It should be noted that the screen refreshes every

280,896 cycles, exactly.

#cycles frequency period

1 16.78 MHz 59.59 ns

64 262.21 kHz 3.815 µs

256 65.536 kHz 15.26 µs

1024 16.384 kHz 61.04 µs

Table 15.1: Timer frequencies

Timer registers

The GBA has four timers, timers 0 to 3. Each of these has two registers: a data register

(REG_TMxD) and a control register (REG_TMxCNT). The addresses can be found in table

15.2.

reg function address

REG_TMxD data 0400:0100h + 04h ·x

REG_TMxCNT control 0400:0102h + 04h ·x

Table 15.2: Timer register addresses

Tonc - GBA Programming in rot13

288 / 757

REG_TMxCNT

REG_TMxCNT @ 0400�0102 + 4x

F E D C B A 9 8 7 6 5 4 3 2 1 0
- En I - CM Fr

bits name define description

0-

1

Fr TM_FREQ_y Timer frequency. 0-3 for 1, 64, 256, or 1024

cycles, respectively. y in the define is the

number of cycles.

2 CM TM_CASCADE Cascade mode. When the counter of the

preceding (x −1) timer overflows

(REG_TM(x-1)D=
 0xffff), this one will be incremented

too. A timer that has this bit set does not

count on its own, though you still have to

enable it. Obviously, this won't work for

timer 0. If you plan on using it make sure

you understand exactly what I just said; this

place is a death-trap for the unwary.

6 I TM_IRQ Raise an interrupt on overflow.

7 En TM_ENABLE Enable the timer.

REG_TMxD

The data register REG_TMxD is a 16-bit number that works a little bit differently than

you might expect at first, but in the end it makes sense. The number that you read

from the register is the current timer-count. So far, so good. However, the number

that you write to REG_TMxD is the initial value that the counter begins at when the

timer is either enabled (via TM_ENABLE) or overflows. This has number of ‘interesting’

consequences. To make things a little easier, define variables n of the initial value (the

write-number) and c for the current count (the read number).

First of all, when you set an n (of, say, c000h) like this:

Tonc - GBA Programming in rot13

289 / 757

you will not have set the current timer-count c to n (= c000h). In fact, if the timer is

disabled, then c= 0. However, as soon as you do enable the counter, then c = n and

proceeds from there. And when the timer overflows, it will reset to this value as well.

By the way, because n is only the starting value it is important to set n first, and enable

the timer a�erwards.

Secondly, ask yourself this: what happens when you disable the timer again? Well, the

counter retains its current value. However, when you enable it a�erwards, c will reset

to n again. This is a bit of a drag if you want to disable the timer for a while (during a

game-pause for instance) and then pick up where it le� of. Well, yeah, but there is a

way to make it happen. How? By turning it into a cascade timer via TM_CASCADE !

Having that bit set in the REG_TMxCNT will cause the timer to be increased only when

the preceding one overflows. If you prevent that from ever happening (if it’s disabled

for instance) then you will have effectively disabled your timer.

Lastly, given a certain n, then the timer will overflow a�er T= 10000h −n increments.

Or, thanks to the wonders of two’s complement, just T= −n. Combined with a cascade

timer (or interrupts) you can build timers of any frequency, which is what you want

from a timer.

WRITING TO REG_TMXD IS WEIRD

Writing into REG_TMxD may not do what you think it does. It does not set the

timer value. Rather, it sets the initial value for the next timer run.

 REG_TM2D= 0xc000;

Tonc - GBA Programming in rot13

290 / 757

Fig 15.1: tmr_demo .

Timer demo : like clockwork

In today’s demo, I’m going to show how to make a simple digital clock with the

timers. To do this, we’ll need a 1 Hz timer. As that’s not available directly, I’m going to

set up a cascading timer system with timers 2 and 3. Timer 3 will be set to cascade

mode, which is updated when timer 2 overflows. It is possible to set the overflow to

happen at a frequency of exactly one Hertz. The clock frequency is 224, or

1024*0x4000. By setting timer 2 to TM_FREQ_1024 and to start at −0x4000, the

cascading timer 3 will effectively be a 1 Hz counter.

Whenever timer 3 is updated, the demo turns the

number of seconds into hours, minutes and

seconds and prints that on screen (see fig 15.1).

Yes, I am using divisions and moduli here because

it is the simplest procedure and I can spare the

cycles in this particular demo.

The demo can be (un)paused with Select and

Start. Start disables timer 2, and thus timer 3 too.

Select turns timer 2 into a cascade timer as well, and since timer 1 is disabled, doing

this also stops timer 2 (and 3). The difference is what happens when you unpause. By

disabling a timer, it will start again at the initial value; but stopping it with a cascade

actually keeps the timer active and it will simply resume counting once the cascade is

removed. The difference is a subtle one, but the latter is more appropriate.

Tonc - GBA Programming in rot13

291 / 757

// Using a the "Berk" font from headspins font collection.

#include <stdio.h>
#include <tonc.h>
#include "berk.h"

void tmr_test()
{
 // Overflow every ~1 second:
 // 0x4000 ticks @ FREQ_1024

 REG_TM2D= -0x4000; // 0x4000 ticks till overflow
 REG_TM2CNT= TM_FREQ_1024; // we're using the 1024 cycle timer

 // cascade into tm3
 REG_TM3CNT= TM_ENABLE | TM_CASCADE;

 u32 sec= -1;

 while(1)
 {
 vid_vsync();
 key_poll();

 if(REG_TM3D != sec)
 {
 sec= REG_TM3D;
 tte_printf("#{es;P:24,60}%02d:%02d:%02d",
 sec/3600, (sec%3600)/60, sec%60);
 }

 if(key_hit(KEY_START)) // pause by disabling timer
 REG_TM2CNT ^= TM_ENABLE;

 if(key_hit(KEY_SELECT)) // pause by enabling cascade
 REG_TM2CNT ^= TM_CASCADE;
 }
}

int main()
{
 // set-up berk font
 tte_init_se(0, BG_CBB(0)|BG_SBB(31), 1, 0, 0, &berkFont, se_drawg);
 tte_init_con();
 memcpy16(pal_bg_mem, berkPal, berkPalLen/4);

 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 tmr_test();

Tonc - GBA Programming in rot13

292 / 757

This was a rather simple use of timers. Of course, I could have just as easily used the

VBlank to keep track of the seconds, which is how it’s usually done anyway. The

hardware timers are usually reserved for timed DMA’s, which are used in sound

mixers, not for game timers. There is one other use that comes to mind, though,

namely profiling: examining how fast your functions are. One of the text system

demos uses that to check the speeds of a few copying routines.

 return 0;
}

Tonc - GBA Programming in rot13

293 / 757

https://stuij.github.io/deku-sound-tutorial/g
https://stuij.github.io/deku-sound-tutorial/g

16. Interrupts

Introduction

Interrupts registers

Interrupt Service Routines

Creating an interrupt switchboard

Nested interrupt demo

Introduction

Under certain conditions, you can make the CPU drop whatever it’s doing, go run

another function instead, and continue with the original process a�erwards. This

process is known as an interrupt (two ‘r’s, please). The function that handles the

interrupt is an interrupt service routine, or just interrupt; triggering one is called

raising an interrupt.

Interrupts are o�en attached to certain hardware events: pressing a key on a PC

keyboard, for example, raises one. Another PC example is the VBlank (yes, PCs have

them too). The GBA has similar interrupts and others for the HBlank, DMA and more.

This last one in particular can be used for a great deal of ni�y effects. I’ll give a full list

of interrupts shortly.

Interrupts halt the current process, quickly do ‘something’, and pass control back

again. Stress the word “quickly”: interrupts are supposed to be short routines.

Tonc - GBA Programming in rot13

294 / 757

Interrupts registers

There are three registers specifically for interrupts: REG_IE (0400:0200h), REG_IF

(0400:0202h) and REG_IME (0400:0208h). REG_IME is the master interrupt control;

unless this is set to ‘1’, interrupts will be ignored completely. To enable a specific

interrupt you need to set the appropriate bit in REG_IE . When an interrupt occurs, the

corresponding bit in REG_IF will be set. To acknowledge that you’ve handled an

interrupt, the bit needs to be cleared again, but the way to do that is a little counter-

intuitive to say the least. To acknowledge the interrupt, you actually have to set the

bit again. That’s right, you have to write 1 to that bit (which is already 1) in order to

clear it.

Apart from setting the bits in REG_IE , you also need to set a bit in other registers that

deal with the subject. For example, the HBlank interrupt also requires a bit in

REG_DISPSTAT . I think (but please correct me if I’m wrong) that you need both a

sender and receiver of interrupts; REG_IE controls the receiver and registers like

REG_DISPSTAT control the sender. With that in mind, let’s check out the bit layout for

REG_IE and REG_IF .

REG_IE @ 0400�0200 and REG_IF @ 0400�0202

F E D C B A 9 8 7 6 5 4 3 2 1 0
- C K Dma Com Tm Vct Hbl Vbl

bits name define description

0 Vbl IRQ_VBLANK VBlank interrupt. Also requires

REG_DISPSTAT {3}

1 Hbl IRQ_HBLANK HBlank interrupt. Also requires

REG_DISPSTAT {4} Occurs a�er the HDraw,

so that things done here take effect in the

next line.

2 Vct IRQ_VCOUNT VCount interrupt. Also requires

REG_DISPSTAT {5}. The high byte of

Tonc - GBA Programming in rot13

295 / 757

REG_DISPSTAT gives the VCount at which

to raise the interrupt. Occurs at the

beginning of a scanline.

3-

6

Tm IRQ_TIMERx Timer interrupt, 1 bit per timer. Also

requires REG_TMxCNT {6}. The interrupt

will be raised when the timer overflows.

7 Com IRQ_COM Serial communication interrupt.

Apparently, also requires REG_SCCNT {E}.
To be raised when the transfer is

complete. Or so I'm told, I really don't

know squat about serial communication.

8-

B

Dma IRQ_DMAx DMA interrupt, 1 bit per channel. Also

requires REG_DMAxCNT {1E}. Interrupt will

be raised when the full transfer is

complete.

C K IRQ_KEYPAD Keypad interrupt. Also requires

REG_KEYCNT {E}. Raised when any or all or

the keys specified in REG_KEYCNT are

down.

D C IRQ_GAMEPAK Cartridge interrupt. Raised when the cart

is removed from the GBA.

Interrupt Service Routines

You use the interrupt registers described above to indicate which interrupts you want

to use. The next step is writing an interrupt service routine. This is just a typeless

function (void func(void)); a C-function like many others. Here’s an example of an

HBlank interrupt.

Tonc - GBA Programming in rot13

296 / 757

The first line inverts the color of the first entry of the palette memory. The second line

resets the HBlank bit of REG_IF indicating the interrupt has been dealt with. Since

this is an HBlank interrupt, the end-result is that that the color changes every

scanline. This shouldn’t be too hard to imagine.

If you simply add this function to an existing program, nothing would change. How

come? Well, though you have an isr now, you still need to tell the GBA where to find it.

For that, we will need to take a closer look at the interrupt process as a whole.

ON ACKNOWLEDGING INTERRUPTS CORRECTLY

To acknowledge that an interrupt has been dealt with, you have to set the bit of

that interrupt in REG_IF , and only that bit. That means that ‘ REG_IF = IRQ_x ’

is usually the correct course of action, and not ‘ REG_IF |= IRQ_x ’. The |=

version acknowledges all interrupts that have been raised, even if you haven’t

dealt with them yet.

Usually, these two result in the same thing, but if multiple interrupts come in at

the same time things will go bad. Just pay attention to what you’re doing.

The interrupt process

The complete interrupt process is kind of tricky and part of it is completely beyond

your control. What follows now is a list of things that you, the programmer, need to

know. For the full story, see GBATEK : irq control.

1. Interrupt occurs. Some black magic deep within the deepest dungeons of BIOS

happens and the CPU is switched to IRQ mode and ARM state. A number of

void hbl_pal_invert()
{
 pal_bg_mem[0] ^= 0x7FFF;
 REG_IF = IRQ_HBLANK;
}

Tonc - GBA Programming in rot13

297 / 757

https://problemkaputt.de/gbatek.htm#gbainterruptcontrol

registers (r0-r3, r12, lr) are pushed onto the stack.

2. BIOS loads the address located at 0300:7FFC and branches to that address.

3. The code pointed to by 0300:7FFC is run. Since we’re in ARM-state now, this

must to be ARM code!

4. A�er the isr is done, acknowledge that the interrupt has been dealt with by

writing to REG_IF , then return from the isr by issuing a bx lr instruction.

5. The previously saved registers are popped from stack and program state is

restored to normal.

Steps 1, 2 and 5 are done by BIOS; 3 and 4 are yours. Now, in principle all you need to

do is place the address of your isr into address 0300:7FFC . To make our job a little

easier, we will first create ourselves a function pointer type.

Now, this will probably work, but as usual there’s more to the story.

First, the code that REG_ISR_MAIN jumps to must be ARM code! If you compile

with the -mthumb flag, the whole thing comes to a screeching halt.

What happens when you’re interrupted inside an interrupt? Well, that’s not quite

possible actually; not unless you do some fancy stuff we’ll get to later. You see,

REG_IME is not the only thing that allows interrupts, there’s a bit for irqs in the

program status register (PSR) as well. When an interrupt is raised, the CPU

disables interrupts there until the whole thing is over and done with.

typedef void (*fnptr)(void);
#define REG_ISR_MAIN *(fnptr*)(0x03007FFC)

// Be careful when using it like this, see notes below
void foo()
{
 REG_ISR_MAIN= hbl_pal_invert; // tell the GBA where my isr is
 REG_DISPSTAT |= VID_HBL_IRQ; // Tell the display to fire HBlank
interrupts
 REG_IE |= IRQ_HBLANK; // Tell the GBA to catch HBlank
interrupts
 REG_IME= 1; // Tell the GBA to enable interrupts;
}

Tonc - GBA Programming in rot13

298 / 757

hbl_pal_invert() doesn’t check whether it has been activated by an HBlank

interrupt. Now, in this case it doesn’t really matter because it’s the only one

enabled, but when you use different types of interrupts, sorting them out is

essential. That’s why we’ll create an interrupt switchboard in the next section.

Lastly, when you use BIOS calls that require interrupts, you also need to

acknowledge them in REG_IFBIOS (== 0300:7FF8). The use is the same as

REG_IF .

ON SECTION MIRRORING

GBA’s memory sections are mirrored ever so many bytes. For example IWRAM

(0300:0000) is mirrored every 8000h bytes, so that 0300:7FFC is also

03FF:FFFC , or 0400:0000 −4. While this is faster, I’m not quite sure if this

should be taken advantage of. no$gba v2.2b marks it as an error, even though

this was apparently a small oversight and fixed in v2.2c. Nevertheless, consider

yourself warned.

Creating an interrupt switchboard

The hbl_pal_invert() function is an example of a single interrupt, but you may have

to deal with multiple interrupts. You may also want to be able to use different isr’s

depending on circumstances, in which case stuffing it all into one function may not be

the best way to go. Instead, we’ll create an interrupt switchboard.

An interrupt switchboard works a little like a telephone switchboard: you have a call

(i.e., an interrupt, in REG_IF) coming in, the operator checks if it is an active number

(compares it with REG_IE) and if so, connects the call to the right receiver (your isr).

This particular switchboard will come with a number of additional features as well. It

will acknowledge the call in both REG_IF and REG_IFBIOS), even when there’s no

Tonc - GBA Programming in rot13

299 / 757

actual ISR attached to that interrupt. It will also allow nested interrupts, although this

requires a little extra work in the ISR itself.

Design and interface considerations

The actual switchboard is only one part of the whole; I also need a couple of structs,

variables and functions. The basic items I require are these.

__isr_table[] . An interrupt table. This is a table of function pointers to the

different isr’s. Because the interrupts should be prioritized, the table should also

indicate which interrupt the pointers belong to. For this, we’ll use an IRQ_REC

struct.

irq_init() / irq_set_master() . Set master isr. irq_init() initializes the

interrupt table and interrupts themselves as well.

irq_enable() / irq_disable() . Functions to enable and disable interrupts.

These will take care of both REG_IE and whatever register the sender bit is on.

I’m keeping these bits in an internal table called __irq_senders[] and to be

able to use these, the input parameter of these functions need to be the index of

the interrupt, not the interrupt flag itself. Which is why I have II_ foo

counterparts for the IRQ_ foo flags.

irq_set() / irq_add() / irq_delete() . Function to add/delete interrupt

service routines. The first allows full prioritization of isr’s; irq_add() will

replace the current irs for a given interrupt, or add one at the end of the list;

irq_delete() will delete one and correct the list for the empty space.

All of these functions do something like this: disable interrupts (REG_IME =0), do their

stuff and then re-enable interrupts. It’s a good idea to do this because being

interrupted while mucking about with interrupts is not pretty. The functions

concerned with service routines will also take a function pointer (the fnptr type),

and also return a function pointer indicating the previous isr. This may be useful if you

want to try to chain them.

Tonc - GBA Programming in rot13

300 / 757

Below you can see the structs, tables, and the implementation of irq_enable() and

irq_add() . In both functions, the __irq_senders[] array is used to determine

which bit to set in which register to make sure things send interrupt requests. The

irq_add() function goes on to finding either the requested interrupt in the current

table to replace, or an empty slot to fill. The other routines are similar. If you need to

see more, look in tonc_irq.h/.c in libtonc.

//! Interrups Indices
typedef enum eIrqIndex
{
 II_VBLANK=0, II_HBLANK, II_VCOUNT, II_TIMER0,
 II_TIMER1, II_TIMER2, II_TIMER3, II_SERIAL,
 II_DMA0, II_DMA1, II_DMA2, II_DMA3,
 II_KEYPAD, II_GAMEPAK,II_MAX
} eIrqIndex;

//! Struct for prioritized irq table
typedef struct IRQ_REC
{
 u32 flag; //!< Flag for interrupt in REG_IF, etc
 fnptr isr; //!< Pointer to interrupt routine
} IRQ_REC;

// === PROTOTYPES ===

IWRAM_CODE void isr_master_nest();

void irq_init(fnptr isr);
fnptr irq_set_master(fnptr isr);

fnptr irq_add(enum eIrqIndex irq_id, fnptr isr);
fnptr irq_delete(enum eIrqIndex irq_id);

fnptr irq_set(enum eIrqIndex irq_id, fnptr isr, int prio);
void irq_enable(enum eIrqIndex irq_id);
void irq_disable(enum eIrqIndex irq_id);

Tonc - GBA Programming in rot13

301 / 757

// IRQ Sender information
typedef struct IRQ_SENDER
{
 u16 reg_ofs; //!< sender reg - REG_BASE
 u16 flag; //!< irq-bit in sender reg
} ALIGN4 IRQ_SENDER;

// === GLOBALS ==

// One extra entry for guaranteed zero
IRQ_REC __isr_table[II_MAX+1];

static const IRQ_SENDER __irq_senders[] =
{
 { 0x0004, 0x0008 }, // REG_DISPSTAT, DSTAT_VBL_IRQ
 { 0x0004, 0x0010 }, // REG_DISPSTAT, DSTAT_VHB_IRQ
 { 0x0004, 0x0020 }, // REG_DISPSTAT, DSTAT_VCT_IRQ
 { 0x0102, 0x0040 }, // REG_TM0CNT, TM_IRQ
 { 0x0106, 0x0040 }, // REG_TM1CNT, TM_IRQ
 { 0x010A, 0x0040 }, // REG_TM2CNT, TM_IRQ
 { 0x010E, 0x0040 }, // REG_TM3CNT, TM_IRQ
 { 0x0128, 0x4000 }, // REG_SCCNT_L BIT(14) // not sure
 { 0x00BA, 0x4000 }, // REG_DMA0CNT_H, DMA_IRQ>>16
 { 0x00C6, 0x4000 }, // REG_DMA1CNT_H, DMA_IRQ>>16
 { 0x00D2, 0x4000 }, // REG_DMA2CNT_H, DMA_IRQ>>16
 { 0x00DE, 0x4000 }, // REG_DMA3CNT_H, DMA_IRQ>>16
 { 0x0132, 0x4000 }, // REG_KEYCNT, KCNT_IRQ
 { 0x0000, 0x0000 }, // cart: none
};

// === FUNCTIONS ==

//! Enable irq bits in REG_IE and sender bits elsewhere
void irq_enable(enum eIrqIndex irq_id)
{
 u16 ime= REG_IME;
 REG_IME= 0;

 const IRQ_SENDER *sender= &__irq_senders[irq_id];
 (u16)(REG_BASE+sender->reg_ofs) |= sender->flag;

 REG_IE |= BIT(irq_id);
 REG_IME= ime;
}

//! Add a specific isr
fnptr irq_add(enum eIrqIndex irq_id, fnptr isr)
{
 u16 ime= REG_IME;

Tonc - GBA Programming in rot13

302 / 757

The master interrupt service routine

The main task of the master ISR is to seek out the raised interrupt in ___isr_table ,

and acknowledge it in both REG_IF and REG_IFBIOS . If there is an irq-specific service

routine, it should call it; otherwise, it should just exit to BIOS again. In C, it would look

something like this.

 REG_IME= 0;

 int ii;
 u16 irq_flag= BIT(irq_id);
 fnptr old_isr;
 IRQ_REC *pir= __isr_table;

 // Enable irq
 const IRQ_SENDER *sender= &__irq_senders[irq_id];
 (u16)(REG_BASE+sender->reg_ofs) |= sender->flag;
 REG_IE |= irq_flag;

 // Search for previous occurance, or empty slot
 for(ii=0; pir[ii].flag; ii++)
 if(pir[ii].flag == irq_flag)
 break;

 old_isr= pir[ii].isr;
 pir[ii].isr= isr;
 pir[ii].flag= irq_flag;

 REG_IME= ime;
 return old_isr;
}

Tonc - GBA Programming in rot13

303 / 757

// This is mostly what libtonc's isr_master does, but
// you really need asm for the full functionality
IWRAM_CODE void isr_master_c()
{
 u32 ie= REG_IE;
 u32 ieif= ie & REG_IF;
 IRQ_REC *pir;

 // (1) Acknowledge IRQ for hardware and BIOS.
 REG_IF = ieif;
 REG_IFBIOS |= ieif;

 // (2) Find raised irq
 for(pir= __isr_table; pir->flag!=0; pir++)
 if(pir->flag & ieif)
 break;

 // (3) Just return if irq not found in list or has no isr.
 if(pir->flag == 0 || pir->isr == NULL)
 return;

 // --- If we're here have an interrupt routine ---
 // (4a) Disable IME and clear the current IRQ in IE
 u32 ime= REG_IME;
 REG_IME= 0;
 REG_IE &= ~ieif;

 // (5a) CPU back to system mode
 //> *(--sp_irq)= lr_irq;
 //> *(--sp_irq)= spsr
 //> cpsr &= ~(CPU_MODE_MASK | CPU_IRQ_OFF);
 //> cpsr |= CPU_MODE_SYS;
 //> *(--sp_sys) = lr_sys;

 pir->isr(); // (6) Run the ISR

 REG_IME= 0; // Clear IME again (safety)

 // (5b) Back to irq mode
 //> lr_sys = *sp_sys++;
 //> cpsr &= ~(CPU_MODE_MASK | CPU_IRQ_OFF);
 //> cpsr |= CPU_MODE_IRQ | CPU_IRQ_OFF;
 //> spsr = *sp_irq++
 //> lr_irq = *sp_irq++;

 // (4b) Restore original ie and ime
 REG_IE= ie;
 REG_IME= ime;
}

Tonc - GBA Programming in rot13

304 / 757

Most of these points have been discussed already, so I won’t repeat them again. Do

note the difference is acknowledging REG_IF and REG_IFBIOS : the former uses a

simple assignment and the latter an |=. Steps 4, 5 and 6 only execute if the current IRQ

has its own service routine. Steps 4a and 5a work as initialization steps to ensure that

the ISR (step 6) can work in CPU mode and that it can’t be interrupted unless it asks

for it. Steps 4b and 5b unwind 4a and 5a.

This routine would work fine in C, were it not for items 5a and 5b. These are the code

to set/restore the CPU mode to system/irq mode, but the instructions necesasry for

that aren’t available in C. Another problem is that the link registers (these are used to

hold the return addresses of functions) have to be saved somehow, and these

definitely aren’t available in C.

Note: I said registers, plural! Each CPU mode has its own stack and link register, and

even though the names are the same (lr and sp), they really aren’t identical.

Usually a C routine will save lr on its own, but since you need it twice now it’s very

unsafe to leave this up to the compiler. Aside from that, you need to save the saved

program status register spsr , which indicates the program status when the interrupt

occurred. This is another thing that C can’t really do. As such, assembly is required for

the master ISR.

So, assembly it is then. The function below is the assembly equivalent of

irs_master_c() . It is almost a line by line translation, although I am making use of a

few features of the instruction set the compiler wont’t or can’t. I don’t expect you to

really understand everything written here, but with some imagination you should be

able to follow most of it. Teaching assembly is way beyond the scope of this chapter,

but worth the effort in my view. Tonc’s assembly chapter should give you the

necessary information to understand most of it and shows where to go to learn more.

Tonc - GBA Programming in rot13

305 / 757

 .file "tonc_isr_master.s"
 .extern __isr_table;

/*! \fn IWRAM_CODE void isr_master()
 \brief Default irq dispatcher (no automatic nesting)
*/
 .section .iwram, "ax", %progbits
 .arm
 .align
 .global isr_master

 @ --- Register list ---
 @ r0 : ®_IE
 @ r1 : __isr_table / isr
 @ r2 : IF & IE
 @ r3 : tmp
 @ ip : (IF<<16 | IE)

isr_master:
 @ Read IF/IE
 mov r0, #0x04000000
 ldr ip, [r0, #0x200]!
 and r2, ip, ip, lsr #16 @ irq= IE & IF

 @ (1) Acknowledge irq in IF and for BIOS
 strh r2, [r0, #2]
 ldr r3, [r0, #-0x208]
 orr r3, r3, r2
 str r3, [r0, #-0x208]

 @ (2) Search for irq.
 ldr r1, =__isr_table
.Lirq_search:
 ldr r3, [r1], #8
 tst r3, r2
 bne .Lpost_search @ Found one, break off search
 cmp r3, #0
 bne .Lirq_search @ Not here; try next irq

 @ (3) Search over : return if no isr, otherwise continue.
.Lpost_search:
 ldrne r1, [r1, #-4] @ isr= __isr_table[ii-1].isr
 cmpne r1, #0
 bxeq lr @ If no isr: quit

 @ --- If we're here, we have an isr ---

 @ (4a) Disable IME and clear the current IRQ in IE
 ldr r3, [r0, #8] @ Read IME
 strb r0, [r0, #8] @ Clear IME

Tonc - GBA Programming in rot13

306 / 757

NESTED IRQS ARE NASTY

Making a nested interrupt routine work is not a pleasant exercise when you only

partially know what you’re doing. For example, that different CPU modes used

different stacks took me a while to figure out, and it took me quite a while to

realize that the reason my nested isrs didn’t work was because there are

different link registers too.

The isr_master_nest is largely based on libgba’s interrupt dispatcher, but also

borrows information from GBATEK and A. Bilyk and DekuTree’s analysis of the

 bic r2, ip, r2
 strh r2, [r0] @ Clear current irq in IE

 mrs r2, spsr
 stmfd sp!, {r2-r3, ip, lr} @ sprs, IME, (IE,IF), lr_irq

 @ (5a) Set mode to sys
 mrs r3, cpsr
 bic r3, r3, #0xDF
 orr r3, r3, #0x1F
 msr cpsr, r3

 @ (6) Call isr
 stmfd sp!, {r0,lr} @ ®_IE, lr_sys
 mov lr, pc
 bx r1
 ldmfd sp!, {r0,lr} @ ®_IE, lr_sys

 @ --- Unwind ---
 strb r0, [r0, #8] @ Clear IME again (safety)
 @ (5b) Reset mode to irq
 mrs r3, cpsr
 bic r3, r3, #0xDF
 orr r3, r3, #0x92
 msr cpsr, r3

 @ (4b) Restore original spsr, IME, IE, lr_irq
 ldmfd sp!, {r2-r3, ip, lr} @ sprs, IME, (IE,IF), lr_irq
 msr spsr, r2
 strh ip, [r0]
 str r3, [r0, #8]

 bx lr

Tonc - GBA Programming in rot13

307 / 757

whole thing as described in forum:4063. Also invaluable was the home-use

debugger version of no$gba, hurray for breakpoints.

If you want to develop your own interrupt routine, these sources will help you

immensely and will keep the loss of sanity down to somewhat acceptable

levels.

DEPRECATION NOTICE

I used to have a different master service routine that took care of nesting and

prioritizing interrupts automatically. Because it was deemed too complicated, it

has been replaced with this one.

Nested interrupts are still possible, but you have to indicate interruptability

inside the isr yourself now.

Nested interrupt demo

Today’s demo shows a little bit of everything described above:

It’ll display a color gradient on the screen through the use of an HBlank

interrupt.

It will allow you to toggle between two different master isrs: The switchboard

isr_master which routes the program flow to an HBlank isr, and an isr in C that

handles the HBlank interrupt directly. For the latter to work, we’ll need to use

ARM-compiled code, of course, and I’ll also show you how in a minute.

Finally, having a nested isr switchboard doesn’t mean much unless you can

actually see nested interrupts in action. In this case, we’ll use two interrupts:

VCount and HBlank. The HBlank isr creates a vertical color gradient. The VCount

isr will reset the color and tie up the CPU for several scanlines. If interrupts don’t

Tonc - GBA Programming in rot13

308 / 757

https://gbadev.net/forum-archive/thread/4/4063.html

nest, you’ll see the gradient stop for a while; if they do nest, it’ll continue as

normal.

And just for the hell of it, you can toggle the HBlank and VCount irqs on and off.

The controls are as follows:

A Toggles between asm switchboard and C direct isr.

B Toggles HBlank and VCount priorities.

L,R Toggles VCount and HBlank irqs on and off.

Tonc - GBA Programming in rot13

309 / 757

#include <stdio.h>
#include <tonc.h>

IWRAM_CODE void isr_master();
IWRAM_CODE void hbl_grad_direct();

void vct_wait();
void vct_wait_nest();

CSTR strings[]=
{
 "asm/nested", "c/direct",
 "HBlank", "VCount"
};

// Function pointers to master isrs.
const fnptr master_isrs[2]=
{
 (fnptr)isr_master,
 (fnptr)hbl_grad_direct
};

// VCount interrupt routines.
const fnptr vct_isrs[2]=
{
 vct_wait,
 vct_wait_nest
};

// (1) Uses tonc_isr_master.s' isr_master() as a switchboard
void hbl_grad_routed()
{
 u32 clr= REG_VCOUNT/8;
 pal_bg_mem[0]= RGB15(clr, 0, 31-clr);
}

// (2a) VCT is triggered at line 80; this waits 40 scanlines
void vct_wait()
{
 pal_bg_mem[0]= CLR_RED;
 while(REG_VCOUNT<120);
}

// (2b) As vct_wait(), but interruptable by HBlank
void vct_wait_nest()
{
 pal_bg_mem[0]= CLR_RED;
 REG_IE= IRQ_HBLANK; // Allow nested hblanks

Tonc - GBA Programming in rot13

310 / 757

 REG_IME= 1;
 while(REG_VCOUNT<120);
}

int main()
{
 u32 bDirect=0, bVctPrio= 0;

 tte_init_chr4_b4_default(0, BG_CBB(2)|BG_SBB(28));
 tte_set_drawg((fnDrawg)chr4_drawg_b4cts_fast);
 tte_init_con();
 tte_set_margins(8, 8, 128, 64);

 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 // (3) Initialize irqs; add HBL and VCT isrs
 // and set VCT to trigger at 80
 irq_init(master_isrs[0]);
 irq_add(II_HBLANK, hbl_grad_routed);
 BFN_SET(REG_DISPSTAT, 80, DSTAT_VCT);
 irq_add(II_VCOUNT, vct_wait);
 irq_add(II_VBLANK, NULL);

 while(1)
 {
 //vid_vsync();
 VBlankIntrWait();
 key_poll();

 // Toggle HBlank irq
 if(key_hit(KEY_R))
 REG_IE ^= IRQ_HBLANK;

 // Toggle Vcount irq
 if(key_hit(KEY_L))
 REG_IE ^= IRQ_VCOUNT;

 // (4) Toggle between
 // asm switchblock + hbl_gradient (red, descending)
 // or purely hbl_isr_in_c (green, ascending)
 if(key_hit(KEY_A))
 {
 bDirect ^= 1;
 irq_set_master(master_isrs[bDirect]);
 }

 // (5) Switch priorities of HBlank and VCount
 if(key_hit(KEY_B))
 {

Tonc - GBA Programming in rot13

311 / 757

The code listing above contains the main demo code, the HBlank, and VCount isrs

that will be routed and some sundry items for convenience. The C master isr called

hbl_grad_direct() is in another file, which will be discussed later.

First, the contents of the interrupt service routines (points 1 and 2). Both routines are

pretty simple: the HBlank routine (hbl_grad_routed()) uses the value of the scanline

counter to set a color for the backdrop. At the top, REG_VCOUNT is 0, so the color will

be blue; at the bottom, it’ll be 160/8=20, so it’s somewhere between blue and red:

purple. Now, you may notice that the first scanline is actually red and not blue: this is

because a) the HBlank interrupt occurs a�er the scanline (which has caused trouble

before in the DMA demo) and b) because HBlanks happen during the VBlank as well,

so that the color for line 0 is set at REG_VCOUNT =227, which will give a bright red color.

The VCount routines activate at scanline 80. They set the color to red and then waits

until scanline 120. The difference between the two is that vct_wait() just waits, but

vct_wait_nest() enables the HBlank interrupt. Remember that isr_master

disables interrupts before calling an service routine, so the latter Vcount routine

should be interrupted by hbl_grad_routed() , but the former would not. As you can

see from fig 16.1a and fig 16.1b, this is exactly what happens.

Point 3 is where the interrupts are set up in the first place. The call to irq_init()

clears the isr table and sets up the master isr. Its argument can be NULL, in which case

the tonc’s default master isr is used. The calls to irq_add() initialize the HBlank and

VCount interrupts and their service routines. If you don’t supply a service routine, the

 //irq_set(II_VCOUNT, vct_wait, bVctPrio);
 bVctPrio ^= 1;
 irq_add(II_VCOUNT, vct_isrs[bVctPrio]);
 }

 tte_printf("#{es;P}IRS#{X:32}: %s\nPrio#{X:32}: %s\nIE#{X:32}:
%04X",
 strings[bDirect], strings[2+bVctPrio], REG_IE);
 }

 return 0;
}

Tonc - GBA Programming in rot13

312 / 757

switchboard will just acknowledge the interrupt and return. There are times when this

is useful, as we’ll see in the next chapter. irq_add() already takes care of both

REG_IE and the IRQ bits in REG_DISPSTAT ; what it doesn’t do yet is set the VCount at

which the interrupt should be triggered, so this is done separately. The order of

irq_add() doesn’t really matter, but lower orders are searched first so it makes

sense to put more frequent interrupts first.

You can switch between master service routines with irq_set_master() , as is done

at point 4. Point 5 chooses between the nested and non-nested VCount routine.

Fig 16.1a: Gradient; nested

vct_wait_nested .
Fig 16.1b: Gradient; non-nested

vct_wait .
Fig 16.1c: Gradient; HBlan

master ISR in C.

This explains most of what the demo can show. For Real Life use, irq_init() and

irq_add() are pretty much all you need, but the demo shows some other interesting

things as well. Also interesting is that the result is actually a little different for VBA,

no$gba and hardware, which brings up another point: interrupts are time-critical

routines, and emulating timing is rather tricky. If something works on an emulator but

not hardware, interrupts are a good place to start looking.

This almost concludes demo section, except for one thing: the direct HBlank isr in C.

But to do that, we need it in ARM code and to make it efficient, it should be in IWRAM

as well. And here’s how we do that.

Tonc - GBA Programming in rot13

313 / 757

Using ARM + IWRAM code

The master interrupt routines have to be ARM code. As we’ve always compiled to

Thumb code, this would be something new. The reason that we’ve always compiled

to Thumb code is that the 16bit buses of the normal code sections make ARM-code

slow there. However, what we could do is put the ARM code in IWRAM, which has a

32bit bus (and no waitstates) so that it’s actually beneficial to use ARM code there.

Compiling as ARM code is actually quite simple: use -marm instead of -mthumb . The

IWRAM part is what causes the most problems. There are GCC extensions that let you

specify which section a function should be in. Tonclib has the following macros for

them:

The EWRAM/IWRAM things should be self-explanatory. The DATA_IN_x things allow

global data to be put in those sections. Note that the default section for data is IWRAM

anyway, so that may be a little redundant. EWRAM_BSS concerns uninitialized globals.

The difference with initialized globals is that they don’t have to take up space in ROM:

all you need to know is how much space you need to reserve in RAM for the array.

#define EWRAM_DATA __attribute__((section(".ewram")))
#define IWRAM_DATA __attribute__((section(".iwram")))
#define EWRAM_BSS __attribute__((section(".sbss")))

#define EWRAM_CODE __attribute__((section(".ewram"), long_call))
#define IWRAM_CODE __attribute__((section(".iwram"), long_call))

// --- Examples of use: ---
// Declarations
extern EWRAM_DATA u8 data[];
IWRAM_CODE void foo();

// Definitions
EWRAM_DATA u8 data[8]= { ... };

IWRAM_CODE void foo()
{

}

Tonc - GBA Programming in rot13

314 / 757

The function variants also need the long_call attribute. Code branches have a

limited range and section branches are usually too far to happen by normal means

and this is what makes it work. You can compare them with ‘far’ and ‘near’ that used

to be present in PC programming.

It should be noted that these extensions can be somewhat fickle. For one thing, the

placement of the attributes in the declarations and definitions seems to matter. I

think the examples given work, but if they don’t try to move them around a bit and

see if that helps. A bigger problem is that the long_call attribute doesn’t always want

to work. Previous experience has led me to believe that the long_call is ignored

unless the definition of the function is in another file. If it’s in the same file as the

calling function, you’ll get a ‘relocation error’, which basically means that the jump is

too far. The upshot of this is that you have to separate your code depending on

section as far as functions are concerned. Which works out nicely, as you’ll want to

separate ARM code anyway.

So, for ARM/IWRAM code, you need to have a separate file with the routines, use the

IWRAM_CODE macro to indicate the section, and use -marm in compilation. It is also a

good idea to add -mlong-calls too, in case you ever want to call ROM functions from

IWRAM. This option makes every call a long call. Some toolchains (including DKP)

have set up their linkscripts so that files with the extension .iwram.c automatically go

into IWRAM, so that IWRAM_CODE is only needed for the declaration.

In this case, that’d be the file called isr.iwram.c. This contains a simple master isr in C,

and only takes care of the HBlank and acknowledging the interrupts.

Tonc - GBA Programming in rot13

315 / 757

FLAGS FOR ARM+IWRAM COMPILATION

Replace the ‘-mthumb’ in your compilation flags by ‘-marm -mlong-calls’. For

example:

For more details, look at the makefile for this project.

#include <tonc.h>

IWRAM_CODE void hbl_grad_direct();

// an interrupt routine purely in C
// (make SURE you compile in ARM mode!!)
void hbl_grad_direct()
{
 u32 irqs= REG_IF & REG_IE;

 REG_IFBIOS |= irqs;
 if(irqs & IRQ_HBLANK)
 {
 u32 clr= REG_VCOUNT/8;
 pal_bg_mem[0]= RGB15(0, clr, 0);
 }

 REG_IF= irqs;
}

CBASE := $(INCDIR) -O2 -Wall

ROM flags
RCFLAGS := $(CBASE) -mthumb-interwork -mthumb
IWRAM flags
ICFLAGS := $(CBASE) -mthumb-interwork -marm -mlong-calls

Tonc - GBA Programming in rot13

316 / 757

17. BIOS Calls

Introduction

The BIOS functions

Using BIOS calls

Demo graphs

Vsyncing part II, VBlankIntrWait

Final thoughts

Introduction

Apart from hardware interrupts, like HBlank and cartridge interrupts, there are also

things called so�ware interrupts, also known as BIOS calls. The so�ware interrupts

work very much like ordinary functions: you set-up input, call the routine, and get

some output back. The difference lies in how you reach the code; for normal functions

you just, well, jump to the routine you want. So�ware interrupts use the swi

instruction, which diverts the program flow to somewhere in BIOS, carries out the

requested algorithm and then restores the normal flow of your program. This is

similar to what hardware interrupts do, only now you raise the interrupt

programmatically. Hence: so�ware interrupt.

The GBA BIOS has 42 so�ware interrupts, with basic routines for copying, math

(division, square root), affine transformations for sprites and backgrounds,

decompression among others. There are also some very special functions like the

IntrWait routines, which can stop the CPU until a hardware interrupt occurs. The

VBlank variant is highly recommended, which is what makes this chapter important.

Tonc - GBA Programming in rot13

317 / 757

Using so�ware interrupts isn’t too hard if it weren’t for one thing: the swi instruction

itself. This again requires some assembly. However, not much assembly, and it’s easy

to write C wrappers for them, which we’ll also cover here.

The BIOS functions

Calling the BIOS functions can be done via the ‘ swi n ’ instruction, where n is the

BIOS call you want to use. Mind you, the exact numbers you need to use depends on

whether your code is in ARM or Thumb state. In Thumb the argument is simply the n

itself, but in ARM you need to use n<<16. Just like normal functions, the BIOS calls can

have input and output. The first four registers (r0-r3) are used for this purpose; though

the exact purpose and the number of registers differ for each call.

Here’s a list containing the names of each BIOS call. I am not going to say what each of

them does since other sites have done that already and it seems pointless to copy

their stuff verbatim. For full descriptions go to GBATEK, for example. I will give a

description of a few of them so you can get a taste of how they work.

Full list

id Name id Name

0x00 So�Reset 0x08 Sqrt

0x01 RegisterRamReset 0x09 ArcTan

0x02 Halt 0x0A ArcTan2

0x03 Stop 0x0B CPUSet

0x04 IntrWait 0x0C CPUFastSet

0x05 VBlankIntrWait 0x0D BiosChecksum

0x06 Div 0x0E BgAffineSet

0x07 DivArm 0x0F ObjAffineSet

Tonc - GBA Programming in rot13

318 / 757

https://problemkaputt.de/gbatek.htm

0x10 BitUnPack 0x18 Diff16bitUnFilter

0x11 LZ77UnCompWRAM 0x19 SoundBiasChange

0x12 LZ77UnCompVRAM 0x1A SoundDriverInit

0x13 HuffUnComp 0x1B SoundDriverMode

0x14 RLUnCompWRAM 0x1C SoundDriverMain

0x15 RLUnCompVRAM 0x1D SoundDriverVSync

0x16 Diff8bitUnFilterWRAM 0x1E SoundChannelClear

0x17 Diff8bitUnFilterVRAM 0x1F MIDIKey2Freq

0x20 MusicPlayerOpen 0x28 SoundDriverVSyncOff

0x21 MusicPlayerStart 0x29 SoundDriverVSyncOn

0x22 MusicPlayerStop 0x2A GetJumpList

0x23 MusicPlayerContinue

0x24 MusicPlayerFadeOut

0x25 MultiBoot

0x26 HardReset

0x27 CustomHalt

Div, Sqrt, Arctan2 and ObjAffineSet descriptions

0x06: Div

Input:

r0: numerator

r1: denominator

Output:

r0: numerator / denominator

r1: numerator % denominator

Tonc - GBA Programming in rot13

319 / 757

r3: abs(numerator / denominator)

Note: do NOT divide by zero!

0x08: Sqrt

Input:

r0: num, a unsigned 32-bit integer

Output:

r1: sqrt(num)

0x0a: ArcTan2

Input:

r0: x, a signed 16bit number (s16)

r1: y, a signed 16bit number (s16)

Output:

r0: x≥0 : θ= arctan(y/x) ∨ x<0 : θ= sign(y)*(π − arctan(|y/x|).

This does the full inverse of y = x*tan(θ). The problem with the tangent is that the

domain is a semi-circle, as is the range of arc tangent. To get the full circle range,

both x and y values are required for not only their quotient, but their signs as

well. The mathematical range of θ is [−π, π⟩, which corresponds to

[−0x8000, 0x8000⟩ (or [0, 2π⟩ and [0, 0xFFFF] if you like)

0x0f: ObjAffineSet

Input:

r0: source address

r1: destination address

r2: number of calculations

Tonc - GBA Programming in rot13

320 / 757

r3: Offset of P matrix elements (2 for bgs, 8 for objects)

The source address points to an array of AFF_SRC structs (also known as

ObjAffineSource , which is a bit misleading since you can use them for backgrounds

as well). The AFF_SRC struct consist of two scales sx , sy and an angle α, which again

uses the range [0, 0xFFFF] for 2π. The resulting P:

(17.1) P = [
𝑠𝑥 ⋅ cos 𝛼 −𝑠𝑥 ⋅ sin 𝛼
𝑠𝑦 ⋅ sin 𝛼 𝑠𝑦 ⋅ cos 𝛼]

By now you should know what this does: it scales horizontally by 1/sx, vertically by

1/sy followed by a counter-clockwise rotation by α. ObjAffineSet() does almost

exactly what obj_aff_rotscale() and bg_aff_rotscale() do, except that

ObjAffineSet() can also set multiple matrices at once.

The source data is kept in ObjAffineSource (i.e., AFF_SRC) structs. Now, as the

routine sets affine matrices, you might think that the destinations are either

OBJ_AFFINE or ObjAffineDest structs. However, you’d be wrong. Well, partially

anyway. The problem is that the destination always points to a pa-element, which is

not necessarily the first element in struct. You will make the mistake of simply

supplying an OBJ_AFFINE pointer when you try to use it to fill those. Don’t say I didn’t

warn you.

Two other things need to be said here as well. First, once again we have a bit of a

misnomer: ObjAffineSet doesn’t really have much to do with objects per se, but can

be used in that capacity by setting r3 to 8 instead of 2. The second is that the routine

can also be used to set up multiple arrays via r2 . However, be careful when you do

this with devkitPro 19. ObjAffineSet() expects its source structs to be word-aligned,

which they won’t be unless you add the alignment attributes yourself.

Tonc - GBA Programming in rot13

321 / 757

Using BIOS calls

Assembly for BIOS calls

You might think this whole discussion was rather pointless since you can’t access the

registers and the swi instruction unless you use assembly, which will be pretty tough,

right? Well, no, yes and no. The necessary assembly steps for BIOS calls are actually

rather simple, and are given below.

// Source struct. Note the alignment!
typedef struct AFF_SRC
{
 s16 sx, sy;
 u16 alpha;
} ALIGN4 AFF_SRC, ObjAffineSource;

// Dst struct for background matrices
typedef struct Aff_DST
{
 s16 pa, pb;
 s16 pc, pd;
} ALIGN4 AFF_DST, ObjAffineDest;

// Dst struct for objects. Note that r1 should be
// the address of pa, not the start of the struct
typedef struct OBJ_AFFINE
{
 u16 fill0[3]; s16 pa;
 u16 fill1[3]; s16 pb;
 u16 fill2[3]; s16 pc;
 u16 fill3[3]; s16 pd;
} ALIGN4 OBJ_AFFINE;

Tonc - GBA Programming in rot13

322 / 757

This is assembly code for the GNU assembler (GAS); for Goldroad or ARM STD the

syntax is likely to be slightly different. The first thing you need to do is give some

directives, which tells some details about the following code. In this case, we use the

‘ .text ’ to put the code in the text section (ROM or EWRAM for multiboot). We also

say that the code is Thumb code by using ‘ .code 16 ’ or ‘ .thumb ’. If you place these

at the top of the file, they’ll hold for the rest of the thing. For each BIOS call, you’ll

need the following 6 items.

Word-alignment. Or at least halfword alignment, but words are probably

preferable. There are two directives for this, .align n and .balign m . The

former aligns to 2 n so requires ‘ .align 2 ’; the latter aligns to m so you can just

use ‘ balign m ’. Note that both will only work on the next piece of code or data

and no further, which is why it’s best to add it for each function.

Scope. The .global name directive makes a symbol out of name, which will

then be visible for other files in the project as well. A bit like extern or, rather,

an anti- static .

Thumb indicator It would seem that .code 16 alone isn’t enough, you also

need .thumb_func . In fact, if I read the manual correctly this one also implies

.code 16 , which would make that directive redundant.

Label. ‘name:’ marks where the symbol name starts. Obviously, to use a function

it must actually exist.

@ In tonc_bios.s

@ at top of your file
 .text @ aka .section .text
 .code 16 @ aka .thumb

@ for each swi (like division, for example)
 .align 2 @ aka .balign 4
 .global Div
 .thumb_func
Div:
 swi 0x06
 bx lr

Tonc - GBA Programming in rot13

323 / 757

BIOS call To actually activate the BIOS call, use ‘swi n’, with n the BIOS call you

want.

Return And we’re practically done already, all we have to do now is return to the

caller with ‘bx lr’.

See? It’s really not that complicated. Sometimes you might want a little more

functionality than this, but for the most part you only need two measly instructions.

The Arm Architecture Procedure Call Standard

That’s all fine and good, but that still leaves the questions of a) how do I combine this

with C code and b) where’d all the input and output go? The answer to the first is

simple: just add a function declaration like usual:

Mkay, but that still doesn’t explain where my input and output went. Well actually …

it does.

“I am not sure how clouds get formed. But the clouds know how to do it, and

that is the important thing”

Found that quote long ago in one of those Kids on Science lists, and I’m always

reminded of it when programming. The thing about computers is that they don’t

think in terms of input, output, text, pictures etc. Actually, they don’t think at all, but

that’s another story. All a computer sees is data; not even code and data, just data

since code is data too. Of course, you may not see it that way because you’re used to C

or VB or whatever, but when all is said and done, it’s all just ones and zeros. If the ones

and zeros come to the CPU via the program counter (PC register, r15) it’s code,

otherwise it’s data.

// In tonc_bios.h

int Div(int num, int denom);

Tonc - GBA Programming in rot13

324 / 757

So how does that explain the input/output? Well, it doesn’t do it directly, but it points

to how you should be looking at the situation. Consider you’re the compiler and you

have to convert some bloke’s C code into machine code (or assembly, which is almost

the same thing) that a CPU can actually use. You come across the line “ q=

Div(x,y); ”. What does Div() do? Well, if there’s no symbol in the C-file for that

name (and there isn’t, as it’s in tonc_bios.s), you wouldn’t know. Technically, you don’t

even know what it is. But Div knows, and that’s the important thing. At least, that’s

almost how it works. The compiler should still need to know what sort of critter Div

is to avoid confusion: A variable? A macro? A function? That’s what the declarations

are for. And the declaration above says that Div is a function that expects two signed

integers and returns one too. As far as the compiler’s concerned, it ends there.

Of course, that still doesn’t explain how the compiler knows what do to. Well, it simply

follows the ARM Architecture Procedure Call Standard, AAPCS for short. This states how

functions should pass arguments to each other. This PDF document can be found

here and if you’re contemplating assembly is a very worthwhile download.

For now, here’s what you need to know. The first four arguments are placed in the first

four registers r0-r3 , every one a�er that is placed on the stack. The output value is

placed in r0 . As long as you take the argument list of the BIOS call as the list in the

declaration, it should work fine. Note that the declaration also takes care of any

casting that needs to be done. It is important that you realize just what the

declaration means here: it determines how the function is called, not the actual

definition assembly function. Or even C function. Things can go very wrong if you

mess up the declaration.

Another thing the AAPCS tells you is that register r0-r3 (and r12) are so-called scratch

registers. This means that the caller expects the called function to mess these up. A�er

the function returns their contents are to be considered undefined – unless you’re the

one writing both asm functions, in which case there may be certain … allowances.

Having these as scratch registers means that a function can use them without needing

to push and pop the originals on and off the stack, thus saving time. This does not

hold for the other registers, though: r4-r11, r13, r14 must be returned in the way the

Tonc - GBA Programming in rot13

325 / 757

https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs32.pdf

calling function got them. The last one, r15, is exempt from this, as you shouldn’t

screw around with the program counter.

Inline assembly

Actually, you don’t even need a full assembly file for BIOS calls: you could use inline

assembly. With inline assembly, you can mix C code and assembly code. Since the

functions are usually rather simple, you could use something like

This does exactly the same thing as the assembly version of Div . However, you need

to be careful with inline assembly because you can’t see the code around it and might

accidentally clobber some registers that you shouldn’t be messing with, thus ruining

the rest of the code. For the full rules on inline assembly, see the GCC manual. You can

also find a short faq on inline assembly use at devrs.com. The ‘proper’ syntax of inline

assembly isn’t the friendliest in the world, mind you, and there are other problems as

well. Consider the C function given above. Since it doesn’t really do anything itself,

the optimiser may be tempted to throw it away. This will happen with -O3 unless you

take appropriate precautions. Also, the compiler will complain that the function

doesn’t return anything, even though it should. It has a point, of course, considering

that part is taken care of inside the assembly block. There are probably a few other

problems that I’m not aware of at present; in the end it’s easier to use the full-

assembly versions so you know what’s happening.

The swi_call macro

On the other hand, there are also BIOS calls that use no arguments, which can be run

via a mere macro. The swi_call(x) macro will run the BIOS call x, and can be found

in swi.h, and in Wintermute’s libgba, which is where I got it from. It’s a little more

refined than the Div function given above. First, it uses the volatile keyword,

which should keep your optimizer from deleting the function (just like we did for all

// In a C file
int Div(int num, int denom)
{ asm("swi 0x06"); }

Tonc - GBA Programming in rot13

326 / 757

http://www.gnu.org/manual/manual.html
http://www.devrs.com/gba/
https://devkitpro.org/

the registers). Secondly, it uses a clobber list (a�er the triple colons). This will tell the

compiler which registers are used by the inline assembly. Thirdly, it will take care of

the Thumb/ARM switch automatically. If you use the -mthumb compiler option, the

compiler will define __thumb__ for us, which we will now use to get the right swi-

number. Clever, eh?

By the way, if you want more information about assembly, you can find a number of

tutorials on ARM assembly at gbadev.org. Another nice way to learn is by using the -S

compiler flag, which will give you a compiler-generated assembly file of your code.

This will show you exactly what the compiler does to your code, including

optimisation steps and use of the AAPCS. Really, you should see this at least once.

It may also help to use -fverbose-asm , which will write out the original variable

names and operations in comments. Usually in the right place too. Also handy is the

ASM_CMT() macro shown below. This will give you some hints as to where specific

blocks of code are. But again, not all the time.

Demo graphs

To illustrate the use of BIOS calls I am using Div, Sqrt, ArcTan and ObjAffineSet to

create graphs if a hyperbole, square root, sine and cosine. I’ve scaled them in such a

way so that they fit nicely on the 240x160 screen. The definitions are

#ifndef(__thumb__)
#define swi_call(x) asm volatile("swi\t"#x ::: "r0", "r1", "r2", "r3")
#else
#define swi_call(x) asm volatile("swi\t"#x"<<16" ::: "r0", "r1", "r2",
"r3")
#endif

#define ASM_CMT(str) asm volatile("@ " str)

//In code. Outputs "@ Hi, I'm here!" in the generated asm
ASM_CMT("Hi, I'm here!");

Tonc - GBA Programming in rot13

327 / 757

Fig 17.1: div, sqrt, arctan2, sin and cos

graphs, courtesy of BIOS.

division y= 2560/x

square

root
y= 160*sqrt(x/240)

arctan
y= 80 + 64*(2/π)*

(arctan(x-120)/16))

sine y= 1*sy*sin(2π·x/240)

;

sy=

80

cosine y= 80*sx*cos(2π·x/240)
; sx=

1

and these functions have been plotted in fig 1. If you’re wondering how I got the sine

and cosine values, as there are no calls for those, take a look at eq 1 again. The P

matrix has them. I’ve used pa for the cosine and pc for the sine. Note that the graphs

appear instantly; there is no sense of loading time while the graphs are plotted. An

earlier version of the mode 7 demo (or PERNs mode 7 demo) used calls to the actual

division, sine and cosine functions to build up the LUTs. Even with the symmetry rules

of trigonometry, sin() and cos() are still noticeably slower than the BIOS

equivalent.

Tonc - GBA Programming in rot13

328 / 757

#include <stdio.h>
#include <tonc.h>

// === swi calls ==

// Their assembly equivalents can be found in tonc_bios.s

void VBlankIntrWait()
{ swi_call(0x05); }

int Div(int num, int denom)
{ swi_call(0x06); }

u32 Sqrt(u32 num)
{ swi_call(0x08); }

s16 ArcTan2(s16 x, s16 y)
{ swi_call(0x0a); }

void ObjAffineSet(const AFF_SRC *src, void *dst, int num, int offset)
{ swi_call(0x0f); }

// === swi demos ==

// NOTE!
// To be consistent with general mathematical graphs, the
// y-axis has to be reversed and the origin moved to the
// either the bottom or mid of the screen via
// "iy = H - y"
// or
// "iy = H/2 - y"
//
// functions have been scaled to fit the graphs on the 240x160 screen

// y= 2560/x
void div_demo()
{
 int ix, y;

 for(ix=1; ix<SCREEN_WIDTH; ix++)
 {
 y= Div(0x0a000000, ix)>>16;
 if(y <= SCREEN_HEIGHT)
 m3_plot(ix, SCREEN_HEIGHT - y, CLR_RED);
 }
 tte_printf("#{P:168,132;ci:%d}div", CLR_RED);
}

// y= 160*sqrt(x/240)

Tonc - GBA Programming in rot13

329 / 757

void sqrt_demo()
{
 int ix, y;
 for(ix=0; ix<SCREEN_WIDTH; ix++)
 {
 y= Sqrt(Div(320*ix, 3));
 m3_plot(ix, SCREEN_HEIGHT - y, CLR_LIME);
 }
 tte_printf("#{P:160,8;ci:%d}sqrt", CLR_LIME);
}

// y = 80 + tan((x-120)/16) * (64)*2/pi
void arctan2_demo()
{
 int ix, y;
 int ww= SCREEN_WIDTH/2, hh= SCREEN_HEIGHT/2;
 for(ix=0; ix < SCREEN_WIDTH; ix++)
 {
 y= ArcTan2(0x10, ix-ww);
 m3_plot(ix, hh - y/256, CLR_MAG);
 }
 tte_printf("#{P:144,40;ci:%d}atan", CLR_MAG);
}

// wX= 1, wY= 80
// cc= 80*sx*cos(2*pi*alpha/240)
// ss= 1*sy*sin(2*pi*alpha/240)
void aff_demo()
{
 int ix, ss, cc;
 ObjAffineSource af_src= {0x0100, 0x5000, 0}; // sx=1, sy=80,
alpha=0
 ObjAffineDest af_dest= {0x0100, 0, 0, 0x0100}; // =I (redundant)

 for(ix=0; ix<SCREEN_WIDTH; ix++)
 {
 ObjAffineSet(&af_src, &af_dest, 1, BG_AFF_OFS);
 cc= 80*af_dest.pa>>8;
 ss= af_dest.pc>>8;
 m3_plot(ix, 80 - cc, CLR_YELLOW);
 m3_plot(ix, 80 - ss, CLR_CYAN);
 // 0x010000/0xf0 = 0x0111.111...
 af_src.alpha += 0x0111;
 }

 tte_printf("#{P:48,38;ci:%d}cos", CLR_YELLOW);
 tte_printf("#{P:72,20;ci:%d}sin", CLR_CYAN);
}

// === main ===

Tonc - GBA Programming in rot13

330 / 757

Vsyncing part II, VBlankIntrWait

Until now, all demos used the function vid_vsync to synchronize the action to the

VBlank (see the graphics introduction). What this did was to check REG_VCOUNT and

stay in a while loop until the next VBlank came along. While it works, it’s really a pretty

poor way of doing things for two reasons. First, because of the potential problem

when you are in a VBlank already, but that one had been covered. The second reason

is more important: while you’re in the while loop, you’re wasting an awful lot of CPU

cycles, all of which slurp battery power.

There are a number of BIOS calls that can put the CPU into a low power mode, thus

sparing the batteries. The main BIOS call for this is Halt (#2), but what we’re currently

interested in is VBlankIntrWait (#5). This will set things up to wait until the next VBlank

interrupt. To use it, you have to have interrupts switched on, of course, in particular

the VBlank interrupt. As usual, the VBlank isr will have to acknowledge the interrupt

by writing to REG_IF . But it also has to write to its BIOS equivalent, REG_IFBIOS . This

little bit of information is a little hard to find elsewhere (in part because few tutorials

int main()
{
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 tte_init_bmp_default(3);
 tte_init_con();

 div_demo();
 sqrt_demo();
 aff_demo();

 arctan2_demo();

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

331 / 757

Fig 17.2: swi_vsync demo.

cover BIOS calls); for more info, see GBATEK, BIOS

Halt Functions. Fortunately for us, the

switchboard presented in the interrupts section

has this built in.

To show you how to set it up, see the swi_vsync

demo. The most important code is given below; a

screen shot can be found in fig 2. What it does is

give a rotating metroid sprite with an angular

velocity of π rad/s (this corresponds to Δθ = 0x10000/4/60= 0x0111). The basic steps

for interrupt handling should be familiar, except the fact that there’s no real VBlank isr

because the switchboard already takes care of acknowledging the interrupt. A�er that

it’s pretty simple: we use ObjAffineSet() to calculate the required affine matrix and

VBlankIntrWait puts the CPU on Halt until the next VBlank interrupt.

PREFER VBLANKINTRWAIT() OVER VID_VSYNC()

// inside main, after basic initialisations

AFF_SRC as= { 0x0100, 0x0100, 0 };
OBJ_AFFINE oaff;

// enable isr switchboard and VBlank interrupt
irq_init(NULL);
irq_add(II_VBLANK, NULL);

while(1)
{
 VBlankIntrWait();

 // Full circle = 10000h
 // 10000h/4/60= 111h -> 1/4 rev/s = 1 passing corner/s
 as.alpha += 0x0111;
 ObjAffineSet(&as, &oaff.pa, 1, 8);

 obj_aff_copy(obj_aff_mem, &oaff, 1);
}

Tonc - GBA Programming in rot13

332 / 757

https://problemkaputt.de/gbatek.htm#bioshaltfunctions
https://problemkaputt.de/gbatek.htm#bioshaltfunctions

Waiting for the VBlank via vid_vsync() (or its functional equivalent) is not a

good idea: it wastes too much battery power. The recommended procedure is

using VBlankIntrWait() to halt the processor, to be woken again on the

VBlank interrupt.

ACKNOWLEDGING INTRWAIT ROUTINES

VBlankIntrWait() is only one of the BIOS’s IntrWait() routines that can stop

the CPU until an interrupt has been raised. However, it doesn’t look at REG_IF

but at REG_IFBIOS (0300:7FF8) for the acknowledgement of the interrupt. If

your game locks up a�er trying VBlankIntrWait() , this may be why. Note that

you may find the address under other names, as there isn’t really an official one

for it.

Final thoughts

Now that you know how to use them, I should warn you that you shouldn’t go

overboard with them. It appears that the BIOS routines have been designed for space,

not speed, so they aren’t the fastest in the world. Not only that, there’s an overhead of

at least 60 cycles for each one (mind you, normal functions seem to have a 30 cycle

overhead). If speed is what you’re a�er then the BIOS calls may not be the best thing;

you can probably find faster routines on the web … somewhere. This doesn’t mean

that the BIOS routines can’t be useful, of course, but if you have alternative methods,

use those instead. Just remember that that’s an optimisation step, which you

shouldn’t do prematurely.

Tonc - GBA Programming in rot13

333 / 757

18. Beep! GBA sound introduction

Introduction to GBA sound

Sound and Waves

GBA sound

Demo time

Introduction to GBA sound

Apart from graphics and interaction, there is one other sense important to games:

audio. While graphics may set the scene, sound sets the mood, which can be even

more important that the graphics. Try playing Resident Evil with, say, “Weird Al”

Yankovic playing: it simply doesn’t work, the atmosphere is lost.

The GBA has six sound channels. The first four are roughly the same as the original

Game Boy had: two square wave generators (channels 1 and 2), a sample player

(channel 3) and a noise generator (channel 4). Those are also referred to as the DMG

channels a�er the Game Boy’s code name “Dot Matrix Game.” New are two Direct

Sound channels A and B (not to be confused with Microso�’s DirectSound, the DirectX

component). These are 8-bit digital pulse code modulation (PCM) channels.

I should point out that I really know very little about sound programming, mostly

because I’m not able to actually put together a piece of music (it’s kinda hard to do

that when you already have music playing). If you want to really learn about sound

programming, you should look at Belogic.com, where almost everybody got their

information from, and deku.gbadev.org, which shows you how to build a sound mixer.

Both of these sites are excellent.

I may not know much about sound creation/programming, but at its core sound is a

wave in matter; waves are mathematical critters, and I do know a thing or two about

Tonc - GBA Programming in rot13

334 / 757

http://www.belogic.com/
https://stuij.github.io/deku-sound-tutorial/

math, and that’s kind of what I’ll do here for the square wave generators.

Sound and Waves

Consider if you will, a massive sea of particles, all connected to their neighbours with

little springs. Now give one of them a little push. In the direction of the push, the

spring compresses and relaxes, pushing the original particle back to its normal

position and passing on the push to the neighbour; this compresses the next spring

and relays the push to its neighbour, and so on and so on.

This is a prime example of wave behaviour. Giving a precise definition of a wave that

covers all cases is tricky, but in essence, a wave is a transferred disturbance. There are

many kinds of waves; two major classes are longitudinal waves, which oscillate in the

direction of travel, and transverse waves, which are perpendicular to it. Some waves

are periodic (repeating patterns over time or space), some aren’t. Some travel, some

don’t.

Waves

The canonical wave is the harmonic wave. This is any function ψ(x) that’s a solution to

eq 18.1. The name of the variable doesn’t really matter, but usually it’s either spatial

(x, y, z) or temporal (t), or all of these at the same time. The general solution can be

found in eq 18.2. Or perhaps I should say solutions, as there are many ways of writing

them down. They’re all equivalent though, and you can go from one to the other with

some trickery that does not concern us at this moment.

(18.1) d2

d𝑥2 𝜓(𝑥) + 𝑘2𝜓(𝑥) = 0

General solution(s):

Tonc - GBA Programming in rot13

335 / 757

Fig 18.1: a harmonic wave

(18.2)

𝜓(𝑥) = 𝐴 ⋅ 𝑐𝑜𝑠(𝑘𝑥) + 𝐵 ⋅ 𝑠𝑖𝑛(𝑘𝑥)
= 𝐶 ⋅ 𝑒𝑖𝑘𝑥 + 𝐷 ⋅ 𝑒−𝑖𝑘𝑥

= 𝐸 ⋅ 𝑠𝑖𝑛(𝑘𝑥 + 𝜑0)

A full wave can be described by three things. First,

there’s the amplitude A, which gives half-distance

between the minimum and maximum. Second, the

wavelength λ, which is the length a�er which the

wave repeats itself (this is tied to wave-number k= 2π/

λ). Then there’s phase constant φ0, which defines the

stating point. If the wave is in time, instead of a wavelength you have period T,

frequency f=1/T (and angular frequency ω= 2πf= 2π/T). You can see what each of these

parameters is in fig 18.1.

One of the interesting things about the wave equation is that it is a linear operation on

ψ. What that means is that any combination of solutions is also a solution; this is the

superposition principle. For example, if you have two waves ψ1 and ψ2, then Ψ = aψ1 +

bψ2 is also a wave. This may sound like a trivial thing but I assure you it’s not. The fact

that non-linear equations (and they exist too) tend to make scientists cringe a little

should tell you something about the value of linear equations.

Sound waves

Sound is also a wave. In fact, it is a longitudinal pressure wave in matter and pretty

much works as the system of particles on springs mentioned earlier with whole sets of

molecules moving back and forth. In principle, it has both spatial and temporal

structure, and things can get hideously complex if you want to deal with everything.

But I’ll keep it easy and only consider two parts: amplitude A and period and

frequency T and f. As you probably know, the tone of a sound is related to the

frequency. Human hearing has a range between 20 Hz and 20 kHz, and the higher the

frequency (that is, the more compressed the wave), the higher the tone. Most sounds

are actually a conglomeration of different waves, with different amplitudes and

Tonc - GBA Programming in rot13

336 / 757

frequencies – the superposition principle at work. The funny thing about this is that if

you added all those components up to one single function and plot it, it wouldn’t look

like a sine wave at all anymore. What’s even funnier is that you can also reverse the

process and take a function –any function– and break it up into a superposition of

sine and cosine waves, and so see what kind of frequencies your sound has. This is

called Fourier Transformation, and we’ll get to that in a minute.

Musical scale

While the full range between 20 Hz and 20 kHz is audible, only a discrete set of

frequencies are used for music, which brings us to the notion of the musical scale.

Central to these are octaves, representing a frequency doubling. Each octave is

divided into a number of different notes; 12 in Western systems, ranging from A to G,

although octave numbering starts at C for some reason. Octave 0 starts at the central

C, which has a frequency of about 262 Hz (see also table 18.1. And yes, I know there

are only 7 letters between A and G, the other notes are flats and sharps that lie

between these notes. The ‘12’ refers to the number of half-notes in an octave. The

musical scale is logarithmic; each half-note being 21/12 apart. Well, almost anyway:

for some reason, some notes don’t quite fit in exactly.

half-

note
0 1 2 3 4 5 6 7

name C C# D D# E F F# G

freq

(Hz)
261.7 277.2 293.7 311.2 329.7 349.3 370.0 392.0

Table 18.1: notes & frequencies of octave 0

Fourier transforms and the square wave

Fourier transformations are a way of going describing a function in the time domain

as a distribution of frequencies called a spectrum. They’re also one of the many ways

that professors can scare the bejebus out of young, natural-science students. Don’t

worry, I’m sure you’ll get through this section unscathed ��) . For well- to

Tonc - GBA Programming in rot13

337 / 757

Fig 18.2: a square wave

reasonably-behaved functions, you can rewrite them as series of very well-behaved

functions such as polynomials, exponentials and also waves. For example, as a

Fourier series, a function may look like eq 18.3.

(18.3) 𝑓(𝑥) = 1
2𝐴0 + ∑

𝑛 > 0
𝐴𝑚 cos (𝑚𝜔𝑡) + ∑

𝑛 > 0
𝐵𝑚 sin (𝑚𝜔𝑡)

Of course, the whole thing relies on being able to find the coefficients Am and Bm.

While it is fairly straightforward to derive the equations for them, I’ll leave that as an

exercise for the reader and just present the results in the form of eq 18.4. I should

mention that there are actually a few ways of defining Fourier transforms. For

example, there are versions that don’t integrate over [0,T], but over [−½T, ½T]; or use

the complex exponential instead of sines and cosines, but in the end they’re all doing

the same thing.

(18.4)
𝐴𝑚 = 2

𝑇 ∫0
𝑇

𝑓(𝑡)cos (𝑚𝜔𝑡)𝑑𝑡

𝐵𝑚 = 2
𝑇 ∫0

𝑇
𝑓(𝑡)sin (𝑚𝜔𝑡)𝑑𝑡

As an example, let’s take a look at the square wave

shown in fig 18.2. A square wave is on (1) for a certain

time (parameter h), then off (0) for the rest of the

cycle. It’s still a periodic wave, so it doesn’t really

matter where we place the thing along the t-axis. I

centered it on the peak for convenience: doing so

makes it a symmetrical wave which has the nice properly of removing all the anti-

symmetrical sine waves. A0=h/T because it’s the average of the function and the rest

of the Am’s follow from eq 18.4.

(18.5) 𝐴𝑚 = 2
𝜋 ⋅

sin (𝜋𝑚ℎ / 𝑇)
𝑚 = 2𝑇

ℎ
⋅
sin (𝜋ℎ / 𝑇 ⋅𝑚)
𝜋ℎ / 𝑇 ⋅𝑚

Tonc - GBA Programming in rot13

338 / 757

Am is a sinc function: sin(x)/x. For high m it approaches zero (as it should, since higher

terms should be relatively less important), but also interesting is that of the higher

terms some will also vanish because of the sine. This will happen whenever m is a

multiple of T/h.

GBA sound

Sound registers

For graphics, you only had to deal with two registers (REG_DISPCNT and REG_BGxCNT)

to get a result; for sound, you have to cover a lot of registers before you get anything.

The DMG channels each have 2 or 3 registers – some with similar functionality, some

not. Apart from that, there are four overall control registers.

The register nomenclature seems particularly vexed when it comes to sound. There

are basically two sets of names that you can find: one consisting of REG_SOUNDxCNT

followed by _L , _H and _X in a rather haphazard manner; the other one uses a

REG_SGxy and REG_SGCNTy structure (x=1, 2, 3 or 4 and y=0 or 1). I think the former is

the newer version, which is funny because the older is more consistent. Oh well. In

any case, I find neither of them very descriptive and keep forgetting which of the

L/H/X or 0/1 versions does what, so I use a third set of names based on the ones found

in tepples’ pin8gba.h, which IMHO makes more sense than the other two.

offset function old new tonc

60h
channel 1

(sqr) sweep

REG_SG10

SOUND1CNT_L REG_SND1SWEEP

62h

channel 1

(sqr) len,

duty, env

SOUND1CNT_H REG_SND1CNT

64h
channel 1

(sqr) freq, on
REG_SG11 SOUND1CNT_X REG_SND1FREQ

Tonc - GBA Programming in rot13

339 / 757

https://pineight.com/gba/

68h

channel 2

(sqr) len,

duty, env

REG_SG20 SOUND2CNT_L REG_SND2CNT

6Ch
channel 2

(sqr) freq, on
REG_SG21 SOUND2CNT_H REG_SND2FREQ

70h
channel 3

(wave) mode

REG_SG30

SOUND3CNT_L REG_SND3SEL

72h

channel 3

(wave) len,

vol

SOUND3CNT_H REG_SND3CNT

74h

channel 3

(wave) freq,

on

REG_SG31 SOUND3CNT_X REG_SND3FREQ

78h

channel 4

(noise) len,

vol, env

REG_SG40 SOUND4CNT_L REG_SND4CNT

7Ch

channel 4

(noise) freq,

on

REG_SG41 SOUND4CNT_H REG_SND4FREQ

80h
DMG master

control

REG_SGCNT0

SOUNDCNT_L REG_SNDDMGCNT

82h

DSound

master

control

SOUNDCNT_H REG_SNDDSCNT

84h sound status REG_SGCNT1 SOUNDCNT_X REG_SNDSTAT

88h bias control REG_SGBIAS SOUNDBIAS REG_SNDBIAS

Table 18.2: Sound register nomenclature.

“Oh great. This is going to be one of ‘tegel’ things isn’t it? Where you think you’ve got

something nice but different going, then later you revert to the standard terminology

to conform with the rest of the world. Right?”

Tonc - GBA Programming in rot13

340 / 757

No, I’ll stick to these names. Probably. Hopefully. … To be honest, I really don’t know

�P . This is not really a big deal, though: you can easily switch between names with a

few defines or search & replaces. Anyway, REG_SNDxFREQ contains frequency

information and REG_SNDxCNT things like volume and envelope settings; in some

cases, the bit layouts are even exactly the same. Apart from the sweep function of

channel 1, it is exactly the same as channel 2.

Master sound registers

REG_SNDDMGCNT , REG_SNDDSCNT and REG_SNDSTAT are the master sound controls;

you have to set at least some bits on each of these to get anything to work.

REG_SNDDMGCNT (SOUNDCNT_L / SGCNT0_L) @ 0400�0080h

F E D C B A 9 8 7 6 5 4 3 2 1 0
R4 R3 R2 R1 L4 L3 L2 L1 - RV - LV

bits name define description

0-

2

LV Le� volume

4-

6

RV Right volume

8-

B

L1-

L4

SDMG_LSQR1,

SDMG_LSQR2,

SDMG_LWAVE,

SDMG_LNOISE

Channels 1-4 on le�

C-

F

R1-

R4

SDMG_RSQR1,

SDMG_RSQR2,

SDMG_RWAVE,

SDMG_RNOISE

Channels 1-4 on right

REG_SNDDMGCNT controls the main volume of the DMG channels and which ones are

enabled. These controls are separate for the le� and right speakers. Below are two

macros that make manipulating the register easier. Note that they don’t actually set

the register, just combine the flags.

Tonc - GBA Programming in rot13

341 / 757

REG_SNDDSCNT (SOUNDCNT_H / SGCNT0_H) @ 0400�0082h

F E D C B A 9 8 7 6 5 4 3 2 1 0
BF BT BL BR AF AT AL AR - BV AV DMGV

bits name define description

0-

1

DMGV SDS_DMG25,

SDS_DMG50,

SDS_DMG100

DMG Volume ratio.

00: 25%

01: 50%

10: 100%

11: forbidden

2 AV SDS_A50,

SDS_A100

DSound A volume ratio. 50% if clear;

100% of set

3 BV SDS_B50,

SDS_B100

DSound B volume ratio. 50% if clear;

100% of set

8-

9

AR,

AL

SDS_AR,

SDS_AL

DSound A enable Enable DS A on right

and le� speakers

A AT SDS_ATMR0,

SDS_ATMR1

Dsound A timer. Use timer 0 (if clear) or 1

(if set) for DS A

B AF SDS_ARESET FIFO reset for Dsound A. When using

DMA for Direct sound, this will cause DMA

to reset the FIFO buffer a�er it's used.

C-

F

BR,

BL,

SDS_BR,

SDS_BL,

SDS_BTMR0,

As bits 8-B, but for DSound B

#define SDMG_SQR1 0x01
#define SDMG_SQR2 0x02
#define SDMG_WAVE 0x04
#define SDMG_NOISE 0x08

#define SDMG_BUILD(_lmode, _rmode, _lvol, _rvol) \
 (((_lvol)&7) | (((_rvol)&7)<<4) | ((_lmode)<<8) | ((_rmode)<<12))

#define SDMG_BUILD_LR(_mode, _vol) SDMG_BUILD(_mode, _mode, _vol, _vol)

Tonc - GBA Programming in rot13

342 / 757

BT,

BF

SDS_BTMR1,

SDS_BRESET

Don’t know too much about REG_SNDDSCNT , apart from that it governs PCM sound,

but also has some DMG sound bits for some reason. REG_SNDSTAT shows the status of

the DMG channels and enables all sound. If you want to have any sound at all, you

need to set bit 7 there.

REG_SNDSTAT (SOUNDCNT_X / SGCNT1) @ 0400�0084h

F E D C B A 9 8 7 6 5 4 3 2 1 0
- MSE - 4A 3A 2A 1A

bits name define description

0-

3

1A-

4A

SSTAT_SQR1,

SSTAT_SQR2,

SSTAT_WAVE,

SSTAT_NOISE

Active channels. Indicates which DMG

channels are currently playing. They do

not enable the channels; that's what

REG_SNDDMGCNT is for.

7 MSE SSTAT_DISABLE,

SSTAT_ENABLE

Master Sound Enable. Must be set if any

sound is to be heard at all. Set this

before you do anything else: the other

registers can't be accessed otherwise,

see GBATEK for details.

SOUND REGISTER ACCESS

Emulators may allow access to sound registers even if sound is disabled

(REG_SNDSTAT {7} is clear), but hardware doesn’t. Always enable sound before

use.

GBA Square wave generators

The GBA has two square sound generators, channels 1 and 2. The only difference

between them is channel 1’s frequency sweep, which can make the frequency rise or

Tonc - GBA Programming in rot13

343 / 757

drop exponentially as it’s played. That’s all done with REG_SND1SWEEP . REG_SNDxCNT

controls the wave’s length, envelope and duty cycle. Length should be obvious. The

envelope is basically the amplitude as function of time: you can make it fade in

(attack), remain at the same level (sustain) and fade out again (decay). The envelope

has 16 volume levels and you can control the starting volume, direction of the

envelope and the time till the next change. Volumes are linear: 12 produces twice the

amplitude of 6. The duty refers to the ratio of the ‘on’ time and the period, in other

words D = h/T.

Of course, you can control the frequency as well, namely with REG_SNDxFREQ .

However, it isn’t the frequency that you enter in this field. It’s not exactly the period

either; it’s something I’ll refer to as the rate R. The three quantities are related, but

different in subtle ways and chaos ensues when they’re confused – and they o�en are

in documentation, so be careful. The relation between frequency f and rate R is

described by eq 18.6; if the rate goes up, so does the frequency. Since R ∈ [0, 2047],

the range of frequencies is [64 Hz, 131 kHz]. While this spans ten octaves, the highest

ones aren’t of much use because the frequency steps become too large (the

denominator in eq eq 18.6 approaches 0).

(18.6a) 𝑓(𝑅) = 217

2048 − 𝑅

(18.6b) 𝑅(𝑓) = 2048 − 217

𝑓

Square sound registers

Both square-wave generators have registers REG_SNDxCNT for envelope/length/duty

control and REG_SNDxFREQ for frequency control. Sound 1 also has sweep control in

the form of REG_SND1SWEEP . Look in table 18.2 for the traditional names; note that in

traditional nomenclature the suffixes for control and frequency are different for

channels 1 and 2, even though they have exactly the same function.

Tonc - GBA Programming in rot13

344 / 757

REG_SND1CNT (SOUND1CNT_H / SG10_H) @ 0400�0062h
and
REG_SND2CNT (SOUND2CNT_L / SG20_L) @ 0400�0068h

F E D C B A 9 8 7 6 5 4 3 2 1 0
EIV ED EST D L

bits name define description

0-

5

L SSQR_LEN# Sound Length. This is a write-only field

and only works if the channel is timed

(REG_SNDxFREQ{E}). The length itself is

actually (64−L)/256 seconds for a [3.9,

250] ms range.

6-

7

D SSQR_DUTY1_8,

SSQR_DUTY1_4,

SSQR_DUTY1_2,

SSQR_DUTY3_4,

SSQR_DUTY#

Wave duty cycle. Ratio between on and

of times of the square wave. Looking

back at eq 18.2, this comes down to

D=h/T. The available cycles are 12.5%,

25%, 50%, and 75% (one eighth, quarter,

half and three quarters).

8-

A

EST SSQR_TIME# Envelope step-time. Time between

envelope changes: Δt = EST/64 s.

B ED SSQR_DEC,

SSQR_INC

Envelope direction. Indicates if the

envelope decreases (default) or

increases with each step.

C-

F

EIV SSQR_IVOL# Envelope initial value. Can be

considered a volume setting of sorts: 0 is

silent and 15 is full volume. Combined

with the direction, you can have fade-in

and fade-outs; to have a sustaining

sound, set initial volume to 15 and an

increasing direction. To vary the real

volume, remember REG_SNDDMGCNT .

 𝐴𝑚 = 2
𝜋 ⋅

𝑠𝑖𝑛(𝜋𝐷𝑚)
𝑚

Tonc - GBA Programming in rot13

345 / 757

Fig 18.3: Square wave spectrum. (integer m only)

Some more on the duty cycle.

Remember we’ve done a Fourier

analysis of the square wave so we could

determine the frequencies in it. Apart

from the base frequency, there are also

overtones of frequencies m·f. The

spectrum (see fig 18.3) gives the

amplitudes of all these frequencies.

Note that even though the figure has

lines, only integral values of m are

allowed. The base frequency at m=1 has

the highest significance and the rest falls off with 1/m. The interesting part is when the

sine comes into play: whenever m·D is an integer, that component vanishes! With a

fractional duty number –like the ones we have– this happens every time m is equal to

the denominator. For the 50% duty, every second overtone disappears, leaving a fairly

smooth tone; for 12.5%, only every eighth vanishes and the result is indeed a noisier

sound. Note that for both ¼ and ¾ duties every fourth vanishes so that they should be

indistinguishable. I was a little surprised about this result, but sure enough, when I

checked they really did sound the same to me.

REG_SND1FREQ (SOUND1CNT_X / SG11) @ 0400�0062h
and
REG_SND2FREQ (SOUND2CNT_H / SG21) @ 0400�006Ch

F E D C B A 9 8 7 6 5 4 3 2 1 0
Re T - R

bits name define description

0-

A

R SFREQ_RATE# Sound rate. Well, initial rate. That's rate, not

frequency. Nor period. The relation

between rate and frequency is f = 217/(2048-
R). Write-only field.

E T SFREQ_HOLD,

SFREQ_TIMED

Timed flag. If set, the sound plays for as

long as the length field (REG_SNDxCNT {0-5})
indicates. If clear, the sound plays forever.

Note that even if a decaying envelope has

Tonc - GBA Programming in rot13

346 / 757

reached 0, the sound itself would still be

considered on, even if it's silent.

F Re SFREQ_RESET Sound reset. Resets the sound to the initial

volume (and sweep) settings. Remember

that the rate field is in this register as well

and due to its write-only nature a simple

‘ |= SFREQ_RESET ’ will not suffice (even

though it might on emulators).

REG_SND1SWEEP (SOUND1CNT_L / SG10_L) @ 0400�0060h

F E D C B A 9 8 7 6 5 4 3 2 1 0
- T M N

bits name define description

0-

2

N SSW_SHIFT# Sweep number. Not the number of sweeps;

see the discussion below.

3 M SSW_INC,

SSW_DEC

Sweep mode. The sweep can take the rate

either up (default) or down (if set).

4-

6

T SSW_TIME# Sweep step-time. The time between sweeps

is measured in 128 Hz (not kHz!): Δt = T/128

ms ≈ 7.8T ms; if T=0, the sweep is disabled.

I’m reasonably confident that the exact workings of shi�s are explained without due

care in most documents, so here are a few more things about it. Sure enough, the

sweep does make the pitch go up or down which is controlled by bit 3, and the step-

time does change the pitch a�er that time, but exactly what the sweep-shi� does is

ambiguous at best. The information is in there, but only if you know what to look for.

The usual formula given is something like:

𝑇 = 𝑇 ± 𝑇 ⋅ 2−𝑛

That’s what belogic gives and if you know what the terms are you’ll be fine. Contrary

to what you may read, the sweep does not apply to the frequency (f). It does not apply

Tonc - GBA Programming in rot13

347 / 757

to the period (T, see above). It applies to the rate (R). If you look in emulators, you can

actually see the rate-value change.

Second, the n in the exponent is not the current sweep index that runs up to the

number of sweep shi�s. It is in fact simply the sweep shi� number, and the sweeps

continue until the rate reaches 0 or the maximum of 2047.

The formulas you may see do say that, but it’s easy to misread them. I did. Eq 18.7

holds a number of correct relations. R is the rate, n is the sweep shi� (18.7c explains

why it’s called a shi� (singular, not plural)), and j is the current sweep index. You can

view them in a number of ways, but they all boil down to exponential functions, that’s

what ‘dy*(x) = a·y(x)dx*’ means, a�er all. For example, if n=1, then you get 1½j and ½j

behaviour for increasing and decreasing sweeps, respectively; with n=2 it’s 1¼j and

¾j, etc. The higher the shi�, the slower the sweep.

(18.7a) Δ𝑅 = 2−𝑛 ⋅𝑅

(18.7b)

𝑅𝑗 = 𝑅𝑗 − 1 ± 𝑅𝑗 − 1 ⋅ 2
−𝑛

= 𝑅𝑗 − 1 ⋅ (1 ± 2−𝑛)

= 𝑅0 ⋅ (1 ± 2−𝑛)𝑗

(18.7c) R += R >> n;

Playing notes

Even though the rates are equal, some may be considered more equal than others.

I’ve already given a table with the frequencies for the standard notes (table 18.1) of

octave 0. You can of course convert those to rates via eq 18.6b and use them as such.

However, it might pay to figure out how to play the notes of all octaves.

To do this, we’ll use some facts I mentioned in section 18.2.3. about the make-up of

the musical scale. While I could make use of the logarithmic relation between

successive notes (Δf=21/12·f), I’ll restrict myself to the fact that notes between octaves

differ by a factor of two. We’ll also need the rate-frequency relation (obviously). That’s

Tonc - GBA Programming in rot13

348 / 757

the basic information you need, I’ll explain more once we get through all the math.

Yes, it’s more math, but it’ll be the last of this page, I promise.

The equations we’ll start with are the general frequency equation and the rate-

frequency relation. In these we have rate R, frequency f and octave c. We also have a

base octave C and frequency F in that base octave.

𝑓(𝐹, 𝑐) = 𝐹 ⋅ 2𝑐 − 𝐶

𝑅(𝐹, 𝑐) = 211 − 217
𝑓(𝐹, 𝑐)

And now for the magic. And you are expected to understand this.

(18.8)

𝑅(𝐹, 𝑐) = 211 − 217
𝑓(𝐹, 𝑐)

= 211 − 217
𝐹 ⋅ 2𝑐 − 𝐶

= 211 − 217 + 𝐶 − 𝑐

𝐹

= 211 − 1
𝐹 ⋅ 2

17 + 𝐶 +𝑚 − (𝑐 +𝑚)

= 211 − 217 + 𝐶 +𝑚

𝐹
⋅ 2−(𝑐 +𝑚)

Right, and now for why this thing’s useful. Remember that the GBA has no hardware

division or floating-point support, so we’re le� with integers and (if possible) shi�s.

That’s why the last term in the last step of eq 18.8 was separated. The term with F

gives a rate offset for the base octave, which we need to divide (read: shi�) by the

octave offset term for the different octaves. Remember that integer division truncates,

so we need a big numerator for the most accuracy. This can be done with a large C

and by adding an extra term m. Basically, this makes it an mf fixed point division. The

workable octave range is −2 to 5, so we take C=5. The value for m is almost arbitrary,

but needs to be higher than two because of the minimum octave is −2, and a shi� can

never be negative. m=4 will suffice.

Note that there is still a division in there. Fortunately, there are only twelve values

available for F, so might just as well store the whole term in a look-up table. The final

Tonc - GBA Programming in rot13

349 / 757

result is listing 18.1 below.

Here you have a couple of constants for the note-indices, the LUT with rate-offsets

__snd_rates and a simple macro that gives you what you want. While __snd_rates

is constant here, you may consider a non-const version to allow tuning. Not that a

square wave is anything worth tuning, but I’m just saying … y’know.

One possible annoyance is that you have to splice the note into a note and octave part

and to do that dynamically you’d need division and modulo by 12. Or do you? If you

knew a few things about division by a constant is multiplication by its reciprocal,

you’d know what to do. (Hint: c=(N*43>>9)−2, with N the total note index between 0

and 95 (octave −2 to +5).)

Demo time

I think I’ve done about enough theory for today, don’t you dear reader?

// Listing 18.1: a sound-rate macro and friends

typedef enum
{
 NOTE_C=0, NOTE_CIS, NOTE_D, NOTE_DIS,
 NOTE_E, NOTE_F, NOTE_FIS, NOTE_G,
 NOTE_GIS, NOTE_A, NOTE_BES, NOTE_B
} eSndNoteId;

// Rates for equal temperament notes in octave +5
const u32 __snd_rates[12]=
{
 8013, 7566, 7144, 6742, // C , C#, D , D#
 6362, 6005, 5666, 5346, // E , F , F#, G
 5048, 4766, 4499, 4246 // G#, A , A#, B
};

#define SND_RATE(note, oct) (2048-(__snd_rates[note]>>(4+(oct))))

// sample use: note A, octave 0
 REG_SND1FREQ= SFREQ_RESET | SND_RATE(NOTE_A, 0);

Tonc - GBA Programming in rot13

350 / 757

“ @_@ ”

I’ll take that as a yes. The demo in question demonstrates the use of the various

macros of this chapter, most notably SND_RATE . It also shows how you can play a

little song – and I use the term lightly – with the square wave generator. I hope you

can recognize which one.

Tonc - GBA Programming in rot13

351 / 757

#include <stdio.h>
#include <tonc.h>

u8 txt_scrolly= 8;

const char *names[]=
{ "C ", "C#", "D ", "D#", "E ", "F ", "F#", "G ", "G#", "A ", "A#", "B
" };

// === FUNCTIONS ==

// Show the octave the next note will be in
void note_prep(int octave)
{
 char str[32];
 siprintf(str, "[%+2d]", octave);
 se_puts(8, txt_scrolly, str, 0x1000);
}

// Play a note and show which one was played
void note_play(int note, int octave)
{
 char str[32];

 // Clear next top and current rows
 SBB_CLEAR_ROW(31, (txt_scrolly/8-2)&31);
 SBB_CLEAR_ROW(31, txt_scrolly/8);

 // Display note and scroll
 siprintf(str, "%02s%+2d", names[note], octave);
 se_puts(16, txt_scrolly, str, 0);

 txt_scrolly -= 8;
 REG_BG0VOFS= txt_scrolly-8;

 // Play the actual note
 REG_SND1FREQ = SFREQ_RESET | SND_RATE(note, octave);
}

// Play a little ditty
void sos()
{
 const u8 lens[6]= { 1,1,4, 1,1,4 };
 const u8 notes[6]= { 0x02, 0x05, 0x12, 0x02, 0x05, 0x12 };
 int ii;
 for(ii=0; ii<6; ii++)
 {
 note_play(notes[ii]&15, notes[ii]>>4);

Tonc - GBA Programming in rot13

352 / 757

 VBlankIntrDelay(8*lens[ii]);
 }
}

int main()
{
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 irq_init(NULL);
 irq_add(II_VBLANK, NULL);

 txt_init_std();
 txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0, CLR_ORANGE, 0);
 pal_bg_mem[0x11]= CLR_GREEN;

 int octave= 0;

 // turn sound on
 REG_SNDSTAT= SSTAT_ENABLE;
 // snd1 on left/right ; both full volume
 REG_SNDDMGCNT = SDMG_BUILD_LR(SDMG_SQR1, 7);
 // DMG ratio to 100%
 REG_SNDDSCNT= SDS_DMG100;

 // no sweep
 REG_SND1SWEEP= SSW_OFF;
 // envelope: vol=12, decay, max step time (7) ; 50% duty
 REG_SND1CNT= SSQR_ENV_BUILD(12, 0, 7) | SSQR_DUTY1_2;
 REG_SND1FREQ= 0;

 sos();

 while(1)
 {
 VBlankIntrWait();
 key_poll();

 // Change octave:
 octave += bit_tribool(key_hit(-1), KI_R, KI_L);
 octave= wrap(octave, -2, 6);
 note_prep(octave);

 // Play note
 if(key_hit(KEY_DIR|KEY_A))
 {
 if(key_hit(KEY_UP))
 note_play(NOTE_D, octave+1);
 if(key_hit(KEY_LEFT))
 note_play(NOTE_B, octave);
 if(key_hit(KEY_RIGHT))

Tonc - GBA Programming in rot13

353 / 757

The bolded code in main() initializes the sound register; nothing fancy, but it has to

be done before you hear anything at all. It is important to start with REG_SNDSTAT bit

7 (SSTAT_ENABLE), i.e., the master sound enable. Without it, you cannot even access

the other registers. Setting volume to something non-zero is a good idea too, of

course. Then we turn off the sweep function and set sound 1 to use a fading envelope

with a 50% duty. And that’s where the fun starts.

I’ll explain what sos() in a little while, first something about the controls of the

demo. You can play notes with the D-pad and A (hmm, there’s something familiar

about that arrangement). The octave c you’re working in can be changed with L and R;

the background color changes with it. B plays sos() again.

A / D-pad Play a note

↑ : D (next octave)

← : B

→ : A

↓ : F

A : D

L / R Decrease / Increase current octave ([-2, 5], wraps around)

B Play a little tune.

 note_play(NOTE_A, octave);
 if(key_hit(KEY_DOWN))
 note_play(NOTE_F, octave);
 if(key_hit(KEY_A))
 note_play(NOTE_D, octave);
 }

 // Play ditty
 if(key_hit(KEY_B))
 sos();
 }
 return 0;
}

Tonc - GBA Programming in rot13

354 / 757

The D-pad and A select a note to play, which is handled by note_play() . The bolded

line there plays the actual note, the rest is extra stuff that writes the note just played

to the screen and scrolls along so you can see the history of what’s been played. The

code for this is kinda ugly, but is not exactly central to the story so that’s fine.

Playing a little ditty

So what is sos() all about then? Let’s take another look.

There are two arrays here, notes and lens , and a loop over all elements. We take a

byte from notes and use the nybbles for octave and note information, play the note,

then wait a while –the length is indicated by the lens array– before the next note is

played. Basically, we’re playing music. Hey, if the likes of Schnappi and Crazy Frog can

make it into the top 10, I think I’m allowed to call this music too, alright? Alright.

The point I’m trying to make is that it’s very well possible to play a tune with just the

tone generators. Technically you don’t need digitized music and all that stuff to play

something. Of course, it’ll sound better if you do, but if you just need a little jingle the

tone generators may be all you need. Twelve years of Game Boy games using only

tone generators prove this. Just define some notes (the nybble format for octaves and

notes will do) and some lengths and you have the basics already. You could even use

more than one channel for different effects.

If you understood that, then get this: the note+length+channel idea is pretty much

what tracked music (mod, it, xm, etc) does, only they use a more sophisticated wave

void sos()
{
 const u8 lens[6]= { 1,1,4, 1,1,4 };
 const u8 notes[6]= { 0x02, 0x05, 0x12, 0x02, 0x05, 0x12 };
 int ii;
 for(ii=0; ii<6; ii++)
 {
 note_play(notes[ii]&15, notes[ii]>>4);
 VBlankIntrDelay(8*lens[ii]);
 }
}

Tonc - GBA Programming in rot13

355 / 757

than a square wave. But the principle is the same. Getting it to work takes a little more

effort, but that’s what Deku’s sound mix tutorial is for.

Tonc - GBA Programming in rot13

356 / 757

https://stuij.github.io/deku-sound-tutorial/

19. Text systems

Introduction

Text system internals

Bitmap text

Tilemap text

Sprite text

Some demos

Other considerations

DEPRECATION NOTICE

This chapter has been superceded by TTE. Information from this chapter can

still be useful, but for serious work, TTE should be preferred.

Introduction

Aaah, yes, “Hello world”: the canonical first example for every C course and system.

Except for consoles. While printing text on a PC is the easiest thing in the world, it is

actually a little tricky on a console. It’s not that there’s no printf() function, but

rather that there is nowhere for it to write to or even a font to write with (and that’s

hardly the full list of things to consider). Nope, if you want to be able to display text,

#include <stdio.h>

int main()
{
 printf("Hello World");
 return 0;
}

Tonc - GBA Programming in rot13

357 / 757

you’ll have to build the whole thing from scratch yourself. And you do want to be able

to write text to the screen,

So, what do we need for a text system? Well, that’s actually not a simple question.

Obviously, you need a font. Just a bitmap with the various characters here, no need to

depress ourselves with vector-based fonts on a GBA. Second, you need a way of taking

specific characters and show them on the screen.

But wait a minute, which video mode are we using? There’s tilemaps, bitmap modes

and sprites to choose from, all of which need to be dealt with in entirely different

ways. Are we settling for one of them, or create something usable for all? Also, what is

the font we’re using, and what are the character sizes? Fixed width or variable width?

Variable width and sizes aren’t much of a problem for the bitmap modes, but it’s a

bitch to splice them for tiles. Also, just for tiles, do we keep the full font in VRAM? If so,

that’s a lot of tiles, especially considering you’ll hardly be using all of them at the

same time. It would be more VRAM efficient to only copy in the glyphs that you’re

using at that time. This will take some management, though.

Just with these items, you’d have enough options for over 20 different text system

implementations, all incompatible in very subtle ways. At the very least you’ll need

putc() and puts() for each. And then perhaps a printf() -like function too; for

each text-type, mind you, because glyph placement goes on the inside. Maybe a

screen clear too; or how about scrolling functionality. Well, you get the idea.

I suppose it’s possible to create a big, complicated system, tailoring to every need

anyone could possibly have. But I’m not going to. Firstly, because it’s a bit waste of

time: the chances you’ll need the ability to run, say, bitmap and tilemap modes

concurrently are virtually –if not actually– nil. Most of the time, you’ll use a single

video mode and stick to that. Spending time (and space) for allow every variation

imaginable, when hardly any will ever be used is probably not worth the trouble.

Besides, writing tons of code that is almost identical except for some small detail in

the heart of the routine is just plain bleh.

Tonc - GBA Programming in rot13

358 / 757

The point of this chapter is to show how to build and use a set of simple, lightweight

text writers. Don’t expect the mother of all text systems, I’m mainly interested in

getting the essential thing done, namely getting the characters of a string on the

screen. This is a core text system, with the following features:

Bitmap (mode 3, 4, 5), regular tilemap (mode 0, 1) and sprite support.

There will be a xxx_puts() for showing the string, and a xxx_clrs() to wipe it.

Their arguments will a string, the position to plot to, and some color

information. If you want scrolling and/or format specifiers, I’ll leave that up to

you.

The font is a fixed width, monochrome font with one 8x8 tile per character. The

glyphs can be smaller than 8x8, and I’ll even leave in hooks that allow variable

widths, but things just get horrible if I’d allowed for multi-tile fonts.

A variable character map. This is a great feature if you plan on using only a small

set of characters, or non-ascii glyph orders.

This arrangement allows for the most basic cases and allows for some variations in

set-up, but very little on the side. However, those extras would probably be very game

specific anyway, and might be ill suited for a general text system. If you want extras, it

shouldn’t be too hard to write them yourself.

NO PRINTF(). O RLY?

I said that there is no printf() on the GBA, but this isn’t quite true; not

anymore, anyway. It is possible to hook your own IO-system to the standard IO-

routines, which is done in libgba .

SEMI-OBSOLETE

I have another text system here that is much more powerful (as in, really

working on every video mode and has a printf too) than what’s described in this

page. However, it’s rather large, not completely finished and it would take some

time to write the description page and alter the text to fit the demos again. A

Tonc - GBA Programming in rot13

359 / 757

libtonc version that has the relevant changes can be found at

http://www.coranac.com/files/misc/tonclib-1.3b.rar.

Text system internals

Variables

For keeping track of the text-system’s state, we’ll need a couple of variables. The

obvious variables are a font and a character map. Because I like to keep things

flexible, I’ll also use two pointers for these so that you can use your own font and

char-map if you want. You also need to know where it is you want to write to, which is

done via a base-destination pointer. As extras, I’ll also have character size variables

for variable glyph spacing, and even a pointer to a char-width array, for a possible

variable-width font.

I’ll use a struct to store these, partially because it’s easier for me to maintain, but also

because the CPU and compiler can deal with them more efficiently. I’ll also leave a

few bytes empty for any eventual expansion. Finally, an instance of this struct, and a

pointer to it so you can switch between different systems if you ever need to (which is

unlikely, but still). Yes, I am wasting a few bytes, but if you max out IWRAM over this, I

dare say you have bigger problems to worry about.

Tonc - GBA Programming in rot13

360 / 757

http://www.coranac.com/files/misc/tonclib-1.3b.rar

The font

Fig 19.1: Default tonc font: mini-ascii, monochrome, 8x8 pixels per

glyph.

fig 19.1 shows the font I’ll be using. This particular font is monochrome and each of

the glyphs fits into an 8x8 box. The 96 glyphs themselves a subset of the full ASCII that

I’ll refer to as mini-ascii. It’s the lower ascii half that contains the majority of the

standard ASCII table, but leaves out ASCII 0-31 because they’re escape codes and not

really part of the printable characters anyway.

It is possible to use a different font with another glyph order, but the functions I’ll

present below rely on one tile per glyph, and in tile layout. I need this arrangement

because I intend to use it for all modes, and non single-tile formats would be hell in

tile modes.

// In text.h
typedef struct tagTXT_BASE
{
 u16 *dst0; // writing buffer starting point
 u32 *font; // pointer to font used
 u8 *chars; // character map (chars as in letters, not tiles)
 u8 *cws; // char widths (for VWF)
 u8 dx,dy; // letter distances
 u16 flags; // for later
 u8 extra[12]; // ditto
} TXT_BASE;

extern TXT_BASE __txt_base, *gptxt;

// In text.c
TXT_BASE __txt_base; Main TXT_BASE instance
TXT_BASE *gptxt= &__txt_base; and a pointer to it

Tonc - GBA Programming in rot13

361 / 757

Another restriction is that the font must be bitpacked to 1bpp. I have a couple of

reasons for this. First, there is the size consideration. A 96 glyph, 16bit font (for modes

3/5) would take up 12kB. Pack that to 1bpp and it’s less that one kB! Yes, you’re

restricted to monochrome, but for a font, that’s really not much of a problem. O�en

fonts are monochrome anyway and using 16 bits where you only need one seems a bit

of a waste. Secondly, how would you get a 16bpp font to work for 4bpp or 8bpp tiles?

Going from a low bpp to a higher one is just a lot easier. Of course, if you don’t like this

arrangement, feel free to write your own functions.

As for the font data itself, here is the whole thing.

Tonc - GBA Programming in rot13

362 / 757

const unsigned int toncfontTiles[192]=
{
 0x00000000, 0x00000000, 0x18181818, 0x00180018, 0x00003636,
0x00000000, 0x367F3636, 0x0036367F,
 0x3C067C18, 0x00183E60, 0x1B356600, 0x0033566C, 0x6E16361C,
0x00DE733B, 0x000C1818, 0x00000000,
 0x0C0C1830, 0x0030180C, 0x3030180C, 0x000C1830, 0xFF3C6600,
0x0000663C, 0x7E181800, 0x00001818,
 0x00000000, 0x0C181800, 0x7E000000, 0x00000000, 0x00000000,
0x00181800, 0x183060C0, 0x0003060C,
 0x7E76663C, 0x003C666E, 0x181E1C18, 0x00181818, 0x3060663C,
0x007E0C18, 0x3860663C, 0x003C6660,
 0x33363C38, 0x0030307F, 0x603E067E, 0x003C6660, 0x3E060C38,
0x003C6666, 0x3060607E, 0x00181818,
 0x3C66663C, 0x003C6666, 0x7C66663C, 0x001C3060, 0x00181800,
0x00181800, 0x00181800, 0x0C181800,
 0x06186000, 0x00006018, 0x007E0000, 0x0000007E, 0x60180600,
0x00000618, 0x3060663C, 0x00180018,

 0x5A5A663C, 0x003C067A, 0x7E66663C, 0x00666666, 0x3E66663E,
0x003E6666, 0x06060C78, 0x00780C06,
 0x6666361E, 0x001E3666, 0x1E06067E, 0x007E0606, 0x1E06067E,
0x00060606, 0x7606663C, 0x007C6666,
 0x7E666666, 0x00666666, 0x1818183C, 0x003C1818, 0x60606060,
0x003C6660, 0x0F1B3363, 0x0063331B,
 0x06060606, 0x007E0606, 0x6B7F7763, 0x00636363, 0x7B6F6763,
0x00636373, 0x6666663C, 0x003C6666,
 0x3E66663E, 0x00060606, 0x3333331E, 0x007E3B33, 0x3E66663E,
0x00666636, 0x3C0E663C, 0x003C6670,
 0x1818187E, 0x00181818, 0x66666666, 0x003C6666, 0x66666666,
0x00183C3C, 0x6B636363, 0x0063777F,
 0x183C66C3, 0x00C3663C, 0x183C66C3, 0x00181818, 0x0C18307F,
0x007F0306, 0x0C0C0C3C, 0x003C0C0C,
 0x180C0603, 0x00C06030, 0x3030303C, 0x003C3030, 0x00663C18,
0x00000000, 0x00000000, 0x003F0000,

 0x00301818, 0x00000000, 0x603C0000, 0x007C667C, 0x663E0606,
0x003E6666, 0x063C0000, 0x003C0606,
 0x667C6060, 0x007C6666, 0x663C0000, 0x003C067E, 0x0C3E0C38,
0x000C0C0C, 0x667C0000, 0x3C607C66,
 0x663E0606, 0x00666666, 0x18180018, 0x00301818, 0x30300030,
0x1E303030, 0x36660606, 0x0066361E,
 0x18181818, 0x00301818, 0x7F370000, 0x0063636B, 0x663E0000,
0x00666666, 0x663C0000, 0x003C6666,
 0x663E0000, 0x06063E66, 0x667C0000, 0x60607C66, 0x663E0000,
0x00060606, 0x063C0000, 0x003E603C,
 0x0C3E0C0C, 0x00380C0C, 0x66660000, 0x007C6666, 0x66660000,
0x00183C66, 0x63630000, 0x00367F6B,
 0x36630000, 0x0063361C, 0x66660000, 0x0C183C66, 0x307E0000,
0x007E0C18, 0x0C181830, 0x00301818,

Tonc - GBA Programming in rot13

363 / 757

big u32 0x01020304

big u16 0x0102 0x0304

u8 0x01 0x02 0x03 0x04

little u16 0x0201 0x0403

little u32 0x04030201

table 19.1: Big endian vs little

endian interpretation of byte-

sequence 01h, 02h, 03h, 04h

Yes, this is the entire font, fitting nicely on one single page. This is what bitpacking can

do for you but, like any compression method, it may be a little tricky seeing that it is

indeed the font given earlier, so here’s a little explanation of what you got in front of

you.

Bitpacking

Bitpacking isn’t hard to understand. Data is little more

a big field of bits. In bitpacking, you simply drop bits at

regular intervals and tie the rest back together. Our

font is monochrome, meaning we only have one bit of

information. Now, even in the smallest C datatype,

bytes, this would leave 7 bits unused if you were to use

one byte per pixel. However, you could also cram eight

pixels into one byte, and thus save a factor 8 in space.

For the record, that’s a compression level of 88%,

pretty good I’d say. Of course, if you read all the other pages already, you’d have

already recognized instances of bitpacking: 4bpp tiles are bitpacked with 2

pixels/byte. So this stuff shouldn’t be completely new.

Bitpacking can save a lot of room, and in principle, it’s easy to do, as it’s just a matter

of masking and shi�ing. There is one major catch, however: endianness. You already

seen one incarnation of this in other data-arrays: the word 0x01234567 would

actually be stored as the byte-sequence 0x67 , 0x45 , 0x23 , 0x01 on ARM (and intel)

systems. This is called little-endian, because the little end (the lower bytes of a multi-

byte type) of the word are stored in the lower addresses. There is also big-endian,

which stores the most significant bytes first. You can see the differences in table 19.1.

Some hex editors or memory viewers (in VBA for example) allow you to switch viewing

data as bytes, halfwords or words, so you can see the differences interactively there.

 0x18181818, 0x00181818, 0x3018180C, 0x000C1818, 0x003B6E00,
0x00000000, 0x00000000, 0x00000000,
};

Tonc - GBA Programming in rot13

364 / 757

Please remember that the data itself does not change because of this, you just look at

it in a different way.

For bitpacking, you also have to deal with endianness at the bit level. The font data is

packed in a consistent bit-little and byte-little format for three reasons. First, this is

how GBA bitpacked stuff works anyway, so you can use the BIOS BitUnpack routine

for it. Second, it is a more natural form in terms of counting: lower bits come first.

Third, because you can shi� down all the time and discard covered bits that way,

masking is easier and faster. Now, big-endian would be more natural visually due to

the fact we write numbers that way too, so bitmaps are o�en bit-little as well.

Windows BMP files, for example, these have their le�most pixels in the most

significant bits, making them bit-big. However, Windows runs on Intel architecture,

which is actually byte little-endian, for maximum confusion. Sigh. Oh well.

In case it’s still a bit hazy, fig 19.2 shows how the ‘F’ is packed from 8x8 pixels into 2

words. All 64 pixels are numbered 0 to 63. These correspond to the bit-numbers. Each

eight successive bits form a byte: 0-7 make up byte 0, 8-15 form byte 1, etc. Note how

the bits seem to mirror horizontally, because we generally write numbers big-endian.

So try to forget about that and think of bits in memory to walk through from 0 to 63.

You can also view the bits as words, bits 0-31 for word 0 and 32-63 for word 1.

pixels bits byt

→

 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 1 1 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0

→

0x7

0x0

0x0

0x1

0x0

0x0

0x0

0x0

fig 19.2: ‘F’, from 8x8 tile to 1bpp bit-little, byte-little words.

Tonc - GBA Programming in rot13

365 / 757

Character map

Having the mini-ascii font is nice and all but as strings are full-ascii, this may present a

problem. Well, not really, but there are several ways of going about the conversion.

First, you can create a giant switch-block that converts, say, ‘A’ (ascii 65) into glyph-

index 33. And do that for all 96 glyphs. It should be obvious that this is a dreadful way

of going about things. Well it should, but apparently it’s not because code like that is

out there; I only mention it here so you can recognize it for what it is and stay to far,

far away from it. Simply put, if you have a switch-block where the only difference

between the cases is returning a different offset –and a fixed offset at that– you’re

doing something very, very wrong.

A second method which is an enormous improvement in every way is to simply

subtract 32. That’s how mini-ascii was defined a�er all. Quick, short, and to the point.

However, I kinda like the third option: look-up tables. We’ve already seen how useful

LUTs can be for mathematics, but you can use them for a lot more than that. In this

case, the lut is a charcter map, containing the glyph-index for each ascii character.

This has almost all the benefits of the simple subtract (a look-up may be a few cycles

slower), but is much more flexible. For example, you can have non-ascii charmaps or

alias the cases, things like that. Another ‘interesting’ thing is that you don’t really

need the font to be text as such, it can be any kind of mapped image data; with a lut

you could easily use the text system for drawing borders, as long as you have a border

‘font’ for it. The lut I’m using is 256 bytes long. This may not be enough for Unicode

(sorry Eastern dudes), but it’s enough to suit my purposes.

General design

The first thing to do code-wise is to initialize the members of the text-base. That

means attach the font, set the glyph sizes, and initialize the lut. This can be done with

txt_init_std() .

Tonc - GBA Programming in rot13

366 / 757

Depending on the type of text, you may need more specialized initializers, which we’ll

get to when the time comes. As for writing a string, the basic structure can bee seen

below. It’s actually quite simple and very general, but unfortunately the fact that

xxx_putc() is in the inner loop means that you have to have virtually identical

wrappers around each char-plotter for each text method. I also have functions called

xxx_clrs() that clear the string from the screen (they don’t wipe the whole screen).

They are almost identical to their puts() siblings in form and also rather simple, so I

won’t elaborate on them here.

u8 txt_lut[256];

// Basc initializer for text state
void txt_init_std()
{
 gptxt->dx= gptxt->dy= 8;

 gptxt->dst0= vid_mem;
 gptxt->font= (u32*)toncfontTiles;
 gptxt->chars= txt_lut;
 gptxt->cws= NULL;

 int ii;
 for(ii=0; ii<96; ii++)
 gptxt->chars[ii+32]= ii;
}

// Pseudo code for xxx_puts
void xxx_puts(int x, int y, const char *str, [[more]])
{
 [[find real writing start]]
 while(c=*str++) // iterate through string
 {
 switch(c)
 {
 case [[special chars ('\n' etc)]]:
 [[handle special]]
 case [[normal chars]]:
 [[xxx_putc(destination pointer, lut[c])]]
 [[advance destination]]
 }
 }
}

Tonc - GBA Programming in rot13

367 / 757

Bitmap text

Bitmap text concerns modes 3, 4 and 5. If you can do mode 3, you pretty much have

mode 5 as well, as the two differ only by the pitch and, perhaps, the starting point.

Mode 4 is different, not only because it’s 8bpp, but also because this means we have

to do 2 pixels at once.

Internal routines

I tend to do bitmap related functions in two parts: there are internal 16bit and 8bit

functions that take an address and pitch as their arguments, and then inline interface

functions with coordinates that call these. The internal 16bit writer is given in below,

with an explanation of the main parts below that.

Tonc - GBA Programming in rot13

368 / 757

1. Traditional way to loop through all characters in a string. c will be the character

we have to deal with, unless it’s the delimiter ('\0'), then we’ll stop.

2. Normal char/control char switch. Control characters like '\n' and '\t' should

be taken care of separately. I’m only checking for the newline right now, but

others could easily be added.

3. This is where it gets interesting. What this line does is first use the lut to look up

the glyph index in the font, look up the actual glyph in the font (multiply by 2

because there are 2 words/glyph), and then set-up a byte-pointer pch to point

to the glyph.

A couple of things come together here. First, because all glyphs are exactly 8

bytes apart, finding the glyph data is very easy. If you create your own text

void bm16_puts(u16 *dst, const char *str, COLOR clr, int pitch)
{
 int c, x=0;

 while((c=*str++) != 0) // (1) for each char in string
 {
 // (2) real char/control char switch
 if(c == '\n') // line break
 {
 dst += pitch*gptxt->dy;
 x=0;
 }
 else // normal character
 {
 int ix, iy;
 u32 row;
 // (3) point to glyph; each row is one byte
 u8 *pch= (u8*)&gptxt->font[2*gptxt->chars[c]];
 for(iy=0; iy<8; iy++)
 {
 row= pch[iy];
 // (4) plot pixels until row-byte is empty
 for(ix=x; row>0; row >>= 1, ix++)
 if(row&1)
 dst[iy*pitch+ix]= clr;
 }
 x += gptxt->dx;
 }
 }
}

Tonc - GBA Programming in rot13

369 / 757

system with your own fonts, I’d advise using constant offsets, even if it wastes

pixels like you would for small characters like ‘I’. Second, because of the 1bpp

tiled format, each row is exactly one byte long, and all the glyphs bits are in

consecutive bytes, so you don’t have to jump around for each new row. This is a

good thing.

4. The ix loop is even more interesting. First, we read the actual row of pixels into

the (word) variable row . To test whether we need to write a pixel, we simply

check for a given bit. However, because the packing is little endian, this allows

for two shortcuts.

The first one is that looping through the bits goes from low to high bits, meaning

that we can simply shi�-right on each iteration and test bit 0. The corollary to

this is that the bits we’ve already done are thrown away, and this means that

when row is 0, there will be no more pixels, and we’re done for that row. As this

short-circuit happens inside the inner of a triple loop, the speed-up can be

substantial.

This function only does the bare essentials to get a string on screen. It plots the non-

zero pixels only (transparent characters), there is no wrapping at the side and no

scrolling. The only non-trivial feature is that it can do line-breaks. When those

happen, the cursor returns to the original x-position on screen.

The 8bit function is almost identical to this one, ‘almost’ because of the no-byte-write

rule for VRAM. The obvious ones are that the pitch and character spacing need to be

halved. I’m also making it requirement that the start of each character needs to be on

an even pixel boundary. By doing so, you can have an almost identical inner loop as

before; it just does two pixels in it instead of one. Yes, it’s a hack; no, I don’t care.

Tonc - GBA Programming in rot13

370 / 757

Interface functions

The interface functions are straightforward. All they have to do is set-up the

destination start for the internal routines, and for the 16bit versions, provide a pitch.

Mode 3 uses vid_mem as its base, and mode 4 and 5 use vid_page to make sure it

works with page flipping. m4_puts() also ensures that the characters start at even

pixels, and please remember that this routine uses a color-index, rather than a true

color.

void bm8_puts(u16 *dst, const char *str, u8 clrid)
{
 int c, x=0, dx= gptxt->dx >> 1;

 while((c=*str++) != 0)
 {
 // <snip char-switch and iy loop>
 for(ix=x; row>0; row >>= 2, ix++)
 {
 pxs= dst[iy*120+ix];
 if(row&1)
 pxs= (pxs&0xFF00) | clrid;
 if(row&2)
 pxs= (pxs&0x00FF) | (clrid<<8);

 dst[iy*120+ix]= pxs;
 }
 // <snip>
 }
}

// Bitmap text interface. Goes in text.h
INLINE void m3_puts(int x, int y, const char *str, COLOR clr)
{ bm16_puts(&vid_mem[y*240+x], str, clr, 240); }

INLINE void m4_puts(int x, int y, const char *str, u8 clrid)
{ bm8_puts(&vid_page[(y*240+x)>>1], str, clrid); }

INLINE void m5_puts(int x, int y, const char *str, COLOR clr)
{ bm16_puts(&vid_page[y*160+x], str, clr, 160); }

Tonc - GBA Programming in rot13

371 / 757

Clearing text

Doing a text clear is almost the same as writing out a string. The only functional

difference is that you’re always putting a space (or rather, a solid filled rectangle)

instead of the original characters. You still need the full string you tell you how long

the line goes on, and how many lines there are.

With that in mind, the bm16_clrs() function below shouldn’t be that hard to

understand. The whole point of it is to read the string to find out the length in pixels of

each line in the string (nx*gptxt->dx), then fill the rectangle spanned by that length

and the height of the characters (gptxt->dy). There’s some bookkeeping to make

sure it all goes according to plan, but in the end that’s all it does. The same goes for

the clear routines of the other text-types, so I’m not going to show those.

void bm16_clrs(u16 *dst, const char *str, COLOR clr, int pitch)
{
 int c, nx=0, ny;

 while(1)
 {
 c= *str++;
 if(c=='\n' || c=='\0')
 {
 if(nx>0)
 {
 nx *= gptxt->dx;
 ny= gptxt->dy;
 while(ny--)
 {
 memset16(dst, clr, nx);
 dst += pitch;
 }
 nx=0;
 }
 else
 dst += gptxt->dy*pitch;
 if(c=='\0')
 return;
 }
 else
 nx++;
 }
}

Tonc - GBA Programming in rot13

372 / 757

Tilemap text

In some ways, text for tile-modes is actually easier than for bitmaps, as you can just

stuff the font into a charblock and then you don’t need any reference to the font itself

anymore. That is, unless you want to have a variable width font, in that case you’ll be

in bit-shi�ing hell. But I’m sticking to a fixed width, single tile font, which keeps things

very simple indeed.

Tile initialisation

The first order of business is to be able to unpack the font to either 4 or 8 bit. The

easiest way of doing this is to just setup a call to BitUnpack() and be done with it.

However, VBA’s implementation of it isn’t (or wasn’t, they may have fixed it by now)

quite correct for what I had planned for it, so I’m going to roll my own. Arguments

dstv and srcv are the source and destination addresses, respectively; len is the

number of source bytes and bpp is the destination bitdepth. base serves two

purposes. Primarily, it is a number to be added to all the pixels if bit 31 is set, or to all

except zero values if it is clear. This allows a greater range of outcomes than just the 0

and 1 that a source bitdepth of one would supply; and an other cute trick that I’ll get

to later.

Tonc - GBA Programming in rot13

373 / 757

The actual map-text initialization is done by txt_init_se() . Its first two arguments

are exactly what you’d expect: the background that the system should use for text and

the control-flags that should go there (charblock, screenblock, bitdepth, all that jazz).

The third argument, se0 , indicates the ‘base’ for palette and tile indexing, similar to

the base for unpacking. The format is just like normal screen entries: se0 {0-9}

indicate the tile offset, and se0 {C-F} are for the 16 color palette bank. clrs contains

the color for the text, which will go into the palette indicated by the sub-palette and

the fi�h argument, base , the base for bit-unpacking.

// Note, the BIOS BitUnpack does exactly the same thing!
void txt_bup_1toX(void *dstv, const void *srcv, u32 len, int bpp, u32
base)
{
 u32 *src= (u32*)srcv;
 u32 *dst= (u32*)dstv;

 len= (len*bpp+3)>>2; // # dst words
 u32 bBase0= base&(1<<31); // add to 0 too?
 base &= ~(1<<31);

 u32 swd, ssh=32; // src data and shift
 u32 dwd, dsh; // dst data and shift
 while(len--)
 {
 if(ssh >= 32)
 {
 swd= *src++;
 ssh= 0;
 }
 dwd=0;
 for(dsh=0; dsh<32; dsh += bpp)
 {
 u32 wd= swd&1;
 if(wd || bBase0)
 wd += base;
 dwd |= wd<<dsh;
 swd >>= 1;
 ssh++;
 }
 *dst++= dwd;
 }
}

Tonc - GBA Programming in rot13

374 / 757

For now, ignore the second color in clrs , and the extra palette write for 4 bpp. In all

likelihood, you don’t want to know. I’m going to tell you about them later anyway,

though.

If you don’t want to deal with all kinds of offsets, you can just leave the third and fi�h

arguments zero. It’s probably not a good idea to leave the others zero, but for those

two it’s not a problem.

Screen entry writer

This is arguably the most simple of the text writers. As there is one glyph per screen

entry, all you have to do is write a single halfword to the screenblock in the right

position and you have a letter. Repeat this for a whole string.

There are a few things to note about this implementation, though. First, like before,

no kind of wrapping or scrolling. If you want that, you’ll have to do all that yourself.

void txt_init_se(int bgnr, u16 bgcnt, SB_ENTRY se0, u32 clrs, u32 base)
{
 bg_cnt_mem[bgnr]= bgcnt;
 gptxt->dst0= se_mem[BF_GET(bgcnt, BG_SBB)];

 // prep palette
 int bpp= (bgcnt&BG_8BPP) ? 8 : 4;
 if(bpp == 4)
 {
 COLOR *palbank= &pal_bg_mem[BF_GET(se0, SE_PALBANK)<<4];
 palbank[(base+1)&15]= clrs&0xFFFF;
 palbank[(base>>4)&15]= clrs>>16;
 }
 else
 pal_bg_mem[(base+1)&255]= clrs&0xFFFF;

 // account for tile-size difference
 se0 &= SE_ID_MASK;
 if(bpp == 8)
 se0 *= 2;

 // Bitunpack the tiles
 txt_bup_1toX(&tile_mem[BF_GET(bgcnt, BG_CBB)][se0],
 toncfontTiles, toncfontTilesLen, bpp, base);
}

Tonc - GBA Programming in rot13

375 / 757

Also, the x and y coordinates are still in pixels, not tiles. I’ve done this mainly for

consistency with the other writers, nothing more. Oh, in case you hadn’t noticed

before, gptxt->dst0 is initialized to point to the start of the background’s

screenblock in txt_init_se() . Lastly, se0 is added to make up the actual screen

entry; if you had a non-zero se0 in initialization, chances are you’d want to use it here

too.

Sprite text

Sprite text is similar to tilemap text, only you use OBJ_ATTRs now instead of screen

entries. You have to set the position manually (attributes 0 and 1), and attribute 2 is

almost the same as the screen entry for regular tilemaps. The initializer

txt_init_obj() is similar to txt_init_se() , except that the tilemap details have

been replaced by their OAM counterparts. Instead of a screenblock, we point to a base

OBJ_ATTR oe0 , and attr2 works in much the same way as se0 did. The code is

actually simpler because we can always use 4bpp tiles for the objects that we use,

without upsetting the others.

void se_puts(int x, int y, const char *str, SB_ENTRY se0)
{
 int c;
 SB_ENTRY *dst= &gptxt->dst0[(y>>3)*32+(x>>3)];

 x=0;
 while((c=*str++) != 0)
 {
 if(c == '\n') // line break
 { dst += (x&~31) + 32; x=0; }
 else
 dst[x++] = (gptxt->chars[c]) + se0;
 }
}

Tonc - GBA Programming in rot13

376 / 757

The structure of the writer itself should feel familiar now. The attr2 again acts as a

base offset to allow palette swapping and an offset tile start. Note that I’m only

entering the position in attributes 0 and 1, and nothing else. I can do this because the

rest of the things are already set to what I want, namely, 8x8p sprites with 4bpp tiles

and no frills. Yes, this may screw things up for some, but if I did mask out everything

// OAM text initializer
void txt_init_obj(OBJ_ATTR *oe0, u16 attr2, u32 clrs, u32 base)
{
 gptxt->dst0= (u16*)oe0;

 COLOR *pbank= &pal_obj_mem[BF_GET(attr2, ATTR2_PALBANK)<<4];
 pbank[(base+1)&15]= clrs&0xFFFF;
 pbank[(base>>4)&15]= clrs>>16;

 txt_bup_1toX(&tile_mem[4][attr2&ATTR2_ID_MASK], toncfontTiles,
 toncfontTilesLen, 4, base);
}

// OAM text writer
void obj_puts(int x, int y, const char *str, u16 attr2)
{
 int c, x0= x;
 OBJ_ATTR *oe= (OBJ_ATTR*)gptxt->dst0;

 while((c=*str++) != 0)
 {
 if(c == '\n') // line break
 { y += gptxt->dy; x= x0; }
 else
 {
 if(c != ' ') // Only act on a non-space
 {
 oe->attr0= y & ATTR0_Y_MASK;
 oe->attr1= x & ATTR1_X_MASK;
 oe->attr2= gptxt->chars[c] + attr2;
 oe++;
 }
 x += gptxt->dx;
 }
 }
}

Tonc - GBA Programming in rot13

377 / 757

properly, it’d screw up other stuff. This is a judgement call, feel free to disagree and

change it.

That writer always starts at a fixed OBJ_ATTR, overwriting any previous ones. Because

that might be undesirable, I also have a secondary sprite writer, obj_puts2 , which

takes an OBJ_ATTR as an argument to serve as the new base.

There are some side notes on memory use that I should mention. Remember, there

are only 128 OBJATTRs, and at one entry/glyph it may become prohibitively expensive if

used extensively. In the same vein, 1024 tiles may seem like a lot, but you can run out

quickly if you have a couple of complete animations in there as well. Also, remember

that you only have 512 tiles in the bitmap modes: a full ASCII character set in bitmap

modes would take up _half the sprite tiles!

If you’re just using it to for a couple of characters you’re not likely to run into trouble,

but if you want screens full of text, you might be better of with something else. There

are ways to get around these things, of course; quite simple ways, even. But because

they’re really game-specific, it’s difficult to give a general solution for it.

Some demos

Bitmap text demo

I suppose I could start with “Hello world”, but as that’s pretty boring I thought I’d start

with something more interesting. The txt_bm demo does something similar to

bm_modes : namely show something on screen and allow switching between modes 3,

INLINE void obj_puts2(int x, int y, const char *str, u16 attr2, OBJ_ATTR
*oe0)
{
 gptxt->dst0= (u16*)oe0;
 obj_puts(x, y, str, attr2);
}

Tonc - GBA Programming in rot13

378 / 757

4 and 5 to see what the differences are. Only now, we’re going to use the bitmap

puts() versions to write the actual strings indicating the current mode. Because

that’s still pretty boring, I’m also going to put a movable cursor on screen and write

out its coordinates. Here’s the full code:

Tonc - GBA Programming in rot13

379 / 757

#include <stdio.h>
#include <tonc.h>

#define CLR_BD 0x080F

const TILE cursorTile=
{{ 0x0, 0x21, 0x211, 0x2111, 0x21111, 0x2100, 0x1100, 0x21000 }};

void base_init()
{
 vid_page= vid_mem;

 // init interrupts
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);

 // init backdrop
 pal_bg_mem[0]= CLR_MAG;
 pal_bg_mem[CLR_BD>>8]= CLR_BD;
 pal_bg_mem[CLR_BD&255]= CLR_BD;
 m3_fill(CLR_BD);

 // init mode 4 pal
 pal_bg_mem[1]= CLR_LIME;
 pal_bg_mem[255]= CLR_WHITE;

 // init cursor
 tile_mem[5][0]= cursorTile;
 pal_obj_mem[1]= CLR_WHITE;
 pal_obj_mem[2]= CLR_GRAY;
}

int main()
{
 base_init();

 txt_init_std();

 // (1) print some string so we know what mode we're at
 m3_puts(8, 8, "mode 3", CLR_CYAN);
 m4_puts(12, 32, "mode 4", 1);
 m5_puts(16, 40, "mode 5", CLR_YELLOW);

 // init variables
 u32 mode=3, bClear=0;
 OBJ_ATTR cursor= { 80, 120, 512, 0 };

 // init video mode
 REG_DISPCNT= DCNT_BG2 | DCNT_OBJ | 3;

Tonc - GBA Programming in rot13

380 / 757

Controls:

 // init cursor string
 char str[32];
 siprintf(str, "o %3d,%3d", cursor.attr1, cursor.attr0);

 while(1)
 {
 VBlankIntrWait();
 oam_mem[0]= cursor;
 key_poll();

 if(key_hit(KEY_START))
 bClear ^= 1;

 // move cursor
 cursor.attr1 += key_tri_horz();
 cursor.attr0 += key_tri_vert();

 // adjust cursor(-string) only if necessary
 if(key_is_down(KEY_ANY))
 {
 // (2) clear previous coords
 if(bClear)
 bm_clrs(80, 112, str, CLR_BD);

 cursor.attr0 &= ATTR0_Y_MASK;
 cursor.attr1 &= ATTR1_X_MASK;
 // (3) update cursor string
 siprintf(str, "%c %3d,%3d", (bClear ? 'c' : 'o'),
 cursor.attr1, cursor.attr0);
 }

 // switch modes
 if(key_hit(KEY_L) && mode>3)
 mode--;
 else if(key_hit(KEY_R) && mode<5)
 mode++;
 REG_DISPCNT &= ~DCNT_MODE_MASK;
 REG_DISPCNT |= mode;

 // (4) write coords
 bm_puts(80, 112, str, CLR_WHITE);
 }

 return 0;
}

Tonc - GBA Programming in rot13

381 / 757

fig 19.3: txt_bm demo.

D-pad Moves cursor.

Start Toggles string clearing.

L, R Decrease or increase mode.

Many things here should be either self explanatory

or fairly irrelevant. The interesting things are

indicated by numbers, so let’s go through them,

shall we?

1. Mode indicators. This is where we write three strings to VRAM, indicating the

modes. Note that the interfaces are nearly identical; the only real difference is that the

fourth argument for m4_puts() is a palette index, rather than a real color.

2. Clear previous cursor-string. The cursor string keeps track of the cursor as you

move across the screen. The first thing you’ll notice is that the string turns into a

horrible mess because the bitmap writers only write the non-zero pixels of the font. In

other words, it does not clear out the rest of the space allotted for that glyph.

Essentially mx_puts() are transparent string writers.

Sure, I could have added a switch that would erase the whole glyph field to the

writers. Quite easily, actually, it only takes an extra else clause. However, the current

way is actually more practical. For one thing, what if you actually want transparency?

You’d have to write another routine just for that. The method I’ve chosen is to have an

extra clearing routine (which you’d probably need anyway). To overwrite the whole

glyphs, simply call mx_clrs() first; which is what I’m doing here. Well, as long as the

bClear variable is set (toggle with Start).

A second reason is that this method is just so much faster. Not only because I wouldn’t

be able to use my premature breaking from the ix -loop if I had to erase the whole

field and the mere presence of an extra branch adds more cycles (inside a triple loop),

but plotting individual characters will always be slower than to do it by whole blocks

at a time. mx_clrs() uses memset16() , which is basically CpuFastSet() plus

safeties, and will be faster a�er just a mere half a dozen pixels.

Tonc - GBA Programming in rot13

382 / 757

Oh, in case you’re wondering why I’m talking about mx_clrs() when the code

mentions bm_clrs() , the latter function is merely a function that uses a switch-block

with the current bitmap mode to call the correct mode-specific string clearer.

3. Updating the cursor string. As the writers don’t have format specification fields,

how can we write numbers? Simple, use sprintf() to prepare a string first, and then

use that one instead. Or rather, use siprintf() . This is an integer-only version of

sprintf() , which is better suited to GBA programming since you’re not supposed to

use floating point numbers anyway. It should be relatively simple to create functions

to wrap around siprintf() and mx_puts() , but I’m not sure it’s worth the effort.

I should perhaps point out that using siprintf and other routines that can turn

numbers into strings use division by 10 to do so, and you know what that means. And

even if you do not ask it to convert numbers, it calls a dozen or so routines from the

standard library, which adds around 25kb to your binary. This isn’t much for ROM, but

for multiboot things (256kb max) it may become problematic. With that in mind, I’d

like you to take a look at posprintf by Dan Posluns. This is hand-coded assembly

using a special algorithm for the decimal conversion. It may not be as rich in options

as siprintf() , but it’s both faster and smaller by a very large margin, so definitely

worth checking out.

4. Write cursor string. This writes the current cursor string to position (80, 120). Like

in the cases of wiping the string, I’m using a bm_puts() function that switches

between the current mode writers.

Sprite text; Hello world!

Yes! Hello world! Now, in principle, all you have to do is call txt_init() ,

txt_init_obj() and then obj_puts() with the right parameters, but again that’s

just boring, so I’ll add some interesting things as well. The txt_obj demo shows one

of the things best performed with sprites: individual letter animation. The letters of

the phrase “hello world!” will fall from the top of the screen, bouncing to a halt on the

floor (a green line halfway across the screen).

Tonc - GBA Programming in rot13

383 / 757

https://www.danposluns.com/gbadev/

#include <tonc.h>

// === CONSTANTS & STRUCTS ==

#define POS0 (80<<8)
#define GRAV 0x40
#define DAMP 0xD0
#define HWLEN 12

const char hwstr[]= "Hello world!";

typedef struct
{
 u32 state;
 int tt;
 FIXED fy;
 FIXED fvy;
} PATTERN;

// === FUNCTIONS ==

void pat_bounce(PATTERN *pat)
{
 if(pat->tt <= 0) // timer's run out: play pattern
 {
 pat->fvy += GRAV;
 pat->fy += pat->fvy;

 // touched floor: bounce
 if(pat->fy > POS0)
 {
 // damp if we still have enough speed
 // otherwise kill movement
 if(pat->fvy > DAMP)
 {
 pat->fy= 2*POS0-pat->fy;
 pat->fvy= DAMP-pat->fvy;
 }
 else
 {
 pat->fy= POS0;
 pat->fvy= 0;
 }
 }
 }
 else // still in waiting period
 pat->tt--;
}

int main()

Tonc - GBA Programming in rot13

384 / 757

{
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2 | DCNT_OBJ;

 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 memset16(&vid_mem[88*240], CLR_GREEN, 240);

 // (1) init sprite text
 txt_init_std();
 txt_init_obj(&oam_mem[0], 0xF200, CLR_YELLOW, 0xEE);
 // (2) 12 px between letters
 gptxt->dx= 12;

 // (3) init sprite letters
 OBJ_ATTR *oe= oam_mem;
 obj_puts2(120-12*HWLEN/2, 8, hwstr, 0xF200, oe);

 int ii;
 PATTERN pats[HWLEN];

 for(ii=0; ii<HWLEN; ii++)
 {
 // init patterns
 pats[ii].state=0;
 pats[ii].tt= 3*ii+1;
 pats[ii].fy= -12<<8;
 pats[ii].fvy= 0;

 // init sprite position
 oe[ii].attr0 &= ~ATTR0_Y_MASK;
 oe[ii].attr0 |= 160;
 }

 while(1)
 {
 VBlankIntrWait();

 for(ii=0; ii<HWLEN; ii++)
 {
 pat_bounce(&pats[ii]);

 oe[ii].attr0 &= ~ATTR0_Y_MASK;
 oe[ii].attr0 |= (pats[ii].fy>>8)& ATTR0_Y_MASK;
 }
 }

 return 0;
}

Tonc - GBA Programming in rot13

385 / 757

fig 19.4: txt_obj demo.

Very little of this code is actually concerned with

the string itself, namely the items 1, 2 and 3.

There’s a call to txt_init_std() for the basic

initialization and a call to the sprite text initializer,

txt_init_obj() . The second argument is the

base for attribute 2 (if you don’t remember what

attribute 2 is, see the chapter on sprites again);

0xF200 means I’m using the sub-palette 15 and

start the character tiles at tile-index 512 (because

of the bitmap mode). The font color will be yellow, and out at index 255. That’s 240

from the pal-bank, 0x0E =14 from the unpacking and 1 for the actual 1bpp pixels

240+14+1=255. A�er this call, I’m also setting the horizontal pixel offset to 12 to

spread out the letters a little bit. A�er that, I just call obj_puts2() to set up the first

few sprites of OAM so that they show “hello world!” centered at the top of the screen.

I could have stopped there, but the demo is actually just beginning. The thing about

using sprites as glyphs is that they can still act as normal sprites; obj_puts() just

sets them up to use letters instead of graphics that are more sprite-like.

Bouncy, bouncy, bouncy

The goal here is to let the letters drop from the top of the screen, the bounce up again

when it hits a floor, but with a little less speed than before due to friction and what

not. Physically, the falling part is done using a constant acceleration, g. Acceleration is

the change in velocity, so the velocity is linear; velocity is the change in position, so

the height is parabolic. At the bounce, we do an inelastic collision; in other words, one

where energy is lost. In principle, this would mean that the difference between the

squares of the velocities before and a�er the collision differ by a constant (|vout|
2 -

|vin|
2 = Q). However, this would require a square root to find the new velocity, and I

don’t care for that right now so I’m just going to scrap the squares here. I’m sure there

are situations where this is actually quite valid �P . As a further simplification, I’m

Tonc - GBA Programming in rot13

386 / 757

doing a first-order integration for the position. With this, the basic code for movement

becomes very simple

This could be replaced by the following, more accurate code, using second-order

integration and ‘proper’ recoil, but you hardly notice anything from the improved

integration. I actually prefer the look of the simple, linear recoil over the square root

though.

Map text : colors and borders

Next up is the first of two map text demos. The official name for what I call a regular

background is “text background”, and they’re called that for a reason: in most cases

// 1D inelastic reflections
// y, vy, ay: position, velocity, acceleration.
// Q: inelastic collision coefficient.
vy += ay;
 y += vy;
if(y>ymay) // collision
{
 if((ABS(vy)>Q)
 {
 vy= -(vy-SGN(vy)*Q); // lower speed, switch direction
 y= 2*ymay-y; // Mirror y at r: y= r-(y-r)= 2r-y
 }
 else // too slow: stop at ymay
 { vy= 0; y= ymay; }
}

// accelerate
 k= vx+GRAV;
// Trapezium integration rule:
// x[i+1]= x[i] + (v[i]+v[i+1])/2;
 x += (vx+k)/2;
vx= k;
if(x>xmax) // collision
{
 if(vx*vx > Q2)
 { vx= -Sqrt(vx*vx-Q2); x= 2*xmax-x; }
 else
 { vx= 0; x= xmax; }
}

Tonc - GBA Programming in rot13

387 / 757

when there is text, it’s done using regular backgrounds. Of course, in most cases

everything else is also done with those, so strictly speaking associating them with

“text” is a misnomer, but we’ll let that one slide for today. The first demo is about how

you can use the text functions for a variety of effects. Apart from simply showing text

(boring), you’ll see palette swapping and framing text, and how you can easily use

different fonts and borders concurrently. Because of the way I’ve designed my

functions, all this takes is a change in a parameter. Cool huh.

The demo will also feature adding shading to a monochrome font, and adding an

opaque background for it. Now, the way I’m going about this will probably reserve me

a place in the Computer Science Hell, but, well, the coolness of the tricks will

probably keep me from burning up there.

Tonc - GBA Programming in rot13

388 / 757

#include <tonc.h>
#include "border.h"

// === CONSTANTS & STRUCTS ==

#define TID_FRAME0 96
#define TID_FRAME1 105
#define TID_FONT 0
#define TID_FONT2 128
#define TID_FONT3 256
#define TXT_PID_SHADE 0xEE
#define TXT_PID_BG 0x88

// === FUNCTIONS ==

void init()
{
 int ii;
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 irq_init(NULL);
 irq_add(II_VBLANK, NULL);

 txt_init_std();

 // (1a) Basic se text initialization
 txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0x1000, CLR_RED, 0x0E);

 // (1b) again, with a twist
 txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0xF000|TID_FONT2,
 CLR_YELLOW | (CLR_MAG<<16), TXT_PID_SHADE);

 // (1c) and once more, with feeling!
 txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0xE000|TID_FONT3,
 0, TXT_PID_SHADE);
 u32 *pwd= (u32*)&tile_mem[0][TID_FONT3];
 for(ii=0; ii<96*8; ii++)
 *pwd++ |= quad8(TXT_PID_BG);

 // extra border initialisation
 memcpy32(pal_bg_mem, borderPal, borderPalLen/4);
 memcpy32(&tile_mem[0][TID_FRAME0], borderTiles, borderTilesLen/4);

 // (2) overwrite /\ [] `% ^_ to use border tiles
 // / ^ \
 // [#]
 // ` _ '
 const u8 bdr_lut[9]= "/^\\[#]`_\'";
 for(ii=0; ii<9; ii++)
 gptxt->chars[bdr_lut[ii]]= TID_FRAME0+ii;

Tonc - GBA Programming in rot13

389 / 757

 // (3) set some extra colors
 pal_bg_mem[0x1F]= CLR_RED;
 pal_bg_mem[0x2F]= CLR_GREEN;
 pal_bg_mem[0x3F]= CLR_BLUE;

 pal_bg_mem[0xE8]= pal_bg_mem[0x08]; // bg
 pal_bg_mem[0xEE]= CLR_ORANGE; // shadow
 pal_bg_mem[0xEF]= pal_bg_mem[0x0F]; // text
}

void txt_se_frame(int l, int t, int r, int b, u16 se0)
{
 int ix, iy;
 u8 *lut= gptxt->chars;
 u16 *pse= (u16*)gptxt->dst0;
 pse += t*32 + l;
 r -= (l+1);
 b -= (t+1);

 // corners
 pse[32*0 + 0] = se0+lut['/'];
 pse[32*0 + r] = se0+lut['\\'];
 pse[32*b + 0] = se0+lut['`'];
 pse[32*b + r] = se0+lut['\''];

 // horizontal
 for(ix=1; ix<r; ix++)
 {
 pse[32*0+ix]= se0+lut['^'];
 pse[32*b+ix]= se0+lut['_'];
 }
 // vertical + inside
 pse += 32;
 for(iy=1; iy<b; iy++)
 {
 pse[0]= se0+lut['['];
 pse[r]= se0+lut[']'];
 for(ix=1; ix<r; ix++)
 pse[ix]= se0+lut['#'];
 pse += 32;
 }
}

int main()
{
 init();

 // (4a) red, green, blue text
 se_puts(8, 16, "bank 1:\n red", 0x1000);

Tonc - GBA Programming in rot13

390 / 757

fig 19.5a: First map text demo.

fig 19.5b: accompanying tileset.

Code rundown

fig 19.5 shows what this code produces. All the actual text drawing is done in the main

function, and I’ll go by them one by one. The first three things are red, green and blue

text (point 4a), done using palette swapping. I’ve loaded up red, green and blue to

palette indices 0x1F , 0x2F and 0x3F (point 3), and can switch between them with

the last parameter of se_puts() , which you will recall is added to each of the screen

 se_puts(8, 40, "bank 2:\n green", 0x2000);
 se_puts(8, 72, "bank 3:\n blue", 0x3000);
 // (4b) yellow text with magenta shadow
 se_puts(8, 96, "bank 15:\n yellow, \nwith mag \nshadow",
0xF000|TID_FONT2);

 // (5a) framed text, v1
 txt_se_frame(10, 2, 29, 9, 0);
 se_puts(88, 24, "frame 0:", 0);
 se_puts(104, 32, "/^\\[#]`_'", 0);
 se_puts(88, 40, "bank 0:\n basic text,\n transparent bg", 0);

 // (5b) framed text, v2
 txt_se_frame(10, 11, 29, 18, TID_FRAME1-TID_FRAME0);
 se_puts(88, 96, "frame 1:", 0xE000|TID_FONT3);
 se_puts(104, 104, "/^\\[#]`_'", 9);
 se_puts(88, 112, "bank 14:\n shaded text\n opaque bg",
0xE000|TID_FONT3);

 while(1)
 VBlankIntrWait();
 return 0;
}

Tonc - GBA Programming in rot13

391 / 757

entries. The values 0x1000 , 0x2000 and 0x3000 indicate that we’ll use palette banks

1, 2 and 3, respectively.

If you look closely, you’ll see that fourth text (point 4b) is yellow with a magenta (no

it’s not pink, it’s magenta) shading on the right edge of each letter. At least part of this

is done with the se0 parameter, which is now 0xF080 . The reason it’s shaded is

because of the last part: I’m actually using a slightly different font, one that starts at

tile 128. I’ll repeat, the reason I can do all this with the same function is because of

that offset parameter of se_puts() .

Points (5a) and (5b) are for framing, and the text inside it. The function

txt_se_frame() draws my border. It takes a rectangle as its input, and draws a frame

on it. Note that the frame includes the top-le�, but excludes the bottom-right. Again, I

have one extra se0 parameter as an offset. This is how the second border is actually

done; I just offset the thing by the difference between border tiles.

The borders themselves are actually drawn pretty much as if they were text. In

init() I’ve reassigned nine characters in the character lut to use the tile indices for

the primary border tileset (point 2). There is no particular reason I’m doing this, other

than the mere fact that I can. Just illustrating the things you can do with a text writer

and some clever lut manipulation.

The texts inside the frames are an interesting story as well. As you can see from the

text in the first frame, the standard text doesn’t quite work. The problem is that the

main tileset I’m using is transparent, but the frame’s background isn’t. Mix the two

and they’ll clash. So how to solve that? Well, you create another font, one that does

not have 0 as its background color. There are a number of ways to do that, one of

them being adding 1<<31 to the bit-unpacking flag. But I’m opting for another

method, which I’ll get into later. Note that whatever I’m doing, it does work: the text in

the second frame is opaque a�er all. Note that I’m writing that text using pal-bank 14,

and am now using a third tileset for the fonts.

Now, up to this point it’s all been pretty easy. The usage of se_puts() and

txt_se_frame() I mean. I hope you understood all of the above, because the rest is

Tonc - GBA Programming in rot13

392 / 757

going to be pretty interesting. Not quite “oh god, oh god, we’re all gonna die”-

interesting, but still a mite hairy for some.

Bit fiddling fun

I’ve indicated that I’m using three different fonts. But if you study the code, you will

find no trace of font definitions or copies. That’s because there are none: it’s all based

on the same bit-packed font I showed earlier. Also, the mathematically inclined will

have noticed that bitpacking a 1bpp font will result in two colors. That’s what 1bpp

means, a�er all. But I have a background color, a foreground color, and shading; that’s

three. Furthermore, there doesn’t seem to be any code that does the shading. This all

leads to one simple question, namely: what the hell am I doing?

Well … this:

These six statements set up the three fonts, complete with shading and opacity. The

first one sets up the standard font, in charblock 0, screenblock 31, pal-bank 1 and

using 0x0E for the bit-unpacking offset, so that the text color is at 0x1F . We’ve seen

the same thing with the object text.

#define TID_FONT 0
#define TID_FONT2 128
#define TID_FONT3 256
#define TXT_PID_SHADE 0xEE
#define TXT_PID_BG 0x88

// (1a) Basic se text initialization
txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0x1000, CLR_RED, 0x0E);

// (1b) again, with a twist
txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0xF000|TID_FONT2,
 CLR_YELLOW | (CLR_MAG<<16), TXT_PID_SHADE);

// (1c) and once more, with feeling!
txt_init_se(0, BG_CBB(0) | BG_SBB(31), 0xE000|TID_FONT3,
 0, TXT_PID_SHADE);
u32 *pwd= (u32*)&tile_mem[0][TID_FONT3];
for(ii=0; ii<96*8; ii++)
 *pwd++ |= quad8(TXT_PID_BG);

Tonc - GBA Programming in rot13

393 / 757

bit val 7 6 5 4 3 2 1 0

0 0 0

1 1 E F .

2 1 E F . .

3 1 . . . E F . . .

4 0 . . . 0

5 0 . . 0

6 1 E F

7 0 0

OR: E F 0 E F F F 0

Table 19.2: bit-unpacking with with base 0xEE .

The second

call to

txt_se_init

() sets up

the second

font set, the

one with

shading.

se0

indicates the

use of pal-

bank 15 and

to start at 128, but the important stuff happens in the clrs and base parameters.

There are now two colors in clrs , yellow and magenta. The lower halfword will be

the text color, and the upper halfword the shading color.

The actual shading happens because of the value of base , which is 0xEE , and the

way the whole bit-unpacking routine works. The offset is added to each ‘on’-bit in the

packed font, giving 0xEF , which is then ORred to the current word with the

appropriate shi�. Because we’re dealing with a 4bpp font, the result will actually

overflow into the next nybble. Now, if the next bit is also on, it’ll OR 0xEF with the

overflow value of 0x0E . As 0xF | 0xE is just 0xF , it’s as if the overflow never

happened. But, if the next bit was off, the value for that pixel would be 0xE . Lastly, if

there was no overflow for a zero source bit, the result is a 0. And now we have the

three possible values: 0 (background), 14 (shade) and 15 (text). table 19.2 shows the

procedure more graphically. The bits for the source byte are on the le�, and the bit-

unpacked result for each bit on the grid on the right, in the correct position. These are

then ORed together for the end result. For 0x46 that’d be the word 0xEF0EFFF0 . One

word is one row of 8 pixels in a 4bpp tile, and because lower nybbles are the le�-most

pixels, the shade will be on the right of the character even though it uses the more

significant bits.

Tonc - GBA Programming in rot13

394 / 757

The base 0xEE is one of many values for which this trick works. The key thing is that

the high nybble must be completely overwritten by the lower nybble+1. Any number

with equal and even nybbles will work.

Now, I’ll be the first to admit that this is something of a hack. A lot of things have to

come together for it to work. The word-size must be able to fit a whole tile row, both

packed and unpacked data must be little-endian in both bit and byte order, and the

unpacking routine must actually allow overflow, and probably a few other things that

escape me right now. All of these conditions are satisfied on the GBA, but I doubt very

much if you can use the trick on other systems. There are other ways of applying

shading, of course, better ones at that. It’s just so deliciously nasty that I can’t resist

using it.

The final txt_se_init() work pretty much in the same way as the second one:

shading through overflow. What it doesn’t do is make the tiles opaque. While it’s

possible to do that with BitUnpack, you can’t have that and shading with one call,

that simply doesn’t work. But there are other ways. All we really need for the tiles to

be opaque is some value other than zero for it for the background pixels. Well, that’s

easily done: just offset (add or OR) everything by a number. In this case I can’t add a

value because the text value is already at maximum, so I’ll use OR here. The value I’ll

OR with is 0x88888888 , which doesn’t change the text or shading, but sets the

background pixels to use 8 , so we’ve got what we wanted.

And that, as they say, is how we do that. Or at least how I do that. If the above seems

like mumbo-jumbo to you, no one’s forcing you to do it in the same way. You can

always take the easy way out and include multiple fonts into the program rather than

construct them from what you have. I’m just showing what can be done with a little

creating coding.

Map text : profiling

The last thing I’ll show you is an easy one, but something that might come in handy

when it’s time to optimize a few things. In case you haven’t noticed, debugging GBA

programs isn’t quite as easy as debugging PC programs. There is the possibility of

Tonc - GBA Programming in rot13

395 / 757

debugging with Insight and the GDB (the GCC debugger), but even then things are iffy,

or so I hear. Well, now that you can print your own text, you can at least do something

of that sort. Write out diagnostic messages and the like.

But that’s not what I’m going to show you now. The last demo will show you how to

do something that usually comes a�er debugging: profiling. Profiling tells you how

much time is spent doing what, so you can tell what would be the best places to try to

optimize. What I’ll show you is a simple way of getting the time spent inside a

function. Stuff like that is good to know, especially on a platform like this where you

still have to worry about things like speed and efficiency and other silly stuff like that.

The next demo will clock five different ways of copying data, in this case a mode 4

bitmap from EWRAM (my code is set up for multiboot by default, which means

everything goes in EWRAM rather than ROM) to VRAM. The methods are:

u16 array. Copy in 16-bit (halfword) chunks. Probably the one you’ll see most in

other tutorials, but not here. With reason, as we’ll see in a minute.

u32 array. Copy in 32-bit (word) chunks.

memcpy() . The standard C copy routine, the one I’m using in the earlier demos.

Well, nowadays I am.

memcpy32() . Home grown assembly, explained in detail here. Basically does

what CpuFastSet() does, only without the restriction that the number of words

must be a multiple of 8.

dma_memcpy() . Copy via 32-bit DMA.

Tonc - GBA Programming in rot13

396 / 757

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#include <tonc.h>

#include "gba_pic.h"

// === CONSTANTS & STRUCTS ==

int gtimes[5];

const char *strs[5]=
{ "u16 array", "u32 array", "memcpy", "memcpy32", "DMA32" };

// === FUNCTIONS ==

// copy via u16 array
void test_0(u16 *dst, const u16 *src, u32 len)
{
 u32 ii;
 profile_start();
 for(ii=0; ii<len/2; ii++)
 dst[ii]= src[ii];
 gtimes[0]= profile_stop();
}

// copy via u32 array
void test_1(u32 *dst, const u32 *src, u32 len)
{
 u32 ii;
 profile_start();
 for(ii=0; ii<len/4; ii++)
 dst[ii]= src[ii];
 gtimes[1]= profile_stop();
}

// copy via memcpy
void test_2(void *dst, const void *src, u32 len)
{
 profile_start();
 memcpy(dst, src, len);
 gtimes[2]= profile_stop();
}

// copy via my own memcpy32
void test_3(void *dst, const void *src, u32 len)
{
 profile_start();
 memcpy32(dst, src, len/4);

Tonc - GBA Programming in rot13

397 / 757

The code should be self-explanatory. I have five functions for the things I want to

profile. I chose separate functions because then I know optimisation will not interfere

 gtimes[3]= profile_stop();
}

// copy using DMA
void test_4(void *dst, const void *src, u32 len)
{
 profile_start();
 dma3_cpy(dst, src, len);
 gtimes[4]= profile_stop();
}

int main()
{
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 irq_init(NULL);
 irq_add(II_VBLANK, NULL);

 test_0((u16*)vid_mem, (const u16*)gba_picBitmap, gba_picBitmapLen);
 test_1((u32*)vid_mem, (const u32*)gba_picBitmap, gba_picBitmapLen);
 test_2(vid_mem, gba_picBitmap, gba_picBitmapLen);
 test_3(vid_mem, gba_picBitmap, gba_picBitmapLen);
 test_4(vid_mem, gba_picBitmap, gba_picBitmapLen);

 // clear the screenblock I'm about to use
 memset32(&se_mem[7], 0, SBB_SIZE/4);

 // init map text
 txt_init_std();
 txt_init_se(0, BG_SBB(7), 0, CLR_YELLOW, 0);

 // print results
 int ii;
 char str[32];
 for(ii=0; ii<5; ii++)
 {
 siprintf(str, "%12s %6d", strs[ii], gtimes[ii]);
 se_puts(8, 8+8*ii, str, 0);
 }

 while(1)
 VBlankIntrWait();

 return 0;
}

Tonc - GBA Programming in rot13

398 / 757

(it sometimes moves code around). A�er running these functions, I set-up my text

functions and print out the results.

The profiling itself uses two macros, profile_start() and profile_stop() . These

can be found in core.h of libtonc. What the macros do is start and stop timers 2 and

3, and then return the time in between the calls. This does mean that the code you’re

profiling cannot use those timers.

fig 19.6a: txt_se2 on VBA. fig 19.6b: txt_se2 on no$gba.

 hardware vba no$gba vba err no$ err

u16 array 614571 499440 614571 -18.73 0.00

u32 array 289825 230383 288098 -20.51 -0.60

memcpy 195156 161119 194519 -17.44 -0.33

memcpy32 86816 79336 85329 -8.62 -1.71

DMA32 76889 250 76888 -99.67 0.00

INLINE void profile_start()
{
 REG_TM2D= 0; REG_TM3D= 0;
 REG_TM2CNT= 0; REG_TM3CNT= 0;
 REG_TM3CNT= TM_ENABLE | TM_CASCADE;
 REG_TM2CNT= TM_ENABLE;
}

INLINE u32 profile_stop()
{
 REG_TM2CNT= 0;
 return (REG_TM3D<<16)|REG_TM2D;
}

Tonc - GBA Programming in rot13

399 / 757

table 19.3: timing results for hardware, vba and no$gba.

Fig 19.6 shows the timing results, as run in VisualBoy Advance and no$gba. Note that

they are not quite the same. So you do what you should always do when two opinions

differ: get a third one. In this case, I’ll use the only one that really matters, namely

hardware. You can see a comparison of the three in table 19.3, which will tell you that

no$gba is very accurate in its timing, but VBA not so much. I guess you can still use it

to get an estimate or relative timings, but true accuracy will not be found there. For

that you need hardware or no$gba.

About the numbers themselves. The spread is about a factor 9, which is quite a lot.

None of the techniques shown here are particularly hard to understand, and data

copying is something that you could spend a lot of time doing, so might as well take

advantage of the faster ones from the get go.

Most of the tutorial code and probably a lot of demo code you can find out there uses

the u16-array method of copying; presumably because byte-copies are unavailable

for certain sections. But as you can see, u16 copies are more than twice as slow as

u32 copies! Granted, it is not the slowest method of copying data, but not by much

(using u16 loop variables –also a common occurence– would be slower by about 20%;

try it and you’ll see). The GBA is a 32-bit machine. It likes 32-bit data, and its

instruction sets are better at dealing with 32-bit chunks. Let go of the u16 fetish you

may have picked up elsewhere. Use word-sized data if you can, the others only if you

have to. That said, do watch your data alignment! u8 or u16 arrays aren’t always

word-aligned, which will cause trouble with casting.

GCC AND WAITSTATES VS TIMING RESULTS

Giving exact timing results is tricky due to a number of factors. First, on the

hardware side there are different memory sections with different wait states

that complicate things unless you sit down, read the assembly and add up the

cycle-counts of the instructions. This is a horrible job, trust me. The second

problem is that GCC hasn’t reached the theoretical optimum for this code yet,

Tonc - GBA Programming in rot13

400 / 757

so the results tend to vary with new releases. What you see above is a good

indication, but your mileage may vary.

There are a number of fast ways of copying large chunks of data. Faster than writing

your own simple loop that is. Common ones are the standard memcpy() , which is

available for any platform, and two methods that are GBA specific: the CpuFastSet()

BIOS call (or my own version memcpy32() and DMA. The first two require word-

alignment; DMA merely works better with it. The performance of memcpy() is actually

not too shabby, and the fact that it’s available everywhere means that it’s a good

place to start. The others are faster, but come at a cost: memcpy32() is hand written

assembly; CpuFastSet() requires a word-count divisible by 8, and DMA locks up the

CPU, which can interfere with interrupts. You would do well to remember these things

when you find you need a little more speed.

Other considerations

These couple of functions barely scratch the surface as far as text systems are

concerned. You can have larger fonts, colored fonts, proper shading, variable

character widths, and more. Each of these can apply to each of the modes, with extra

formatting for text justification and alignment, updating tile-memory in conjunction

with map/OAM changes to cut down on VRAM use, etc, etc. To take an in-depth look at

all the variations would take an entire site by itself, so I’ll leave it at this. I just hope

you’ve picked up on some of the basics that go into text systems. What you do with

that knowledge I leave up to you.

Tonc - GBA Programming in rot13

401 / 757

20. Mode 7 Part 1

Introduction

Getting a sense of perspective

Enter Mode 7

Threefold demo

Order, order!

Final Thoughts

Right, and now for something cool: mode 7. Not just how to implement it on the GBA,

but also the math behind it. You need to know your way around tiled backgrounds

(especially the transformable ones) interrupts. Read up on those subjects if you don’t.

The stuff you’ll find here explains the basics of Mode 7. I also have an advanced page,

but I urge you to read this one first, since the math is still rather easy compared to

what I’ll use there.

Introduction

Way, way back in 1990, there was the Super NES, the 16bit successor to the Nintendo

Entertainment System. Apart from the usual improvements that are inherent to new

technology, the SNES was the first console to have special hardware for graphic tricks

that allowed linear transformations (like rotation and scaling) on backgrounds and

sprites. Mode7 took this one step further: it not only rotated and scaled a background,

but added a step for perspective to create a 3D look.

One could hardly call Mode 7 yet another pretty gimmick. For example, it managed to

radically change the racing game genre. Older racing games (like Pole Position and

Outrun) were limited to simple le� and right bends. Mode 7 allowed more interesting

tracks, as your vision wasn’t limited to the part of the track right in front of you. F-Zero

was the first game to use it and blew everything before it out of the water (the original

Tonc - GBA Programming in rot13

402 / 757

Fire Field is still one of the most vicious tracks around with its hairpins, mag-beams

and mines). Other illustrious games were soon to follow, like Super Mario Kart

(mmmm, Rainbow Road. 150cc, full throttle all the way through *gargle*) and

Pilotwings.

Since the GBA is essentially a miniature SNES, it stands to reason that you could do

Mode7 graphics on it as well. And, you’d be right, although I heard the GBA Mode7 is a

little different as the SNES’. On the SNES the video modes really did run up to #7 (see

the SNESdev Wiki) The GBA only has modes 0-5. So technically “GBA Mode 7” is a yet

another misnomer. However, for everyone who’s not a SNES programmer (which is

nearly everyone, me included) the term is synonymous with the graphical effect it was

famous for: a perspective view. And you can create a perspective view on the GBA, so

in that sense the term’s still true.

I’m not sure about the SNES, but GBA Mode 7 is a very much unlike true 3D APIs like

OpenGL and Direct3D. On those systems, you can just give the proper perspective

matrix and place it into the pipeline. On the GBA, however, you only have the general

2D transformation matrix P and displacement dx at your disposal and you have to do

all the perspective calculations yourself. This basically means that you have to alter

the scaling and translation on every scanline using either the HBlank DMA or the

HBlank interrupt.

In this tutorial, I will use the 64x64t affine background from the sbb_aff demo (which

looks a bit like fig 20.1), do the Mode7 mojo and turn it into something like depicted in

fig 20.2. The focus will be on showing, in detail, how the magic works. While the end

result is given as a HBlank interrupt function; converting to a HBlank DMA case

shouldn’t be to hard.

Tonc - GBA Programming in rot13

403 / 757

https://snes.nesdev.org/wiki/Backgrounds

Fig 20.1: this is your map (well, kinda)

Fig 20.2: this is your map in mode7.

Getting a sense of perspective

(If you are familiar with the basics of perspective, you can just skim this section.)

If you’ve ever looked at a world map or a 3D game, you know that when mapping

from 3D to 2D, something’ has to give. The technical term for this is projection. There

are many types of projection, but the one we’re concerned with is perspective, which

makes objects look smaller the further off they are.

We start with a 3D space like the one in fig 20.3. In computer graphics, it is customary

to have the x-axis pointing to the right and the y-axis pointing up. The z-axis is the

determined by the handedness of the space: a right-handed coordinate system has it

pointing to the back (out of the screen), which in a le�-handed system it’s pointing to

the front. I’m using a right-handed system because my mind gets hopelessly confused

in a le�-handed system when it comes to rotation and calculating normals. Another

reason is that this way the screen coordinates correspond to (x, z) values. It is also

customary to have the viewer at the origin (for a different viewer position, simply

translate the world in the other direction). For a right-handed system, this means that

you’re looking down the negative z-axis.

Tonc - GBA Programming in rot13

404 / 757

Of course, you can’t see everything: only the objects inside the viewing volume are

visible. For a perspective projection this is defined by the viewer position (the origin in

our case) and the projection plane, located in front of the viewer at a distance D. Think

of it as the screen. The projection plane has a width W and height H. So the viewing

volume is actually a viewing pyramid, though in practice it is usually a viewing

frustum (a beheaded pyramid), since there is a minimum and maximum to the

distance you can perceive as well.

Fig 20.4 shows what the perspective projection actually does. Given is a point (y, z)

which is projected to point (yp, −D) on the projection plane. The projected z-

coordinate, by definition, is −D. The projected y-coordinate is the intersection of the

projection plane and the line passing through the viewer and the original point:

(20.1) 𝑦
𝑝

= 𝑦 ·𝐷⁄𝑧

Basically, you divide by 𝑧/𝐷. Since it is so important a factor it has is own variable: the

zoom factor λ:

(20.2) 𝜆 = 𝑧 / 𝐷 = 𝑦 / 𝑦
𝑝

As a rule, everything in front the projection plane (λ<1) will be enlarged, and

everything behind it (λ>1) is shrunk.

Tonc - GBA Programming in rot13

405 / 757

Fig 20.3: 3D coordinate system showing

the viewing pyramid defined by the origin,

and the screen rectangle (W×H) at z= −D

Fig 20.4: Side view; point (y, z) is projected onto the (z

= −D plane. The projected point is yp = y·D/z

Enter Mode 7

Fig 20.3 and fig 20.4 describe the general case for perspective projection in a 3D world

with tons of objects and viewer orientations. The case for Mode 7 is considerably less

complicated than that:

Objects. We only work with two objects: the viewer (at point a = (ax, ay, az)) and

the floor (at y=0, by definition).

Viewer orientation. In a full 3D world, the viewer orientation is given by 3

angles: yaw (y-axis), pitch (x-axis) and roll (z-axis). We will limit ourselves to yaw

to keep things simple.

The horizon issue. Because the view direction is kept parallel to the floor, the

horizon should go in the center of the screen. This would leave the top half of

the screen empty, which is a bit of a waste. To remedy this we only use the

bottom half of the viewing volume, so that the horizon is at the top of the screen.

Note that even though the top and bottom view-lines are now the same as when

you would look down a bit, the cases are NOT equal as the projection plane is

still vertical. It is important that you realize the difference.

Tonc - GBA Programming in rot13

406 / 757

Fig 20.5: side view of Mode 7 perspective

Fig 20.5 shows the whole situation. A viewer at y = ay is looking in the negative z-

direction. At a distance D in front of the viewer is the projection plane, the bottom half

of which is displayed on the GBA screen of height H (=160). And now for the fun part.

The GBA doesn’t have any real 3D hardware capabilities, but you can fake it by

cleverly manipulating the scaling and translation REG_BGxX-REG_BGxPD for every

scanline. You just have to figure out which line of part of the floor goes into which

scanline, and at which zoom level. Effectively, you’re building a very simple ray-caster.

The math

Conceptually, there are four steps to Mode 7, depicted in fig 20.6a-d. Green figures

indicate the original map; red is the map a�er the operation. Given a scanline h, here’s

what we do:

1. Pre-translation by a= (ax, az). This places the viewer at the origin, which is where

we need it for steps b and c.

2. Rotation by α. This takes care of the yaw angle. These steps have been the same

as for normal transformable backgrounds so you shouldn’t have any difficulty

understanding them.

3. Perspective division. Next, we scale the whole thing by 1/λ. From eq 20.2 we

have λ = ay/h. The line z = zh is the line that belongs on scanline h. The new

position of this line a�er scaling is z = −D, since that was the whole point of

perspective division.

Tonc - GBA Programming in rot13

407 / 757

4. Post-translation by (−xs). Note the minus sign. A�er the perspective division, all

that remains is moving the fully transformed map back to its proper screen

position (the beige area). For obvious reasons the horizontal component should

be half the screen width. The vertical move should move the floor-line to the

scanline, so the vector is:

(20.3)
𝑥𝑠 = 𝑊 / 2 = 120

𝑦
𝑠

= (𝐷 + ℎ)

Fig 20.6a: pre-

translate by (ax, az)
Fig 20.6b:

rotate by α

Fig 20.6c:

scale by 1/λ

Fig 20.6d: post-

translate by (xs, ys)

Fig 20.6a-d: The 4 steps of mode 7

Putting it all together

While the steps described above are indeed the full procedure, there are still a

number of loose ends to tie up. First of all, remember that the GBA’s transformation

matrix P maps from screen space to background space, which is actually the inverse

of what you’re trying to do. So what you should use is:

(20.4) P = S(𝜆) ⋅R(𝑎) = [𝜆 ⋅ cos (𝑎) −𝜆 ⋅ sin(𝑎)
𝜆 ⋅ sin (𝑎) 𝜆 ⋅ cos (𝑎)

]

And yes, the minus sign is correct for a counter-clockwise rotation (R is defined as a

clockwise rotation). Also remember that the GBA uses the following relation between

screen point q and background point p:

(20.5) 𝑑𝑥 + 𝑃 ⋅ 𝑞 = 𝑝

Tonc - GBA Programming in rot13

408 / 757

that is, one translation and one transformation. We have to combine the pre- and

post-translations to make it work. We’ve seen this before in eq 4 in the affine

background page, only with different names. Anyway, what you need is:

(20.6)

𝑑𝑥 + 𝑃 ⋅ 𝑞 = 𝑝

𝑃 ⋅ (𝑞 − 𝑥𝑠) = 𝑝 − 𝑎

𝑑𝑥 + 𝑃 ⋅𝑥𝑠 = 𝑎

𝑑𝑥 = 𝑎 − 𝑃 ⋅𝑥𝑠

So for each scanline you do the calculations for the zoom, put the P matrix of eq 20.4

into REG_BGxPA-REG_BGxPD , and a−P·xs into REG_BGxX and REG_BGxY and presto!

Instant Mode 7.

Well, almost. Remember what happens when writing to REG_BGxY inside an HBlank

interrupt: the current scanline is perceived as the screen’s origin null-line. In other

words, it does the +h part of ys automatically. Renaming the true ys to ys0, what you

should use is

(20.7) 𝑦
𝑠

= 𝑦
𝑠0 − ℎ = 𝐷

Now, in theory you have everything you need. In practice, though, there are a number

of things that can go wrong. Before I go into that, here’s a nice, (not so) little demo.

Threefold demo

As usual, there is a demo. Actually, I have several Mode 7 demos, but that’s not

important right now. The demo is called m7_demo and the controls are:

D-pad Strafe.

L, R turn le� and right (i.e., rotate map right and le�, respectively)

Tonc - GBA Programming in rot13

409 / 757

A, B Move up and down, though I forget which is which.

Select Switch between 3 different Mode7 types (A, B, C)

Start Resets all values (a= (256, 32, 256), α= 0)

“Switch between 3 different Mode7 types”? That’s what I said, yes. Make sure you

move around in all three types. Please. There’s a label in the top-le� corner indicating

the current type.

Fig 20.7a: Type A: blocked. Fig 20.7b: Type B: sawtooth.

Fig 20.7c: Type C: smooth.

Order, order!

Fiddled with my demo a bit? Good. Noticed the differences between the three types?

Even better! For reference, take a look at Figs 20.7a-c, which correspond to the types.

They adequately show what’s different.

Tonc - GBA Programming in rot13

410 / 757

Type A is horribly blocky. Those numbers in the red tiles are supposed to be ‘8’s.

Heh, numbers? What numbers!

Type B is better. The le�-hand side is smooth, but there’s still some trouble on

the right-hand side. But at least you can see eights with some imagination.

Type C. Now we’re talking! The centerline is clear, which is important since that’s

what you’re looking at most of the time. But even on the sides, things are

looking pretty decent.

So we have three very different Mode7 results, but I guarantee you it’s all based on the

same math. So how come one method looks so crummy, and the other looks great?

The code

Here are the two HBlank ISRs that create the types. Types A and B are nearly identical,

except for one thing. Type C is very different from the others. If you have a thing for

self-torture, try explaining the differences from the code alone. I spent most of

yesterday night figuring out what made Type C work, so I have half a mind of leaving

you hanging. Fortunately for you, that half’s asleep right now.

#define M7_D 128

extern VECTOR cam_pos; // Camera position
extern FIXED g_cosf, g_sinf; // cos(phi) and sin(phi), .8f

Tonc - GBA Programming in rot13

411 / 757

// --- Type A ---
// (offset * zoom) * rotation
// All .8 fixed
void m7_hbl_a()
{
 FIXED lam, xs, ys;

 lam= cam_pos.y*lu_div(REG_VCOUNT)>>16; // .8*.16/.16 = .8

 // Calculate offsets (.8)
 xs= 120*lam;
 ys= M7_D*lam;

 REG_BG2PA= (g_cosf*lam)>>8;
 REG_BG2PC= (g_sinf*lam)>>8;

 REG_BG2X = cam_pos.x - ((xs*g_cosf-ys*g_sinf)>>8);
 REG_BG2Y = cam_pos.z - ((xs*g_sinf+ys*g_cosf)>>8);
}

// --- Type B ---
// (offset * zoom) * rotation
// Mixed fixed point: lam, xs, ys use .12
void m7_hbl_b()
{
 FIXED lam, xs, ys;

 lam= cam_pos.y*lu_div(REG_VCOUNT)>>12; // .8*.16/.12 = .12

 // Calculate offsets (.12f)
 xs= 120*lam;
 ys= M7_D*lam;

 REG_BG2PA= (g_cosf*lam)>>12;
 REG_BG2PC= (g_sinf*lam)>>12;

 REG_BG2X = cam_pos.x - ((xs*g_cosf-ys*g_sinf)>>12);
 REG_BG2Y = cam_pos.z - ((xs*g_sinf+ys*g_cosf)>>12);
}

Tonc - GBA Programming in rot13

412 / 757

The discussion (technical)

All three versions do the following things: calculate the zoom-factor λ, using eq 2 and

a division LUT, calculate the affine matrix using λ and stored versions of cos(φ) and

sin(φ), and calculate the affine offsets. Note that only pa and pc are actually

calculated; because the scanline offset is effectively zero all the time, pb and pd have

no effect and can be ignored. Those are the similarities, but what’s more interesting

are the differences:

1. Fixed point. Type A uses .8 fixed point math throughout, but B and C use a

combination of .12 and .8 fixeds.

2. Calculation order of the affine offset The affine displacement dx is a

combination of 3 parts: scale, rotation and offsets. Type A and B use dx =

// --- Type C ---
// offset * (zoom * rotation)
// Mixed fixed point: lam, lcf, lsf use .12
// lxr and lyr have different calculation methods
void m7_hbl_c()
{
 FIXED lam, lcf, lsf, lxr, lyr;

 lam= cam_pos.y*lu_div(REG_VCOUNT)>>12; // .8*.16 /.12 = 20.12
 lcf= lam*g_cosf>>8; // .12*.8 /.8 = .12
 lsf= lam*g_sinf>>8; // .12*.8 /.8 = .12

 REG_BG2PA= lcf>>4;
 REG_BG2PC= lsf>>4;

 // Offsets
 // Note that the lxr shifts down first!

 // horizontal offset
 lxr= 120*(lcf>>4); lyr= (M7_D*lsf)>>4;
 REG_BG2X= cam_pos.x - lxr + lyr;

 // vertical offset
 lxr= 120*(lsf>>4); lyr= (M7_D*lcf)>>4;
 REG_BG2Y= cam_pos.z - lxr - lyr;
}

Tonc - GBA Programming in rot13

413 / 757

h 1/h λ (true) λ(.8)

157 0.01a16d..h 0.342da7h 0.34h

158 0.019ec8..h 0.33d91dh 0.33h

159 0.019c2d..h 0.3385a2h 0.33h

160 0.019999..h 0.333333h 0.33h

Table 20.1: division tables and zoom factors. ay=32

(offset*scale)*rotation, while C uses dx = offset*(scale*rotation). Because type C

does the offsets last, it can also use different fixed-points for the offsets.

These two (well, 2 and a half, really)

differences are enough to explain the

differences in the results. Please

remember that the differences in the

code are quite subtle: fixed point

numbers are rarely used outside

consoles, and results changing due to

the order of calculation is probably even rarer. Yet is these two items that make all the

difference here.

Let’s start with types A and B, which differ only by the fixed-point of lam . λ is the

ration of the camera height and the scanline, which will o�en be quite small – smaller

than 1 at any rate. table 20.1 shows a few of the numbers. Note that using a λ with

only 8 fractional bits means that you’ll o�en have the same number for multiple

scanlines, which carries through in the later calculations. This is why type A, which

plays by the rules and uses a constant fixed-point like a good little boy, is so blocky at

low altitudes. The four extra bits of type B gives much better results. Rules are nice

and all, but sometimes they needs to be broken to get results.

Now, you will notice that type B still has a bit of distortion, so why only go to .12 fixeds

in type B, why not 16? Well, with 16 you can get into trouble with integer overflow. It’d

be alright for calculating xs and ys , but we still have to rotate these values later on

as well. OK, so we’ll use 64bit math, then the 32bit overflow wouldn’t matter and we

could use even more fixed point bits! A�er all, more == better, right?

Well, no. Bigger/stronger/more does not always mean better (see the DS vs PSP). The

remaining distortion is not a matter of the number of fixed-point bits; not exactly. You

could use a 128bit math and .32f division and trig tables for all I care; it wouldn’t

matter here, because that’s not were the problem is.

Tonc - GBA Programming in rot13

414 / 757

The problem, or at least part of it, is the basic algorithm used in types A and B. If you

look back to the theory, you’ll see that the affine matrix is calculated first, then the

offsets. In other words, first combine the scale and rotation, then calculate the offset-

correction, P·xs. This is how the affine parameters in the GBA work anyway. However,

this is actually only the first step. If you follow that procedure, you’d still get the

jagged result. The real reason for these jaggies is the order of calculation of lxr .

Getting lxr = pa/c·xs requires two parts: multiplication with P elements and the shi�

down to .8 fixeds. You might expect doing the shi� last would be better because it has

a higher precision. The funny thing is that it doesn’t! Shi�ing pa or pc down to 8

fractional bits before the multiplication is what gets rid of the remaining distortions,

reversing the order of operations doesn’t.

As for why, I’m not 100% sure, but I can hazard a guess. The affine transformation

takes place around the origin of the screen, and to place the origin somewhere else

we need to apply a post-translation by xs. The crucial point I think is that xs is a point

in screen-space which uses normal integers, not fixed points. However, it only applies

to xs because that really represents an on-screen offset; ys is actually not a point on

the screen but the focal distance of the camera. On the other hand, it might have

something to do with the internal registers for the displacement.

The verdict

Obviously, type C is the one you want. It really bugs the hell out of me that I didn’t

think of it myself. And the fact that I did use the scale-rotation multiplication but

abandoned it because I screwed up with the multiplication by the projection distance

D doesn’t help either (yes, this sentence makes sense). The code of m7_hbl_c shown

above works, even though it only uses 32-bit math. As long as you do the scale-

// Multiply, then shift to .8 (A and B)
 lxr= (120*lcf)>>4;

// Shift to .8 first, then multiply (C)
 lxr= 120*(lcf>>4);

Tonc - GBA Programming in rot13

415 / 757

rotation multiplication first and shi� down to .8 fixeds before you multiply by 120 in

the calculation of wxr everything should be fine.

Final Thoughts

This has been one of those occasions that show that programming (especially low-

level programming) is as much of a science as an art. Even though the theory for the

three mode 7 versions was the same, the slight differences in the order and precision

of the calculations in the implementations made for very noticeable differences in the

end result. When it comes to mode 7, calculate the affine matrix before the correction

offset. But most importantly, the x-offset for the screen should not be done in fixed

point.

Secondly, this was only the basic theory behind mode 7 graphics. No sprites, no pitch-

angle and no horizon, and tailored to the GBA hardware from the start. In the next

chapter, we’ll derive the theory more extensively following standard 3D theory with

linear algebra. This chapter will also show how to position sprites in 3D and how to do

other things with them like animating for rotation and sorting, and also present

variable-pitch and a horizon. If this sounds complicated, well, I supposed that it is. It’s

definitely worth a look, though.

Tonc - GBA Programming in rot13

416 / 757

21. Mode 7 Part 2

Introduction

Basic mode 7 theory

Horizon and backdrop

The floor

Sprites

Implementation

Concluding remarks

Introduction

Mode 7: part 1 covered the basics of how to get an affine background to look like a 3D

plane, and discussed some of the trickier parts of the fixed point arithmetic involved.

Getting the basic look of a 3D plane is only the first step.

In this chapter, we’ll look into the general math involved of creating a 3D world and

translate it back to a form we can use for mode 7. This includes translations in all

directions and looking around (yaw) like before, but also a pitch angle for looking up

and down. We’ll also see how to deal with the horizon and use a background for the

backdrop above the horizon. I’ll even throw in a bit of fogging to occlude the distant

parts of the ground.

I’ll discuss also working with sprites in 3D space. Not just the transformation from 3D

space to 2D screen, but also culling, scaling for distance (which is not as simple as one

might think), animation and sorting. Note that this part of the chapter is basic 3D

sprite theory, and can be applied to 3D games that use sprites in some way.

The theory part of the chapter is going to be very math-heavy, as 3D theory always is.

Knowing a little bit about linear algebra certainly wouldn’t hurt. The full story about

Tonc - GBA Programming in rot13

417 / 757

geometry is beyond the scope of Tonc, but this stuff is quite general; most books on

3D programming will have a chapter on geometric transformations, so you can look at

those if you get a little lost here.

This chapter touches on almost all of the topics covered so far. It uses affine objects,

backgrounds (both regular and affine), interrupts, color effects and a few more. If your

understanding of any of these is lacking, you could be in for a rough time here.

Fig 21.1: m7_ex; with horizon, sprites, variable pitch angle and distance fogging.

What we’re going to try to do is re-create a scene from the SNES Mario Kart (see fig

21.1; apologies to Nintendo for using the graphics, but I don’t have a lot of options

here :\). This is just a freeze-frame of the game, not actual game play is involved,

but this should present a nice target to aim for. The code is distributed over a number

of files: mode7.c for the simple mode 7 functions and mode7.iwram.c for the less

simple mode 7 functions and interrupt routines. The code of demo-specific code can

be found in m7_ex.c , which does the set-up, interaction and main loop. The basic

controls are as follows:

D-pad Looking

A/B Back/forward

L/R Strafing

Select+A/B Float up/down

Start Menu

Tonc - GBA Programming in rot13

418 / 757

Movement and looking follows FPS/aircra� motion, or at least as well as could be

expected with the number of buttons available. There are several extra options which

have been put in a menu. First is motion control which sets difference methods of

movement. Option ‘local’ follows the camera axis for flight-controls, ‘level’ gives

movement parallel to the ground, like FPSs usually do, and ‘global’ uses world axis for

movement. Other options include toggling fog on or off and resetting the demo.

Basic mode 7 theory

Fig 21.2 shows what we’re up against: we have a camera located at acw, which has

some orientation with respect to the world coordinate system. What we have to do is

find the transformation that links screen point xs to world point xw. There are a

number of ways to do this. You already saw one in the first mode 7 chapter, where we I

had the GBA hardware in mind from the start. You could extend this to the general

mode 7 case (with a non-zero pitch) with some effort. You could also use pure

trigonometry, which is a minefield of minus signs and potential sine-cosine mix-ups.

Still, it is possible. What I’ll use here, though, is linear algebra. There are several

reasons for this choice. Firstly, linear algebra has a very concise notation, so you can

write down the final solution in just a few lines (in fact, once you get through the

definitions, the solution that covers all cases can be written down in 2 lines).

Furthermore, the equations are well structured and uniform in appearance, making

debugging easier. Then there’s the fact that inverting the whole thing is very easy. And

lastly, it’s what true 3D systems use too, so the theory can be applied outside the

mode 7 arena as well. Conversely, if you know basic 3D theory, you’ll feel right at

home here.

Tonc - GBA Programming in rot13

419 / 757

Fig 21.2: The basic 3D situation. The trick is to relate screen

point xs to world point xw, taking the camera position acw and

its orientation into account.

Definitions

Before you can do anything, though, you need to know exactly what we’re going to

use. The first thing to note is that we have two main coordinate systems: the world

system Sw and the camera system Sc. Inside the camera system we have two minor

coordinate systems, namely the projection space Sp and screen space Ss. Now, for

every transformation between systems Si and Sj the following relation holds:

(21.1) 𝑀𝑖𝑗 ⋅ 𝑥𝑗 = 𝑥𝑖 − 𝑎𝑗𝑖

where

xi the coordinate vector in system Si;

xj the coordinate vector in system Sj;

aji the origin of system Sj, expressed in coordinates of system Si;

Mij
the transformation matrix, which is basically the matrix formed by the

principle vectors of Sj, in terms of Si.

Tonc - GBA Programming in rot13

420 / 757

Once you get over the initial shock of the many indices (meh, in general relativity you

have something called the Riemann tensor, which has four indices), you’ll see that this

equation makes sense. If you don’t get it right away, think of them as arrays and

matrices. An observant reader will also recognise the structure in the screen↔map

transformation we had for affine maps: P·q = p − dx. Eq 21.1 is a very general

equation, by the way, it holds for every kind of linear coordinate transformation. In

fact, systems Si and Sj don’t even have to have the same number of dimensions!

As said, we have 4 systems in total, so we have 4 subscripts for w(orld), c(amera),

p(rojection), s(creen). Remember these, for they will appear on a very regular basis.

The final forms of the matrices and origins depend very much on the exact definitions

of these systems, so make sure you know exactly what each means.

World system

The first of these, the world system Sw, is easy to deal with. This is simply a right-

handed Cartesian system with principle axes i, j, and k, which are its x-, y- and z-axes,

respectively. In the right-handed system that is used in computer graphics, the x-axis

(i) points to the right, the y-axis (j) points up and the z-axis (k) points backward! This

means that you’re looking in the negative z direction, which may seem weird at first. If

you absolutely must have a forward pointing k, you could use a le�-handed system.

While this utterly destroys my 3d intuition, if you want it be my guest. Before you do

that, though, remember that the map marks the floor of world space and in a right-

handed system, the texture coordinates will match up neatly to world coordinates.

The camera frame

The transformation to the camera system is probably the major hurdle in the whole

thing. At least it would be if it wasn’t for matrices. Rewriting eq 21.1, the

transformation between camera and world space is given by

(21.2) 𝐶 ⋅ 𝑥𝑐 = 𝑥𝑤 − 𝑎𝑐𝑤

Tonc - GBA Programming in rot13

421 / 757

Fig 21.3: Camera orientation {u, v, w} in

world space {i, j, k}, given by angles θ and

φ

As you can expect, the origin of camera space is

the camera position, acw. The camera matrix C

is formed by the principle axes of camera space,

which are u, v and w for the local x-, y- and z-

axes, respectively. This means that the camera

matrix is C = [u v w].

The orientation of the camera with respect to

world space is defined by 3 angles: pitch

(rotation around the x-axis), yaw (rotation

around the y-axis) and roll (around z-axis). The

combination of these give C. Traditionally, the

rotation direction of these is such that if you

look down one of these axes, a positive angle turns the system counter-clockwise.

However, I’ll do the exact opposite, because it makes a number of things easier.

Additionally, I will only be using two angles: pitch and yaw. For mode 7 it is impossible

to incorporate roll into the picture. Why? Look at it this way: if you’re rolled on your

side, the ground would be on the right or le� of the screen, which would require a

vertical perspective division, which is impossible to achieve since we can only change

the affine parameters at HBlank. Therefore, only pitch (θ) and yaw (φ) are allowed. I

want my positive θ and φ to the view down and right, respectively, meaning I need

the following rotation matrices:

(21.3a) R𝑥 (𝜃) = [
1 0 0
0 cos (𝜃) sin (𝜃)
0 −sin (𝜃) cos (𝜃)

]

(21.3b) R𝑦 (𝜑) = [
cos (𝜑) 0 −sin (𝜑)

0 1 0
sin (𝜑) 0 cos (𝜑)

]

But now the next problem arises: do we do pitch first, or yaw? That really depends on

what kind of effect you want to have and in relation to what system you do your

Tonc - GBA Programming in rot13

422 / 757

rotation. There is actually only one order that is possible for the same reason that roll

wasn’t allowed: you cannot have a vertical perspective. What this boils down to is that

u (the x-axis of the camera frame) must be parallel to the ground plane, i.e., uy must

be zero. In order to do that, you must do pitch first, then yaw. This is depicted in fig

21.3. To get a feel for this: stand up, tilt your head down (pitch θ>0), then turn to your

right (yaw φ>0). The full camera matrix then becomes:

(21.4) C(𝜃,𝜑) = R𝑦 (𝜑) ⋅ R𝑥 (𝜃) = [
cos (𝜑) sin (𝜑) ⋅ 𝑠𝑖𝑛(𝜃) −sin (𝜑) ⋅ cos (𝜃)

0 cos (𝜃) sin (𝜃)
sin (𝜃) −cos (𝜃) ⋅ sin (𝜃) cos (𝜑) ⋅ cos (𝜃)

]

Aside from being correct, this matrix has two nice properties. Firstly, the column

vectors are of unit length. Secondly, the component vectors are perpendicular. This

means that C is an orthogonal matrix, which has the very nice feature that C−1 = CT.

This makes the world→camera transformation a relatively simple operation.

One last thing here: if you were to rotate the camera system by 180° around i, this

would give you a forward pointing w and a downward pointing v, both of which

decrease the number of awkward minus signs in later calculations, at the expense of

an awkward camera frame. Whether you want to do this is up to you.

MATRIX TRANSFORMS AND THE SYSTEM THEY OCCUR IN.

I said that to mimic the rotations of C you to tilt your head first (θ), then rotate

your body (φ). You might think that you can get the same effect by doing it the

other way: turn first, then look down. However, this is incorrect.

It may feel the same, but in the second case you’d not actually be using the

Rx(θ) to invoke the tilt. A matrix isn’t a thing in itself, it ‘lives’ in a space. In this

case, both Rx(θ) and Ry(φ) are defined in terms of the world coordinate system,

and when applying them the directions follow the world’s axes. The turn-then-

tilt order would use Rx(θ) in a local frame, which is a legal operation, but not the

one that the math requires.

Tonc - GBA Programming in rot13

423 / 757

Fig 21.4: perspective projection.

I know it’s a subtle point, but there really is an important difference. Try

visualizing it with a 90° rotation in both orders, maybe that’d help.

The projection plane

To create the illusion of depth we need a

perspective view. For this, you need a center of

projection (COP) and a projection plane.

Naturally, both need to be in camera space.

While you’re free to choose these any way you

want, you can simplify matters by placing the

center of projection at the origin of camera

space and the projection plane at a distance D in

front of the camera, so that the plane is given by xp = (xp, yp, −D). Yes, that’s a negative

zp, because we’re looking in the negative z-direction. The projected coordinates are

the intersections of the line between COP and xc, and the projection plane. Since the

COP is at the origin, the relation between xc and xp is

(21.5) 𝜆 𝑥𝑝 = 𝑥𝑐

Here λ is a simple scaling factor, the value of which can be determined in a variety of

ways, depending of the information available at the point in your derivations. For

example, since zp = −D, by definition, we have λ = −zc / D. Later we’ll see another

expression. The interesting thing about this expression is that λ is proportional to the

distance in camera space, which in turn tells you how much the camera position is to

be scaled down, or zoomed. This is useful, since the scaling parameters of the affine

matrix scales down as well. Also, the distance D attenuates the scaling, which means

that it acts as a focus length. Note that when zc = −D, the scale is one, meaning that

the objects at this distance appear in their normal size.

Tonc - GBA Programming in rot13

424 / 757

Fig 21.5: Viewing frustum in camera space. The

green rectangle is the visible part of the projection

plane (i.e., the screen).

Viewport and viewing volume

Before I give the last step of the

transformation to the screen, I have to

say a few words about the viewport and

the viewing volume. As you can imagine,

you can only see a certain portion of the

world. You see the world through a

region called the viewport. This is an area

on the projection plane, usually

rectangular, that defines the horizontal

and vertical boundaries of what you can

see. In particular, you have a le� side (L),

right side (R), top (T) and bottom (B).

With the axes defined as they are and the origin is usually centered (see fig 21.5,

inset), we have R>0>L and T>0>B. Yup, in this particular case L is negative, and T is

positive!

The width and height of the viewport are W = |R−L| and H = |B−T|, respectively.

Together with the center of projection, the viewport defines the viewing volume (see

fig 21.5). For a rectangular viewport this will be a pyramid.

Most of the time you will want boundaries in depth as well, because things too near

will obstruct everything else from view (besides, dividing by 0 is never good), and very

distant objects will become so small that they are barely noticeable, and why waste so

many calculations on a handful of pixels? These boundaries in depth are called the

near (N) and far (F) planes, and will turn the viewing volume in a frustum. The

numbers for these distances are a matter of taste. Whatever you use, be aware that

the z-values are actually negative. I would prefer to have the values of N and F

positive, so that the order or distance is 0>−N>−F.

Another point is the notion of the field of view (FOV). This is the horizontal angle α

that you can see, meaning that

Tonc - GBA Programming in rot13

425 / 757

Fig 21.6: screen space vs

camera space

(21.6) tan (½ α) = ½ W
𝐷

I am told that a commonly used FOV is about 90°, which would require D = ½W. With

D = 128 you get close enough to this requirement, with the added benefit that it’s a

power of 2, but that, of course, is an implementation detail. However, it seems that

D = 256 is more common, so we’ll use that instead.

The screen

The last step is the one from the projection plane onto

the screen. This step is almost trivial, but the almost can

cause you a lot of trouble if you’re not careful. The

situation is shown in fig 21.6, where you are looking

through the camera. The axes u and v are the up and

right axes of the camera system, while the green arrows

denote the x- and y-axes of screen space. And if you have

paid attention to any of the tutorials, you should know

that the screen’s y-axis points down. This is bugfest number 1. Also, the origins of

camera and screen space differ. Since the screen corresponds to the viewport, the

origin of the screen in camera/projection space is asp = (L, T, −D). Be careful not to

reverse the signs here; that would be bugfest number 2. Also remember that since this

is in camera space, L is negative and T is positive. Taking both the inverted vertical

axis and the origin of screen-space in mind, we have

(21.7) 𝑆(1, − 1, 1) ⋅𝑥𝑠 = 𝑥𝑝 − 𝑎𝑠𝑝

The scaling matrix reverses the sign of the y-axis. We could have avoided the extra

matrix if we had rotated the camera frame by another 180°, in which case v would

have pointed down and w would have pointed forward. But I didn’t, so we’ll have to

live with it here. Also, since the origin of the screen in camera space, is asp = (L, T, −D),

the screen position is xs = (xs, ys, 0), in other words zs is always zero. If you want to

Tonc - GBA Programming in rot13

426 / 757

check whether everything is OK, see if the corners of the viewport give the right

screen coordinates.

Theory summary

And that’s basically it, phew. Since it took three pages to get here, I’ll repeat the most

important things. First, the main equations we need are:

(21.8a) 𝜆𝐶 ⋅ 𝑥𝑝 = 𝑥𝑤 − 𝑎𝑐𝑤

(21.8b) 𝑆(1, − 1, 1) ⋅𝑥𝑠 = (𝑥𝑝 − 𝑎𝑠𝑝)

where

xw coordinates in world space;

xp coordinates on the projection plane, xp= (xp, yp, −D);

xs coordinates on the screen, xs= (xs, ys, 0);

acw the location of the camera in world space;

asp the location of the screen origin in camera space space, asp = (L, T, −D);

C the camera matrix, as function of pitch θ and yaw φ: C = Ry(φ)· Rx(θ);

λ
the scaling factor. Its value can be determined by the boundary

conditions.

Remember these equations and terms, for I will refer to them o�en. The break

between eq 21.8a and eq 21.8b is by design: all the real information is in eq 21.8a; eq

21.8b is just a final step that needs to be taken to complete the transformation. In the

remainder of the text, I will make frequent use of eq 21.8a and leave out eq 21.8b

unless necessary. Other interesting things to know:

World system Sw = {i,j,k} and camera system Sc = {u, v, w} are right-handed

Cartesian coordinate systems. As expected, the columns of camera matrix C are

the principle axes of Sc: C = [u v w];

Tonc - GBA Programming in rot13

427 / 757

The viewport and viewing frustum are in camera space, meaning that their

boundaries are too. This means that

R > 0 > L (horizontal)

T > 0 > B (vertical)

0 > −N > −F (depth)

If we use the GBA screen size as a basis (W = 240, H = 160), and D = 256,

reasonable values for the viewing frustum boundaries are the following, but you

can pick others if you want.

L = −120 R = −120

T = 80 B = −80

N = 24 F = 1024

Horizon and backdrop

Take the essential mode 7 case: a floor in perspective. Due to the perspective division,

the distant parts of the floor will approach a single line: the horizon. Since the map

really is just a floor, the horizon really will be just that: one horizontal line. The space

above that is usually empty, but to make it a little less bland, we will use a backdrop: a

panorama view of the distant environment that moves along with the camera’s

rotation.

Finding the horizon

Roughly put, the horizon is where z = −∞. If you have lines on the floor, the horizon is

where all parallel lines seem to meet: the vanishing line. Naturally, if you only have a

floor, then you should only draw it below the horizon and the graphics above it should

be part of a skybox. I’m sure you’ve seen this in the original Mario Kart and other

Tonc - GBA Programming in rot13

428 / 757

mode 7 racers. Since we’re limited to a roll-less camera, the horizon will always be a

horizontal line: one scanline ys,h. To find it, all we have to do is take the y-component

of eq 21.8a and rearrange the terms to get

(21.9a)
𝜆(𝑣𝑦 𝑦

𝑝, ℎ − 𝑤𝑦𝐷) = − 𝑎𝑐𝑤, 𝑦

𝑦
𝑝, ℎ

= (𝑤𝑦𝐷 − 𝑎𝑐𝑤, 𝑦 / 𝜆) / 𝑣𝑦

And if we were to take our horizon at infinity, them λ = −∞, which would reduce eq

21.9 to

(21.9b) 𝑦
𝑝, ℎ = 𝐷 𝑤𝑦 / 𝑣𝑦 = 𝐷tan (𝜃)

However, you need to think about whether you want to use this simplified equation.

At very large λ, the gaps in displayed map points are so large that you’re effectively

showing noise, which can be very ugly indeed. A better way would be making use of

the far clipping plane at zc = −F. In that case, λ = F/D and we can use eq 21.9 to

calculate the horizon, which will be something like

(21.9c) 𝑦
𝑝, ℎ = 𝐷 / 𝐹 ⋅ (𝐹𝑤𝑦 − 𝑎𝑐𝑤, 𝑦) / 𝑣𝑦

As expected, if F = −∞ then eq 21.9c reduces to eq 21.9b. Regardless of whether you

chose a finite of infinite zc, the horizon will be at scanline ys,h = T − yp,h.

Using the horizon

The horizon marks the line between the map and ‘far far away’: between the floor and

the backdrop. The floor should be an affine background, obviously; for the backdrop,

we will use a regular background, although that’s not required. What we need to a

way to switch between the two at the horizon scanline. The simplest way is by HBlank

interrupt: once the horizon scanline is reached, make the switch between floor and

backdrop settings in the BG control registers and perhaps initiate HDMA for the affine

parameter transfers if you chose to use DMA for that.

Tonc - GBA Programming in rot13

429 / 757

Switching between the backdrop and floor backgrounds is actually trickier than it

sounds. You could, for example, have a separate background for each and

enable/disable them depending on your needs. The problem is that it seems to take

about 3 scanlines before a background is fully set up in hardware (see forum:1303), so

you’ll see crap during that time. In other words, this solution is no good.

An other way would be to have one background for both and switch the video-mode

from 0 to 1 or 2. This won’t give you 3 lines of garbage, but now another problem

arises: chances are very high that the backdrop and floor have very different tiles and

map attributes. This is easy to solve though: simply change the screen (and char) base

blocks in REG_BGxCNT .

Fig 21.7: Switch video-mode and background

parameters at the horizon.

Fig 21.8: peeling a panoramic view from a cylinder.

Making and placing the backdrop

The space directly above the horizon is for the backdrop. You probably want a nice

image of a distant town or tree line over there, not just a boring empty sky. The

backdrop offers a panoramic view, which can be considered a map painted on the

Tonc - GBA Programming in rot13

430 / 757

https://gbadev.net/forum-archive/thread/4/1303.html

inside of a cylinder and then peeled off to a normal 2D surface (see fig 21.8). The idea

is to put that surface on a background and the scroll around.

Vertically, the bottom of the background should connect to the horizon. Because

regular backgrounds use wrap-around coordinates this is actually quite easy: place

the ground-level of the backdrop at the bottom of a screen-block and set the vertical

offset to −ys,h.

Horizontally, there are several issues to be aware of. The first is the width of the map,

which is simply the perimeter P of the cylinder. As we should have a scrolled a full

map’s width for a 360° rotation, the correct scroll ratio per unit angle is simply

P/2π = R, the radius. In principle, R is arbitrary, but the best result can be had when

the field of view formed by the angle of the panorama (αp = W/R), is equal to the

camera field-of-view angle αc from eq 21.6. If all is right we should have αp = αc = α.

(21.10)

𝛼 = 2 ⋅ arctan (½ W
𝐷

)

𝛼 = 𝑊
𝑅

𝑅 = ½ W
arctan (½ W

𝐷)

≈ 𝐷

1 − (½ W
𝐷)2 / 3

That last approximation stems from the first couple of terms of the Taylor series of the

arctangent. Interestingly enough, even R ≈ D seems somewhat adequate. Anyway,

filling in W = 240 and D = 256 gives P = 1720, which isn’t a very convenient map size, is

it? Now, it is possible to create a map of any size and update VRAM if we go outside the

screenblock’s boundaries (commercial games do it all the time), but doing so would

distract for the subject at hand, so you know what? We’re going to bend the rules a bit

and just force P = 1024.

“Wait a sec … you can’t do that!” Well, yes I can actually. I’m not supposed to do it, but

that’s another issue. The fact of the matter is that, I don’t think there is a single mode

Tonc - GBA Programming in rot13

431 / 757

https://en.wikipedia.org/wiki/Taylor's_theorem

7 game that scrolls the backdrop properly! For example, the Mario Kart’s o�en use

multiple backgrounds with different scrolling speeds in their backdrops, which is

absolutely ridiculous, mathematically speaking, because looking around doesn’t

change relative lines of sight. But I guess nobody noticed or at least nobody cares.

What I’m trying to say is: we’re in good company �P

So, we just define a perimeter value and with it backdrop map-width ourselves. In this

case I’m going to use P = 1024, which is a nice round number and for which we can use

a 512 px wide tile-map will effectively end up as a panorama with 180° rotational

symmetry. Taking into account the circle partitioning of 2π ⇔ 10000h, the scrolling

value is simply φ*P/10000h = φ/64. We’ll have to offset this by L as well because I want

to map φ = 0 to due north. The final position of the backdrop is given in 21.11.

(21.11)
𝑑𝑥 = 𝜑 / 64 + 𝐿
𝑑𝑦 = − 𝑦

𝑠, ℎ

The floor

Affine parameters for the floor

Eq 21.8 describes the world↔screen transformation but that information uses 3D

vectors, while the GBA only has a 2×2 affine matrix P and a 2D displacement vector dx

at its disposal. So we have some rewriting to do. Now, I could give you the full

derivation, 2d↔3d conversions and all, but something tells me you really don’t want

to see that. So instead, I’ll give you the set of equations you need to solve, and hints

on how to do that.

(21.12)

𝜆𝐶 ⋅ 𝑥𝑝 = 𝑥𝑤 − 𝑎𝑐𝑤
𝑆(1, − 1, 1) ⋅ 𝑥𝑠 = (𝑥𝑝 − 𝑎𝑠𝑝)

𝑃 ⋅ 𝑞 = 𝑝 − 𝑑𝑥

Tonc - GBA Programming in rot13

432 / 757

The first two equations are just eq 21.8 again, I just them list for completeness. The

last equation is the relation between screen point q and map point p for an affine

map, an equation that should be familiar by now. Now, remember that our map lies

on the floor, in other words p = (xw, zw). The 2D screen point q is, of course, similar to

the 3D screen vector of xs. The only thing that you have to remember is that when

writing to REG_BGxY , the le� of the current scanline is taken as the origin, so that

effectively q = (xs, 0), which in turn means that pb and pd are of no consequence. The

values of the other elements of P are simply the x- and z-components of the scaled

camera x-axis, λu. If you use these values, you will see that eventually you will end up

with an expression that can best be summed up by:

(21.13) 𝑑𝑥′ = 𝑎𝑐𝑤 + 𝜆𝐶 ⋅ 𝑏

where

𝑑𝑥′ = (𝑑𝑥, 0, 𝑑𝑦)
𝑏 = (𝐿, 𝑇 − 𝑦

𝑠′
, − 𝐷)

Everything you need for the displacement is neatly packed into this one equation,

now we need to disassemble it to construct the algorithm. First, we can use the y-

component of dx’ to calculate λ. Once we have that we can use it to calculate the

other two elements, i.e., the actual affine offsets. The affine matrix was already given

earlier.

Eq 21.14 gives all the relations explicitly, though I hope you’ll forgive me when I prefer

the conciseness of eq 21.13 myself.

Tonc - GBA Programming in rot13

433 / 757

(21.14)

𝜆 = 𝑎𝑐𝑤, 𝑦 / ((𝑦
𝑠

− 𝑇)𝑣𝑦 + 𝐷𝑤𝑦)
𝑝
𝑎

= 𝜆 𝑢𝑥
𝑝
𝑐

= 𝜆 𝑢𝑧
𝑑𝑥 = 𝑎𝑐𝑤,𝑥 + 𝜆(𝐿𝑢𝑥 + (𝑇 − 𝑦

𝑠
)𝑣𝑥 − 𝐷𝑤𝑥)

𝑑𝑦 = 𝑎𝑐𝑤, 𝑧 + 𝜆(𝐿𝑢𝑧 + (𝑇 − 𝑦
𝑠
)𝑣𝑧 − 𝐷𝑤𝑧)

Note that if we take the top at 0 and no pitch (T=0 and θ=0) we have exactly the same

result as in the first mode 7 chapter, and if we look straight down (θ=90°), the whole

thing reduces to a simple scaling/rotation around point (−L, T), which is exactly it

should be. Eq 21.14 is the general equation for mode 7; for the implementation, you

can o�en make a number of shortcuts that speed up calculation, but well get to that

later.

Distance fogging

In the real world, light coming from far away objects has to travel through the

atmosphere, which scatters the photons, attenuating the beam. What you’ll end up

seeing is partly the object itself and partly the ambient color, and the further the

original object, the smaller its contribution is. Because such effect is most easily

visible in fog conditions, I’ll call this effect fogging.

Fogging offers a hint of distance and including it can increase the sense of depth. Also,

it can hide objects popping into view as they’re loaded. GBA-wise, it can be

implemented by using different alpha-blends at every scanline.

The fundamental equation for this is the following differential equation:

𝑑𝐼 = − 𝐼 𝑘(𝜈) 𝜌 𝑑𝑧

where I is the intensity; k(ν) is the absorption coefficient of the medium, which

depends on the frequency of the light, ν and possibly position; ρ is the density and z is

the distance. Solving this would lead to an exponential decay over distance. And I do

mean real distance, with squares and roots and everything.

Tonc - GBA Programming in rot13

434 / 757

Fortunately, we don’t have to use something that complicated; all we really need is

some functional relation that gives 0 at infinity and 1 close up. Interestingly enough,

we already have something like that, namely λ as function of the scanline (see 21.14).

This is basically a hyperbola, all you have to do then is fiddle with scalers and offsets a

bit to get something that looks nice. In my case, λ*6/16 seems to work well enough.

Fig 21.9: fog off (le�) and on (right).

Fig 21.9 shows screenshots with and without the fogging effect as seen from a fairly

high altitude. The distance to the floor is relatively small at the bottom of the screen,

so those are still very visible. At the horizon, the floor is completely obscured by the

orange fog; which is actually a good thing, as the lines near the horizon are usually not

much to look at anyway.

By the way, note that I said orange fog. If you’d paid attention in the graphics effects

chapter will know that the GBA only has fading modes for white and black.

Nevertheless, fades to an arbitrary color are very much possible, but I’ll explain once

we get to the implementation. While you ponder over how it can be done, I’ll move on

to 3D sprites.

Sprites

Sprites and 3D are a strange combination. By their very nature, sprites are 2D objects

– like stickers stuck against the viewport (i.e., the screen). To make them appear part

of the 3D world, you have to make them move over the screen in such a way that they

Tonc - GBA Programming in rot13

435 / 757

appear to move with the world and scale them according to their distance. Once

again, the basic of this is eq 21.8, but there is considerably more to it.

Four topics must be covered here. The first is sprite positioning. Eq 21.8 will work at

point/pixel level, and a sprite is a simple rectangle. While it’s possible to rewrite the

sprite’s pixels to work around that, it kind of defeats the purpose of using sprites in

the first place. Instead, we’ll link one point on the object to the world coordinate of

the sprite and set the OAM position and matrix to accommodate this. This is basically

the theory of anchoring discussed in the affine object chapter.

Next up: sprite culling. Once you have the correct OAM positions you can’t use them

as is, you have to make sure the sprite is only active if it is actually visible inside the

viewport. If not, it should be disabled.

Then there’s the matter of sprite animation. Consider Toad’s kart in fig 21.10, which

has the correct anchored position, but no matter which angle you look at it, it’ll

always show the same side. To make it look as if you can actually move around the

object, we’ll use different frames of animation to show different sides.

Lastly, sprite sorting. By default, objects will be ordered according to the objects’

numbers: obj 0 over obj 1, over obj 2, etc. Always linking a sprite to the same object

means that the order would be wrong if you look at them from the other side, so we

need to sort them by distance.

Those are the main issues to deal with. There are a few others, like placing a shadow,

and using pre-scaled objects to get around the hardware limitation of 32 affine

matrices, but these are fairly easy if the other points are already taken care of. One

thing I will discuss as well is what I call object normalization: applying an extra

scaling for objects so that they don’t grow too big for their clipping rectangle.

Tonc - GBA Programming in rot13

436 / 757

Fig 21.10: anchored sprite. The position is good, but no matter

how you turn, Toad always turns away. Maybe it's the hat.

Positioning and anchoring

Positioning sprites consists of two facets. The first is to transform the sprites world

position xw to a position on the screen xs. A�er that, you need to use that point to

determine the most appropriate OAM coordinates.

The first part is just another application of eq 21.8 again, only in reverse. Normally,

inverting 3D matrix is a particularly un-fun process, but the camera matrix happens to

be an orthonormal matrix. An orthonormal matrix is a matrix of which the component

vectors are orthogonal (perpendicular to each other) and have a length of 1. The neat

thing about an orthonormal matrix is that its inverse is simply its transpose: C−1 = CT.

That leads us to the following equations:

(21.15)
𝑥𝑝 = 𝐶𝑇 ⋅ (𝑥𝑤 − 𝑎𝑐𝑤) / 𝜆
𝑥𝑠 = 𝑆(1, − 1, 1) ⋅ (𝑥𝑝 − 𝑎𝑠𝑝)

The only real unknown here is λ, which we can calculate by using the fact that zp = −D.

Now let the distance between camera and sprite be r = xw − acw; using C = [u v w], we

find

𝜆 = − 𝑤 ⋅ 𝑟 / 𝐷
𝑥𝑝 = 𝑢 ⋅ 𝑟 / 𝜆
𝑦
𝑝

= 𝑣 ⋅ 𝑟 / 𝜆

Tonc - GBA Programming in rot13

437 / 757

Fig 21.11: a

32×32 sprite,

with the

anchor p0

relative to the

top-le�.

Finding the screen position of xw is trivial a�er that. And now the

anchoring part. Instead of stickers, think of objects as pieces of pater

to be tacked onto a board (i.e., the screen). The tack goes through one

spot of the object, and that spot is fixed to the board. That spot is the

anchor. For affine objects it’s not quite as simple as that, because we

have to specify OAM coordinates rather than anchor coords, so there is

some math involved in how to express the OAM coordinates x in terms

of the texture anchor p0 and the screen anchor q0. This theory was

covered in the affine object chapter, which led to eq 21.16. The other

quantities there are size of the objects, s = (w, h), and m which is ½ for normal affine

objects and 1 for double-size affine objects.

(21.16) 𝑥 = 𝑞
0

− 𝑚𝑠 − 𝑃−1 ⋅ (𝑝
0

− ½ s)

Now the task is to link the data we have to this equation. The screen anchor q0 is just

xs. The texture anchor p0 is the pixel in texture space you want to keep fixed and is

yours to choose. For the kart-sprite, it makes sense to put it near the bottom of the

kart, as is depicted in fig 21.11. ‘Vector’ s is given by the size of the object, which in

this case is (32, 32) and because I’m choosing to always use double-size objects here,

m=1. The P-matrix is just a scaling by λ, unless you want to add other things as well.

All that remains then is just to fill it in the numbers.

Sprite culling

Culling is the process removing any part of the world that cannot be seen. In this case,

it means removing those sprites that do not fall within the viewing volume. This is a

very smart thing to do, and it makes even more sense for sprites, because not doing

so would seriously screw things up because OAM couldn’t cope with the possible

range of xs.

The first thing to do would be a distance check: if the object is too far away, it should

not be seen. It’s also a good idea to have a near-plane distance check. Then you have

Tonc - GBA Programming in rot13

438 / 757

Fig 21.12: View-frustum with sprites a, b and c. b

and c are visible, a is not.

to test it for intersections with the

viewport. Each sprite is bounded by a

certain rectangle on the projection plane

and if this is completely outside the

viewport, the object should not be

rendered.

Fig 21.12 shows a few examples of this.

Objects a and b have already been

projected onto the projection plane.

Object a is outside the viewport, and

should be disabled. Object b is partially

visible and should be rendered. Object c is not projected yet, but falls between the

near and far plane and should at least be tested (and then found fully visible).

It’s actually easier to do the view volume checks in 3D camera space instead of 2D

projection space. The object rectangle can easily be calculated from xc = CT·r, the

anchor p0 and the size s. The viewport will have to be scaled by λ, and this gives us

the following rests to perform:

 Object position Visible if

Depth 𝑑 = − 𝑧𝑐 = 𝑤 ⋅ 𝑟 𝑁 ≤ 𝑑 && 𝑑 < 𝐹

Horizontal 𝑙 = 𝑥𝑐 − 𝑝0,𝑥 𝜆𝐿 ≤ 𝑙 + 𝑤 && 𝑙 < 𝜆𝑅

Vertical 𝑡 = − 𝑦
𝑐

− 𝑝0, 𝑦 𝜆𝑇 ≤ 𝑡 + ℎ && 𝑡 < − 𝜆𝐵

Table 21.1: Object rect and culling tests in camera space. Note the

signs!

If all these conditions are true, then the object should be visible. Now, please note the

signs of the tests, particularly in the vertical checks.

Tonc - GBA Programming in rot13

439 / 757

Fig 21.13: Finding the view-angle

ψ.

Animation

Rotation animation, to be precise. As we saw in fig

21.10, the sprite will show the same side regardless of

where you are looking from. This is only logical, as the

sprite is not actually a 3D entity. To make it look a little

more 3D, we need to have images of the sprite taken

from different camera angles, and then pick the one we

need depending on which angle we’re looking from.

First, finding the correct view angle, ψ. Fig 21.13 shows

the general situation. The angle you need is the angle between the vector between

the camera and the object (red, dashed) and the global looking direction of the

object. In the figure, you can see the global direction angles for the camera and

object: φc and φo, respectively. Also indicated is the angle between the camera

direction and the sprite, α. If you look at these angles closely, you’ll see that

φc + α + ψ = φo. In other words:

(21.17)
𝜓 = 𝜑0 − 𝜑

𝑐
− 𝛼

= 𝜑0 − 𝜑
𝑐

− arctan (𝑥𝑐 / − 𝑧𝑐)

Whether the minus-sign inside the arctan() is necessary depends on how you define

the terms all the terms. Eq 21.17 is the fully correct version, but if the arctan doesn’t

appeal to you, you’ll be glad to know that in most cases the α-term can be safely

ignored without anyone noticing.

Now that we have our viewing angle, we need to use it somehow. Suppose you have N

frames of rotation, which divides the circle into equal parts each 2π/N radians wide.

To get the slice that ψ is in, we merely have to divide by the angle of each slice:

i = ψ/(2π/N) = N·ψ/(2π). If you have defined your circle in power-of-two divisions

(which we have) then this part is ridiculously easy: just use a right-shi�. Once you

have the frame-index, the rest should be easy. Mostly. There are some intricacies that

Tonc - GBA Programming in rot13

440 / 757

that can fog things up, but those are implementation-dependent and will be saved for

later.

Sprite sorting

Disregarding priority bits for the moment, the order of objects on-screen is

determined by the object number: a lower number will be in front of higher numbers.

In 2D games, you can o�en ignore this because sprites will be on the same layer; in 3D

games, you really, really can’t. Take fig 21.14, for example. The four thwomps here

have a specific object order. In the le� picture, the closest thwomp happens to have

the lowest object and the visual ordering is correct. When viewed from the other side,

however, (middle picture) things are a little different. There are two visual cues for

depth: scaling (more distance is smaller) and occlusion (distance objects are obscured

by closer objects). In the middle picture, these two conflict because the closest object

has the highest number, making the overall picture a little disconcerting. In the

picture on the right, everything looks okay again, because steps were taken to ensure

the correct object order.

Fig 21.14. Non-sorted objects look alright (le�) from one angle,

but not from the other way (middle). You need to sort them to

get the correct order (right).

What needs to be done is sort the objects in OAM according to depth; a kind of Z-

buffer for objects. The depth of a sprite is simply zc, and we need to fill OAM with the

sprite’s object attributes in order of ascending zc. For good measure, it’s probably a

good idea to give hidden objects the maximum depth-value possible or to leave them

out of the sorting process entirely.

Tonc - GBA Programming in rot13

441 / 757

https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Z-buffering

There are many possible strategies for sorting the objects. My own choice aright now

would be to not sort the sprites or objects directly but to create an index table, which

indicates the order the sprites’ attributes should go into OAM. The pseudo-code for

this is given below. Which algorithm you use to sort the keys doesn’t really matter at

this time, as long as it does the job. I’m sure that faster methods can be found, but

probably at the expense of more code and I want to keep things relatively simple.

Renormalization

I wouldn’t be surprised if you’ve never heard of this term before. Normalization

means that you scale a quantity to a user-friendly value – usually 1. You have already

scaled the sprite by a factor λ, but that’s not enough. In most cases, you have to scale

it further, i.e renormalize it. Here’s why.

By definition, the scaling factor λ will be one when zc = −D. Now consider what

happens if you look at a closer object, say at zc = −½D. In this case, λ will be ½ and the

object will be scaled by a factor of two. In other words, it’ll already fill the double-size

// Pseudo code for sorting sprites for OAM
void spr_sort()
{
 int ids[N]; // Index table
 int keys[N]; // Sort keys

 // Create initial index and sort-key table
 for ii=0; ii<N; ii++)
 {
 ids[ii]= ii;
 keys[ii]= is_visible(sprite[ii]) ? sprite[ii].depth : DEPTH_MAX;
 }

 // Sort keys (i.e., fill ids)
 id_sort(ids, keys);

 // Fill OAM according to
 for(ii=0; ii<N; ii++)
 oam_mem[ii]= sprite[ids[ii]].obj;
}

Tonc - GBA Programming in rot13

442 / 757

canvas. And higher scales are possible too: with the suggested values of D = 256 and

N = 24, you could end up with scaling of 10! This will not do.

It is possible to get around this by moving the near-plane further away. However, then

you’ll see object disappearing if they’re still quite far off, which will look just as

strange as seeing them clipped. A better solution is to give the objects an extra scaling

factor. In m7_ex I have scaled the objects by an additional factor of ¼, so that a 32x32

sprite is actually only 8x8 ‘world’-pixels in size. This seems to work out quite nicely.

This renormalization means that you’re actually working with two separate scaling

factors: one for the coordinate transformation, and one for visual effects. It is the

visual scaling you need to use in positioning and culling the sprites, not the

transformation scaling; the latter’s influence stops once you’ve found the screen-

position of the anchor.

There’s probably an official term for this process, but I wouldn’t know what it is. I’m

familiar with the process of renormalization from physics (a few Dutch professors got

the Nobel Prize for this subject a few years back) and it seemed to fit. If you know the

official term, I’d like to hear it.

Fig 21.15. Object renormalization. Le�: normal (ew, no!).

Middle: ×½ (hmmm, no). Right: ×¼ (yeah, that's it).

And with that, we’ve reached the end of the theory. Now to actually implement all of

this.

Tonc - GBA Programming in rot13

443 / 757

Implementation

Design considerations.

My aim here is not to merely dish out a couple of functions that can make mode 7

happen, but also provide something that can be easily modified if necessary. The

code of the m7_ex demo is spread over 4 files: one for the things specific to the demo

itself m7_ex.c ; and three for mode 7 specific stuff, mode7.h , mode7.c and

mode7.iwram.c . Yes, iwram functions too; some of these things are going to be

computation extensive and I want them as fast as possible right off the bat. I’m also

borrowing the object sorter from the priority demo.

There are three main areas of interest here: the camera, background stuff and

sprites. For each of these we will use a struct and/or array to keep their data so it’s

nice and OOPy. There will also be a sort of manager struct for the mode 7 stuff as a

whole. And, of course, we need constants for the view volume, focus length and a few

other items. A handful of functions will then operate on these items to give up what

we need.

Constants

There aren’t too many constants. Most have to do with the viewport, the others with

the focus and renormalization.

#define M7_D 256 //!< Focal length
#define M7_D_SHIFT 8 //!< Focal shift
#define M7O_NORM 2 //!< Object renormalization shift (by /4)

// View frustum limits
#define M7_LEFT (-120) //!< Viewport left
#define M7_RIGHT 120 //!< Viewport right
#define M7_TOP 80 //!< Viewport top (y-axis up)
#define M7_BOTTOM (-80) //!< Viewport bottom (y-axis up!)
#define M7_NEAR 24 //!< Near plane (objects)
#define M7_FAR 512 //!< Far plane (objects)

#define M7_FAR_BG 768 //!< Far plane (floor)

Tonc - GBA Programming in rot13

444 / 757

Structs and variables

Mode 7 would be a wonderful place to use classes, but since I’m working in C, not C++,

I’m sticking to structs. Apart from the BG_AFFINE struct I presented in the affine

background page, you need one struct for the camera and one struct for the mode 7

objects. I’m also using a mode 7 container struct to keep track of all the parts that go

into the mode 7 functionality, so that you won’t have loose global variables lying

around the place.

You’re free to create your own structs for these, but the ones I will use are given

below. If you’ve been paying attention, most of the members should be familiar. Oh,

the POINT and VECTOR structs are 2D and 3D vectors, of course.

Tonc - GBA Programming in rot13

445 / 757

There’s not much more I have to say about these structs. The M7_SPRITE has the

attributes of its object as a member itself, rather than an index or pointer to any sort

of buffer. The reason behind this is essentially “why the hell not”. Because I have to

sort the objects anyway, using an extra buffer might not be worthwhile, so I chose

this. I’m also keeping track of the position in camera space because I need it on more

than one occasion, and a TILE pointer for graphics. The reason for this will become

apparent when we implement animation.

//! 3D sprite struct
typedef struct M7_SPRITE
{
 VECTOR pos; //!< World position.
 POINT anchor; //!< Sprite anchor.
 OBJ_ATTR obj; //!< Object attributes.
 s16 phi; //!< Azimuth angle.
 u8 obj_id; //!< Object index.
 u8 aff_id; //!< OBJ_AFFINE index.
 TILE *tiles; //!< Gfx pointer.
 VECTOR pos2; //!< Position in cam space (subject to change)
} M7_SPRITE;

//! 3D camera struct
typedef struct M7_CAM
{
 VECTOR pos; //!< World position.
 int theta; //!< Polar angle.
 int phi; //!< Azimuth angle.
 VECTOR u; //!< local x-axis (right)
 VECTOR v; //!< local y-axis (up)
 VECTOR w; //!< local z-axis (back)
} M7_CAM;

//! One struct to bind them all
typedef struct M7_LEVEL
{
 M7_CAM *camera; //!< Camera variables
 BG_AFFINE *bgaff; //!< Affine parameter array
 M7_SPRITE *sprites; //!< 3D sprites
 int horizon; //!< Horizon scanline (sorta)
 u16 bgcnt_sky; //!< BGxCNT for backdrop
 u16 bgcnt_floor; //!< BGxCNT for floor
} M7_LEVEL;

Tonc - GBA Programming in rot13

446 / 757

The M7_LEVEL holds pointers to the main variables for mode 7 (the camera, affine

array and sprites) as well as the horizon scanline needed to switch from backdrop to

floor, and two variables containing the data of the bg control register, as this will be

different for the backdrop and floor.

Now we need these four variables using these structs. Because these are technically

part of the demo itself, I’ve put them in m7_ex.c instead of the main mode 7 code,

although that code does require an actual m7_level variable to exist for the HBlank

interrupt. SPR_COUNT is the number of sprites, which is definitely demo specific. There

are 161 entries in m7_bgaffs rather than just 160 for the same reason as in the DMA

demo: HBlank sets up the next line, rather than the current one, and having this is

better (and faster) than the alternative with if/else blocks.

TYPE AND ORDER OF STRUCT MEMBERS

My usual advice is to use ints for your data types, but for structs this may not

always be the best thing to do. Local variables may not use up memory, but

structs do. And when you have arrays of structs, the extra space that word-sized

members cost adds up quickly. So in that case feel free to use non-ints.

Having said that, when it’s time to use those members it can pay to copy its

data to a local 32bit variable, rather an using a byte or halfword member for all

the calculations.

Also, and this is very important, you won’t be saving any space if you don’t pay

attention to the order of the members. An int will still require word-alignment,

even when it comes right a�er a byte member. The compiler may add padding

a�er bytes and halfwords to ensure the next member is correctly aligned. It’d

M7_CAM m7_cam;
BG_AFFINE m7_bgaffs[SCREEN_HEIGHT+1];
M7_SPRITE m7_sprites[SPR_COUNT];

M7_LEVEL m7_level;

Tonc - GBA Programming in rot13

447 / 757

be best if you ordered the members in such a way that there’s as little padding

as possible.

Background functions

These are my four main background functions:

void m7_prep_horizon(M7_LEVEL *level) . Calculates the horizon scanline.

IWRAM_CODE void m7_prep_affines(M7_LEVEL *level) . Calculates the affine

parameters for the floor, based on camera position and orientation..

void m7_update_sky(const M7_LEVEL *level) . Positions the backdrop.

IWRAM_CODE void m7_hbl_floor() . HBlank interrupt routine. Switches to mode

2 when necessary and copies affine parameters and creates fog effect.

m7_prep_horizon() and m7_update_sky() are simple implementations of eq 21.9

and eq 21.17, respectively, so I can be brief with these.

Tonc - GBA Programming in rot13

448 / 757

The horizon calculation makes use of a clipping far-plane, though this is not strictly

necessary. If you want the horizon at infinity, remove the subtraction by the camera’s

height and use M7_FAR_BG = 1. Note the check for vy = 0. As vy = cos(θ), this will be

true when looking straight up or straight down. The distinction is important because

sees the sky (no affine bg) and one sees only floor (no backdrop). Technically these

should be ±infinity, but as this is fixed-point, INT_MIN/MAX will have to do.

As for the backdrop placement: I’m taking a lot of shortcuts here. A mathematically

correct backdrop would use a background map 1720 pixels wide. It can be done, but

mostly it’s just annoying. Instead, I’m using a 512x256p regular background and use

P = 1024 in the angle→scroll-offset conversion. This means the map shows up twice in

one 360° rotation and that the dx is just φ/64. Yes, the floor and backdrop field-of-view

will be slightly out of sync, but you’ll only notice if you know what to look for, so that’s

alright.

//! Calculate the horizon scanline
void m7_prep_horizon(M7_LEVEL *level)
{
 int horz;
 M7_CAM *cam= level->camera;

 if(cam->v.y != 0)
 {
 horz= M7_FAR_BG*cam->w.y - cam->pos.y;
 horz= M7_TOP - Div(horz*M7_D, M7_FAR_BG*cam->v.y);
 }
 else // looking straight down (w.y > 0) means horizon at -inf
scanline
 horz= cam->w.y > 0 ? INT_MIN : INT_MAX;

 level->horizon= horz;
}

//! Update sky-bg position
void m7_update_sky(const M7_LEVEL *level)
{
 REG_BG2HOFS= (level->camera->phi>>6)+M7_LEFT;
 REG_BG2VOFS= -clamp(level->horizon, 0, 228)-1;
}

Tonc - GBA Programming in rot13

449 / 757

Strictly speaking, the vertical offset should be bgHeight − horizon, but the bg-height

can be ignored due to wrapping. The reason I’m also clamping the horizon to the size

of the viewport is because the horizon scanline can become very large – the tan(θ) in

it will approach infinity when looking up, remember? If you don’t clamp it you’ll scroll

through the whole backdrop map a couple of times when panning up, which just

looks awful.

Preparing the affine parameter table

Calculating the affine parameters happens in m7_prep_affines() . You could try to

do this in the HBlank isr, but because it requires a division, it would simply take too

long. Also, doing it in one spot is more efficient, as you only have to set-up the

variables once. This routine carries out the calculations of eq 21.14. It has to do quite

a number of calculations for each scanline, including a division, so you can expect it

to be rather costly; which is why I’m putting it in IWRAM right from the start.

Now, you don’t have to calculate things for every scanline: just the ones below the

horizon. As for implementing eq 21.14 itself: it turns out that it works much better if

you take the camera matrix apart again and work with sines and cosines of θ and φ,

rather than the nine matrix entries. This next paragraph will explain how, but feel free

to skip it and go onto the code.

Remember that the camera matrix is C = Ry(φ)·Rx(θ); and that λ and dx are calculated

via eq 21.13: dx′ = acw + λ·C·b. You can break up C can combine it with b to form

b′ = Rx(θ)·b. This new vector takes care of the pitch entirely – it’s as if we only had a

rotation around the vertical axis, i.e., the case discussed in the previous chapter. With

this pre-rotation, the code becomes simpler and faster.

Tonc - GBA Programming in rot13

450 / 757

We begin by getting the scanline to begin calculating at (which may be nothing), and

defining lots of temporaries. Not all of the temporaries are necessary, but they make

the code more readable. Names aside, the code within the loop is very similar to that

of hbl_mode7_c in the first mode 7 demo, except that in calculating λ we use a rotated

ys-value, and in calculating the offsets a rotated zs (= −D) value. Annnd, that’s it.

IWRAM_CODE void m7_prep_affines(M7_LEVEL *level)
{
 if(level->horizon >= SCREEN_HEIGHT)
 return;

 int ii, ii0= (level->horizon>=0 ? level->horizon : 0);

 M7_CAM *cam= level->camera;
 FIXED xc= cam->pos.x, yc= cam->pos.y, zc=cam->pos.z;

 BG_AFFINE *bga= &level->bgaff[ii0];

 FIXED yb, zb; // b' = Rx(theta) * (L, ys, -D)
 FIXED cf, sf, ct, st; // sines and cosines
 FIXED lam, lcf, lsf; // scale and scaled (co)sine(phi)
 cf= cam->u.x; sf= cam->u.z;
 ct= cam->v.y; st= cam->w.y;
 for(ii= ii0; ii<SCREEN_HEIGHT; ii++)
 {
 yb= (ii-M7_TOP)*ct + M7_D*st;
 lam= DivSafe(yc<<12, yb); // .12f

 lcf= lam*cf>>8; // .12f
 lsf= lam*sf>>8; // .12f

 bga->pa= lcf>>4; // .8f
 bga->pc= lsf>>4; // .8f

 // lambda·Rx·b
 zb= (ii-M7_TOP)*st - M7_D*ct; // .8f
 bga->dx= xc + (lcf>>4)*M7_LEFT - (lsf*zb>>12); // .8f
 bga->dy= zc + (lsf>>4)*M7_LEFT + (lcf*zb>>12); // .8f

 // hack that I need for fog. pb and pd are unused anyway
 bga->pb= lam;
 bga++;
 }
 level->bgaff[SCREEN_HEIGHT]= level->bgaff[0];
}

Tonc - GBA Programming in rot13

451 / 757

The comments behind the calculations indicate the fixed-point count of the results,

which in this case can be either .8f or .12f. Now hear this: it is very important that the

scaled (co)sine of φ, lcf and lsf , use 12 bits of precision or more. I’ve tried 8, it’s

not pretty – the displacements are all off at close range. Secondly, note the order of

multiplications and shi�s in the displacements; it is also very important that these

stay the way they are. Particularly the one with L: the multiplication by M7_LEFT must

happen a�er the shi�, trust me on this.

The last interesting point is the line a�er the loop, which copies the parameters for

scanline 0 to the back of the array to compensate for the HBlank-interrupt obiwan

error.

This function is probably as fast as you can make it in C, and it the compiler does its

job pretty well so there is little to be gained by going to manual assembly. This does

not mean it doesn’t still take quite some time. The division alone costs something like

100 to 400 cycles (the cycle-count for BIOS division is roughly 90 + 13/significant bit).

At one division per scanline, this can really add up. The best strategy to deal with this

is to not do it if you don’t have to. If you use a fixed pitch angle, you can precalculate

all the divisions and just look them up. If you must have a variable pitch, you can also

go the trig way. Look back at fig 21.14. If β is the angle between (0, yp, −D) and

(0, 0, −D), then tan(β) = yp/D. With a good deal of trigonometry, you could rewrite the

formula for λ to

(21.18) 𝜆 = 𝑎𝑐𝑤, 𝑦 / 𝐷 ⋅ cos (𝛽) / sin (𝜃 + 𝛽)

You can get β via an arctan LUT of 160 entries, one for each scanline (hey, you could

even put that into pd!), and then use a 1/sine LUT. You have to be careful to use large

enough LUTs, though. Since the arguments of LUTs are integers, β will be truncated,

and you will lose a lot of accuracy though this, especially near the horizon. Now, I

haven’t actually tried the trig-way yet, but I have done some basic tests in Excel which

would suggest that with a 1/sine LUT of 512/circle, you’d get λ-errors well over 10%

near the horizon, and errors around 1% everywhere else. With that in mind, I’d

Tonc - GBA Programming in rot13

452 / 757

suggest 1024/circle at least. Or interpolating between LUT entries, which you can do

with libtonc’s lu_lerp16() and lu_lerp32() functions.

Aside from going triggy with it, you can probably speed up the division as well in a

number of ways. But before you go and optimize this, ask yourself if you really need it

first. Premature optimization is the root of all evil, a�er all.

SPEED-UPS FOR AFFINE CALCULATIONS

Tried three optimizations recently. First, ARM/IWRAM, which brings the thing

down to 23k-58k cycles. Then, a little refactoring that presented itself in a

discussion with sgeos: the camera vectors can resolve to a smaller set of

variables, saving 10-20%. Then, the trig thing, which can bring the whole thing

down to 10-20k or even 7k-14k max, depending on whether you get cos(β) and

1/sin(θ+β) via large luts, or smaller luts and linear interpolation. Once you get

the math, shi�s, and signs in order, it works like a charm.

The mode 7 HBlank interrupt routine

To keep things simple, nearly everything that has to happen during VDraw happens

inside one HBlank isr called m7_hbl_floor() . Earlier versions of this demo used a

system of VCount/HBlank interrupts, but that turned out to be more trouble than it’s

worth. This is also an IWRAM routine because it really needs to be as fast as possible.

The interrupt service routine does the following things:

1. Check vcount for floor-range. If this scanline is not part of the floor, return.

2. Check vcount for horizon. At reaching the horizon scanline the video mode

should change and REG_BG2CNT should be set to the floor’s settings.

3. Copy affine parameters to REG_BG_AFFINE[2] . Copy the next scanline’s

parameters to REG_BG_AFFINE[2] , as we’ve already past the current scanline.

4. Fogging. Fade to orange in this case.

Tonc - GBA Programming in rot13

453 / 757

Points (3) and (4) could benefit from a bit more explanation. As mentioned several

times now, the isr of any scanline vc should set-up the parameters of next scanline,

which is why we’re copying from level.bgaff[vc+1] rather than just [vc] . Scanline

zero’s uses the set from vc = 160, which is alright because we’ve copied zero’s data to

the last element in the array. As usual, struct copies �w.

For the fogging I use pb which filled with λ in m7_prep_affines() for this very reason.

A scaled λ is not the most accurate model for fogging, but the effect looks well

enough. Because the blending registers cap at 16, I need to make sure it doesn’t wrap

around at higher values.

// from tonc_core.h
//! Range check; true if xmin<=x<xmax
#define IN_RANGE(x, min, max) ((x) >= (min) && (x) < (max))

IWRAM_CODE void m7_hbl_floor()
{
 int vc= REG_VCOUNT;
 int horz= m7_level.horizon;

 // (1) Not in floor range: quit
 if(!IN_RANGE(vc, horz, SCREEN_HEIGHT))
 return;

 // (2) Horizon: switch to mode 1; set-up bg control for floor
 if(vc == horz)
 {
 BF_SET(REG_DISPCNT, DCNT_MODE1, DCNT_MODE);
 REG_BG2CNT= m7_level.bgcnt_floor;
 }

 // (3) Looking at floor: copy affine params
 BG_AFFINE *bga= &m7_level.bgaff[vc+1];
 REG_BG_AFFINE[2] = *bga;

 // (4) A distance fogging with high marks for hack-value
 u32 ey= bga->pb*6>>12;
 if(ey>16)
 ey= 16;

 REG_BLDALPHA= BLDA_BUILD(16-ey, ey);
}

Tonc - GBA Programming in rot13

454 / 757

This still leaves the question of what I’m actually blending with, as orange isn’t part of

the GBA’s fade repertoire. At least, not directly. It is, however, quite possible to blend

with the backdrop, which just shows bg-color 0. This color can be anything, including

orange.

Sprites and objects

Sprite and object handling has been distributed over the following three functions:

void update_sprites() . This is the main sprite handler, which calls other

functions to do positioning, sorting and animation.

IWRAM_CODE void m7_prep_sprite(M7_LEVEL *level, M7_SPRITE *spr) . This

calculates the correct position and scale of the sprite.

void kart_animate(M7_SPRITE *spr, const M7_CAM *cam) . This selects the

correct frame for rotating around the karts.

Only m7_prep_sprite() is actually part of the mode 7 functions; the others could

very well differ for every mode 7 game you have in mind. The main sprite handler,

update_sprites() , is pretty simple: it needs to call m7_prep_sprite() for each

sprite and create the sprite’s sorting key, sort all the sprites and copy the sorted

attributes to OAM. It also calls kart_animate() for each kart-sprite for their

animations; if I had animations for the thwomps or other sprites they’d probably go

here as well.

Tonc - GBA Programming in rot13

455 / 757

Most of the code has to do with sorting the sprites, which was already described in the

theory. The pos2 member of the sprites is set by m7_prep_sprite() to contain the

sprite’s position in camera space. The sorting routine id_sort_shell() is the index-

table sorter described in the priority section.

If I had wanted to have more advanced animation or sprite things, they’d be put here

as well. But I didn’t, so I haven’t.

Sprite positioning and scaling

The function m7_prep_sprite() calculates the correct on-screen position for a sprite,

sets up the affine matrix with the proper (renormalized) scales and hides the sprite if

it falls outside the view volume.

void update_sprites()
{
 int ii;

 M7_SPRITE *spr= m7_level.sprites;
 for(ii=0; ii<SPR_COUNT; ii++)
 {
 m7_prep_sprite(&m7_level, &spr[ii]);

 // Create sort key
 if(BF_GET2(spr[ii].obj.attr0, ATTR0_MODE) != ATTR0_HIDE)
 sort_keys[ii]= spr[ii].pos2.z;
 else
 sort_keys[ii]= INT_MAX;
 }

 // Sort the sprites
 id_sort_shell(sort_keys, sort_ids, SPR_COUNT);

 // Animate karts
 for(ii=0; ii<8; ii++)
 kart_animate(&spr[ii], m7_level.camera);

 // Update real OAM
 for(ii=0; ii<SPR_COUNT; ii++)
 obj_copy(&oam_mem[ii], &spr[sort_ids[ii]].obj, 1);
}

Tonc - GBA Programming in rot13

456 / 757

The first step is convert to the convert the world-position of the sprite to a vector in

the camera space, using the first part of eq 21.15: xc = CT·r, with r being the position of

the sprite relative to the camera: r = xw−acw. This is put into variable vc , but with the

signs of y and z switched! This makes subsequent calculations a little easier. This

vector is also stored in spr->pos2 , which is used in sorting elsewhere.

The second step is checking whether the sprite would actually be visible, using the

conditions from table 21.1, with one exception: the checks now use the renormalized

rectangle of the sprite. Leaving that part out could create artifacts for some

orientations. To calculate the sprite rectangle I’m using the sizes of the object

rectangle. It is possible to get a tighter fit if you’d also define a sprite rectangle

indicating the visible pixels within the object frame, but that might be going a little

too far here.

Note that most of the code from the bounds checks on is done in a do-while(0)

loop. This pattern is sort of a poor-man’s try/catch block – I could have used goto s

here, but as they’re considered harmful I decided against it. Anyway, an out-of-

bounds ‘exception’ here would indicate that the sprite should be hidden, which is

done in step (5).

If we’ve passed the bounds-checks, we need to set-up the affine matrix and calculate

the object’s position via the anchoring equation of eq 21.16.

Tonc - GBA Programming in rot13

457 / 757

//! Setup an object's attr/affine with the right attributes
/*! \param level Mode 7 level data
* \param spr 3D sprite to calculate for
*/
IWRAM_CODE void m7_prep_sprite(M7_LEVEL *level, M7_SPRITE *spr)
{
 M7_CAM *cam= level->camera;
 VECTOR vr, vc; // Difference and inverted-cam vector
 int sx, sy; // Object size
 RECT rect; // Object rectangle

 // (1) Convert to camera frame
 vec_sub(&vr, &spr->pos, &cam->pos);
 vc.x= vec_dot(&vr, &cam->u);
 vc.y= -vec_dot(&vr, &cam->v);
 vc.z= -vec_dot(&vr, &cam->w);
 spr->pos2= vc;

 OBJ_ATTR *obj= &spr->obj;
 sx= obj_get_width(obj);
 sy= obj_get_height(obj);

 // --- Check with viewbox ---
 do
 {
 // (2a) check distance
 if(M7_NEAR*256 > vc.z || vc.z > M7_FAR*256)
 break;

 // (2b) check horizontal
 rect.l= vc.x - spr->anchor.x*(256>>M7O_NORM);
 rect.r= rect.l + sx*(256>>M7O_NORM);
 if(M7_LEFT*vc.z > rect.r*M7_D || rect.l*M7_D > M7_RIGHT*vc.z)
 break;

 // (2c) check vertical
 rect.t= vc.y - spr->anchor.y*(256>>M7O_NORM);
 rect.b= rect.t + sy*(256>>M7O_NORM);
 if(-M7_TOP*vc.z > rect.b*M7_D || rect.t*M7_D > -M7_BOTTOM*vc.z)
 break;

 // (3) Set-up affine matrix
 OBJ_AFFINE *oa= &obj_aff_mem[spr->aff_id];
 oa->pa= oa->pd= vc.z>>(M7_D_SHIFT-M7O_NORM); // normalized
lambda
 oa->pb= oa->pb= 0;

 FIXED scale= DivSafe(M7_D<<16, vc.z); // (.16 / .8) = .8

 // (4) anchoring

Tonc - GBA Programming in rot13

458 / 757

Kart animation

The basic theory for animation around a sprite is simple, namely eq 21.17: the viewing

angle ψ is the difference between the global sprite angle φo, and the camera angle φc

and the angle to the sprite in camera-space α: ψ = φo−φc−α. The angle translates to an

animation frame to use and you’re done.

In theory.

The practice has a number of snares, especially the way SMK does it. First, look at fig

21.16. These 12 frames are the ones that Super Mario Kart uses for Toad. The first

complication is that this is only the right side of the rotation; the le� side is done via

mirroring. That’s easy enough: just change the sign of pa of the view-angle is negative.

The second problem is the number of tiles. 12 frames for half a circle means 24 for the

full rotation (well 22 actually, as we don’t need to duplicate the front and back

frames). At 4x4=16 tiles each, this gives 384 tiles for Toad alone (and only the rotation

 // Base anchoring equation:
 // x = q0 - s - A(p0 - s/2)
 // In this case A = 1/lam; and q0 = xc/lam
 // -> x = (xc - p0 + s/2)/lam - s + screen/2
 int xscr, yscr;
 xscr = spr->anchor.x*256 - sx*128; // .8
 xscr = (vc.x - (xscr>>M7O_NORM))*scale>>16; // .0
 xscr += -sx - M7_LEFT;

 yscr = spr->anchor.y*256 - sy*128; // .8
 yscr = (vc.y - (yscr>>M7O_NORM))*scale>>16; // .0
 yscr += -sy + M7_TOP;
 obj_unhide(obj, ATTR0_AFF_DBL);
 obj_set_pos(obj, xscr, yscr);

 return;
 }
 while(0);

 // (5) If we're here, we have an invisible sprite
 obj_hide(obj);
}

Tonc - GBA Programming in rot13

459 / 757

animation at that!) Multiply by 8 for the full set of characters and you’re way out of

VRAM. This means that you can’t load all the frames into VRAM in one go and use an

object’s tile-index for animation: you have to dynamically load frames you need. This

is why the sprite struct had a tiles member, pointing to the full sprite sheet in ROM.

The third complication is that the frames aren’t uniformly divided over the circle. If

you look closely, the first 8 frames are for angles 0° through 90°, the remaining four for

90°-180°. The reason behind this is that most of the time you’ll see the karts from the

back, so it pays to have more frames for those. Now, in the theory we could calculate

the animation frame quite nicely, namely N·ψ/216. However, that relied on having N

equal slices, which we don’t have anymore. Or do we?

Well no, we don’t have equal slices anymore. But we can make equal slices again,

using a sort of mapping. Fig 21.17 shows could the principle works. In the figure there

are 12 main partitions (inside circle), with 0, 1, 10 and 11 covering more angular space

than 2-9. However, we can also divide the circle into 16 parts (outer circle), and use

the same frame for multiple entries. For example, slice-0 of the main sequence is now

covered by slice-0 and slice-1 of the new sequence. While it’s possible to use if/else

blocks to the mapping, it’s easier on everyone to just use a LUT for it. This actually

takes care of two other problems I hadn’t mentioned before, namely that mirroring

would require some sort of reversal of the normal sequence, and the fact that the

slices actually have to be offset by half a slice so that you don’t have a slice-switch

when looking exactly at the front or back, for example. A LUT solves all those

problems in one go.

Tonc - GBA Programming in rot13

460 / 757

Fig 21.16: Toad's frames from different angles.

Fig 21.17: Using ψ for 16-

element LUT entry,

instead of 12 non-equal

partitions.

The snippet above shows the kart’s angle-LUT and animation routine. The LUT has 32

entries, with the first and last 7 using single chunks and the rest being doubled. Also

const u8 cKartFrames[32]=
{
 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11,
 11, 10, 10, 9, 9, 8, 8, 7, 7, 6, 5, 4, 3, 2, 1, 0,
};

//! Animate kart sprite
void kart_animate(M7_SPRITE *spr, const M7_CAM *cam)
{
 OBJ_ATTR *obj= &spr->obj;

 if(BF_GET2(obj->attr0,ATTR0_MODE) == ATTR0_HIDE)
 return;

 TILE *dst= &tile_mem[4][BF_GET(obj->attr2, ATTR2_ID)];
 s16 psi= spr->phi - cam->phi;

 // Extra arctan angle for correctness
 if(g_state & STATE_OBJ_VIEW_ATAN)
 psi -= ArcTan2(spr->pos2.z>>8, spr->pos2.x>>8);

 memcpy32(dst, &spr->tiles[cKartFrames[(psi>>11)&31]*16], 16*8);

 OBJ_AFFINE *oa= &obj_aff_mem[spr->aff_id];
 if(psi < 0)
 oa->pa= -oa->pa;
}

Tonc - GBA Programming in rot13

461 / 757

note that the LUT is symmetric, which is required for the mirroring.

The routine itself isn’t exactly pretty, but it gets the job done. It checks whether the

sprite is visible first and bugs out if it’s not: no point in doing work if we can’t see its

results. The sprite’s in-camera angle, α, requires an arctan. I’ve added a switch in the

menu so you can see the results with and without the α-correction, and I think you’ll

find that the difference is pretty small. Since I always use the same VRAM for each

sprite, finding the destination of the tile-copy is easy; finding the source frame looks a

little ugly, but it’s just the ψ→slice conversion and the look-up, really.

Rounding up: the main loop and other fluff

The hard parts of mode 7 have more or less been covered now, with the possible

exception of the main loop, which we’ll get to in a moment. There is, of course,

initialization of the registers, the sprites and mode 7 variables, loading of VRAM and

input, but that’s rather easy and tends to vary from game to game anyway. For those

things, please see the actual code.

The main program flow

In the snippet below you can see the main() function and its major branches.

init_main() sets up the main mode 7 variables, m7_level through m7_init() ,

initializes the VBlank and HBlank interrupts and various other things. The main loop is

quite short. The function input() does both the movement of the camera and menu.

A�er that come the actual mode 7 functions. m7_prep_horizon() has to come first,

but the order of the rest is pretty arbitrary. I would suggest calling

m7_prep_affines() last, though: it’s the most costly function here, but it’d be alright

to let it run into VDraw time. Not that that happens here (I’ve clocked the main loop to

end around scanline 170-210), but it’d be okay if it did.

Tonc - GBA Programming in rot13

462 / 757

Movement in 3D

This is the last thing I want to cover: how to move things in 3D. To be precise: how to

do different methods of motion in 3D; which I’m sure people might want to know.

3D movement is actually much the same as 2D movement, except with an extra

dimension. The reason why people sometimes find it difficult is that they think in

terms of angles, when what they should be thinking in is vectors. Vector-based

movement (or vector-based anything) usually makes things much easier than with

angles and trigonometry. This is also why the theory of this chapter has been using

vectors and matrices.

Here I’ll look into three different modes of camera movements: one using the world

coordinate system, one using the camera system, and one somewhere in between so

int main()
{
 init_main();

 while(1)
 {
 VBlankIntrWait();
 input();

 m7_prep_horizon(&m7_level);
 // Switch to backdrop display.
 if(m7_level.horizon > 0)
 {
 BF_SET(REG_DISPCNT, DCNT_MODE0, DCNT_MODE);
 REG_BG2CNT= m7_level.bgcnt_sky;
 REG_BLDALPHA= 16;
 }
 m7_update_sky(&m7_level);

 update_sprites();
 m7_prep_affines(&m7_level);
 }

 return 0;
}

Tonc - GBA Programming in rot13

463 / 757

that it stays parallel to the ground. But first, let’s take a look at what moving in a

certain direction actually means.

Every object in 3D space has its own little coordinate space, the local frame. This is

defined as a set of 3 vectors, denoting the directions of the local x, y and z directions.

In the case of the camera, I named these u, v and w, respectively. The local matrix is

just another way of writing down this set of vectors. Movement is usually defined as

steps along these vectors.

As an example of this, consider your head to be the camera and use arrows to indicate

the local axes: u would stick out of your right ear, v out of the top of your head and w

out the back. A step right would be along the u direction, and one forward along −w. A

general movement could be written as x steps right, y steps up, and z steps back. x, y

and z are used as multipliers for the direction vectors, and the final displacement in

global space is dx = x·u + y·v + z·w.

And where matrices come in. Those three multipliers can be written a vector

r = (x, y, z), which is the distance vector in local space. The three directions formed a

matrix C, The definition of dx given above is nothing else than the long way of writing

down dx = C·r. The matrix multiplication is just shorthand for “scale the vectors of C

by the elements of r and add them all up”. Note that this procedure would work for

any object, in any orientation. All you need to do is find the correct local matrix.

In my case, I construct vector r in input() , based on various buttons. At this point it

doesn’t really mean anything yet. Each of the movement methods has its own set of

directions and hence its own matrix that has to be applied to r; I have functions that

can perform them and add the results to the camera position. All of these can be

found in table 21.2 and the code below it.

The ‘level’ (that is, level to the ground) is probably the most common for camera

systems for ground-based objects, though using the local system might make sense

for flying objects. Experiment with them and see what you like.

Method Function Transformation

Tonc - GBA Programming in rot13

464 / 757

Global frame m7_translate_global() dx = I · r = r

Local (camera) frame m7_translate_local()
dx = C(θ, φ) ·

r

Level: local but parallel to

ground
m7_translate_level() dx = Ry(φ) · r

Table 21.2: Movement methods and their associated transformations to world-space.

New position of an object is given by xw += vw.

If you’re not really familiar with matrices they may seem bright and scary, but they

can be a lifesaver once you get used to them a bit. There is a reason why large 3D

systems use them non-stop; doing everything by raw trig is hard, very hard. Matrices

allow you to work within whatever coordinate system is most natural to the task at

hand, and then transform to whatever system you need in the end. If you have any

work related to geometry, learning more about the basics of linear algebra (the rules

for vector and matrix use) is well worth the effort.

//! Translate by \a dir in global frame
void m7_translate_global(M7_CAM *cam, const VECTOR *dir)
{
 vec_add_eq(&cam->pos, dir);
}

//! Translate by \a dir in local frame
void m7_translate_local(M7_CAM *cam, const VECTOR *dir)
{
 cam->pos.x += (cam->u.x * dir->x + cam->v.x * dir->y + cam->w.x *
dir->z) >> 8;
 cam->pos.y += (0 + cam->v.y * dir->y + cam->w.y *
dir->z) >> 8;
 cam->pos.z += (cam->u.z * dir->x + cam->v.z * dir->y + cam->w.z *
dir->z) >> 8;
}

//! Translate by \a dir using local frame for x/y, but global z
void m7_translate_level(M7_CAM *cam, const VECTOR *dir)
{
 cam->pos.x += (cam->u.x * dir->x - cam->u.z * dir->z)>>8;
 cam->pos.y += dir->y;
 cam->pos.z += (cam->u.z * dir->x + cam->u.x * dir->z)>>8;
}

Tonc - GBA Programming in rot13

465 / 757

SIDE NOTE : CENTERING ON A SPRITE

As an example of how easy matrices can make life, consider the issue of

centering the camera on a given sprite and then rotating around it. You have

the camera matrix C, the distance you want to view from, Z and presumably the

sprite position, xw. What you need to do is: move the camera to the sprite’s

position, then take Z steps back. In other words acw = xw+C·(0, 0, Z), which boils

down to acw = xw+Zw,

Once you know the camera matrix, positioning it practically writes itself.

Concluding remarks

It’s done, finally! This chapter’s text explained the most important elements of a

mode 7 game: calculation of the affine parameters, adding a horizon and backdrop,

positioning, sorting and animating 3D sprites and as a bonus how to use create a

distance fogging effect. In the preceding text, I’ve used stuff from just about every

subject described in the rest of Tonc, and not just the easy parts. If you’re here and

understood all or most of the above, congratulations.

But still I’ve omitted a few things that would make it a little better. Getting rid of all

those divisions in the λ calculations, for instance. Or getting around the 32 affine

object limitation or placing shadows for the sprites on the floor. Nor have I shown

how to correctly allow for loopings, instead of clamping the pitch at straight up or

down. These things are relatively easy to grasp, conceptually, but implementing them

would require a lot more code. If you understood this text, I’m sure you can figure it

out on your own.

Tonc - GBA Programming in rot13

466 / 757

22. Tonc’s Text Engine

Introduction

Basic design

Tilemapped text

Bitmapped text

Object text

Rendering to tiles

Scripting, console IO and other niceties

Conclusions

Introduction

The other page on text described how you could get text on backgrounds and objects.

It worked, but there were several limitations. For instance, it was limited to 8×8 fonts,

didn’t support all video modes and had no formatted text capabilities.

Tonc’s Text Engine (TTE) remedies many of these shortcomings. In this chapter I’ll

describe the goals and basic design of the system and some of the implementation

details. In particular, I’ll describe how to build writers for use of the different kinds of

surfaces. In some cases, I’ll optimize the living hell out of them because it is possible

for a glyph renderer to take multiple scanlines for a single character if you don’t pay

attention. And yes, this will be done in assembly.

I’ll also show how you can add some basic scripting to change cursor positions, colors

and even fonts dynamically. A few years ago, Wintermute changed the standard C

library in devkitARM to make the stdio routines accessible for GBA and NDS. I’ll also

show how you can make use of this.

Tonc - GBA Programming in rot13

467 / 757

And, of course, there will be demos. Oh, will there be demos. There are about 10 of

them in fact, so I’m going to do things a little bit differently than before: there will be

one project containing a menu with all the examples. Not all examples will be shown

here because that’d just be too much.

Lastly, it is expected that by now you have a decent knowledge of GBA programming,

so I’m going to keep the amount of GBA-specific exposition to a minimum. When you

see functions used that haven’t been covered already, turn to GBATEK, the project’s

code or libtonc’s code for details.

Basic design

TTE Goals

The following list has the things I most wanted in TTE:

A comprehensive and extensible set of glyph writers, usable for all occasions.

Well almost all occasions. The old system worked for regular backgrounds,

bitmap modes and objects, I’m now extending that set to affine backgrounds

and tile-rendering. If what you need isn’t present in the standard set, you can

easily create your own writer and use that one instead. The writer will accept

UTF-8 strings, meaning you’re not limited to 256 characters.

Fonts: arbitrary widths and heights and variable width characters. Instead of

being limited to 8x8@1 glyphs; the standard writers in TTE are able to use fonts

of any width and height (within reason: no screen-filling glyphs please) and

variable width fonts (again, within reason: VWF for tilemaps makes little sense).

In principle, there are possibilities to use arbitrary bitdepths as well, but the

standard renderers are limited to 1bpp.

A simple writer-interface independent of surface details. For the old system I

had m3_puts() , se_puts() , obj_puts() and such. This worked, but it meant

you had to use something different for the different modes. In TTE, there are

Tonc - GBA Programming in rot13

468 / 757

https://en.wikipedia.org/wiki/UTF-8

different initializers for the different modes to set up the system, and a single

string writer tte_write() that just works.

Scripting for text parameters. By that I mean that you can control parameters

like position and output color by the strings themselves. The functionality for

this is pretty basic, but it works well enough. Note: this is not a full dialog

system! That said, it should be possible to build one around it.

printf() support. For rather obvious reasons.

Structures and main components

All the relevant information for TTE is kept gathered in three structs: a text context,

TTC ; a font description, TFont ; and a graphic surface description, TSurface .

The TTC struct contains the main parameters for the engine: information about the

surface were rendering to, cursor positions, font information, color attributes and a

few other things. It also contains two callbacks for drawing and erasing glyphs.

The TFont struct has a pointer to the glyph data, glyph/cell dimensions and a few

other things. There are also pointers to width and height tables to allow variable

width and height fonts. I’ve hacked a TFont creator into usenti a while back so that I

could easily create these things from standard fonts, but you can also make your own

from scratch.

The TSurface struct actually has nothing to do with text. Instead, it’s a struct

describing the kind of surface we’re rendering on. This can be bitmaps, tiles, tilemaps

or whatever. Tonclib has basic pixel, line and rectangle routines for dealing with these

surfaces, so I might as well use them.

Tonc - GBA Programming in rot13

469 / 757

http://www.coranac.com/projects/#usenti

//# From tonc_tte.h : main TTE types.

typedef struct TFont
{
 const void *data; //!< Character data.
 const u8 *widths; //!< Width table for variable width font.
 const u8 *heights; //!< Height table for variable height font
(mostly unused).
 u16 charOffset; //!< Character offset
 u16 charCount; //!< Number of characters in font.
 u8 charW; //!< Character width (fwf).
 u8 charH; //!< Character height.(fhf).
 u8 cellW; //!< Glyph cell width.
 u8 cellH; //!< Glyph cell height.
 u16 cellSize; //!< Cell-size (bytes).
 u8 bpp; //!< Font bitdepth;
 u8 extra; //!< Padding. Free to use.
} TFont;

//! TTE context struct.
typedef struct TTC
{
 // Members for renderers
 TSurface dst; //!< Destination surface.
 s16 cursorX; //!< Cursor X-coord.
 s16 cursorY; //!< Cursor Y-coord.
 TFont *font; //!< Current font.
 u8 *charLut; //!< Character mapping lut, if any.
 u16 cattr[4]; //!< ink, shadow, paper and special color
attributes.
 // Higher-up members
 u16 reserved;
 u16 ctrl; //!< BG control flags.
 u16 marginLeft;
 u16 marginTop;
 u16 marginRight;
 u16 marginBottom;
 s16 savedX;
 s16 savedY;
 // Callbacks and table pointers
 fnDrawg drawgProc; //!< Glyph render procedure.
 fnErase eraseProc; //!< Text eraser procedure.
 const TFont **fontTable; //!< Pointer to font table for
 const char **stringTable; //!< Pointer to string table for
} TTC;

Tonc - GBA Programming in rot13

470 / 757

Fig 22.1: Verdana 9

character sheet

TFont details

Fig 22.1 shows a character sheet that TFont can use. The sheet is

a matrix of cells and each cell contains a character. The cellW/H

members are the dimensions of these cells; cellSize is the

number of bytes per cell.

Each cell has one glyph, but the actual glyphs can be smaller

than the cells (white vs magenta parts). This does waste a bit of

memory, but it also has several benefits. One of the benefits is

that you can use cellSize to quickly find the address of any

given glyph. Second, because I want by fonts to be usable for

both bitmaps and tiles, my glyph boxes would have to be

multiples of 8 anyway. Additionally, this particular font will be

1bpp, meaning that even with the wasted parts I’ll still have a very low memory

footprint (3.5kB).

//# Supporting types

//! Glyph render function format.
typedef void (*fnDrawg)(int);

//! Erase rectangle function format.
typedef void (*fnErase)(int left, int top, int right, int bottom);

typedef struct TSurface
{
 u8 *data; //!< Surface data pointer.
 u32 pitch; //!< Scanline pitch in bytes.
 u16 width; //!< Image width in pixels.
 u16 height; //!< Image width in pixels.
 u8 bpp; //!< Bits per pixel.
 u8 type; //!< Surface type.
 u16 palSize; //!< Number of colors.
 u16 *palData; //!< Pointer to palette.
} TSurface;

Tonc - GBA Programming in rot13

471 / 757

For fixed-width or fixed-height fonts, members charW and charH denote the actual

character width and height. For fonts of variable widths, the widths member points

to the a byte-array containing the widths of the glyphs and something similar is true

for the heights . charOffset is the (ASCII) character the data starts at. Font sheets

o�en start at a space (’ ’), so this tends to be 32. charCount is the number of

characters and can be used if you need to copy the whole sheet to VRAM (like in the

case of tile-mapping).

Please note that how the data in a TFont is used depends almost entirely on the

glyph renderer. Most renderers that come with libtonc expect this format:

Bitpacked to 1 bpp, for size reasons. And for rendering speed too, actually, since

memory loads are expensive.

Tiled-by-glyph. The data for each glyph is contingent with cellSize bytes

between each glyph. This is similar to how 1D object work with one important

difference:

the tiles in each glyph are column-major (tile 1 is under tile 0). This in contrast to

objects, which tend to be row-major (tile 1 is to the right of tile 0). I will refer to

this format as tile-strips. The reason behind this choice will be given later.

There are exceptions to this, but most renderers presented here will use this format. If

you want to make your own renderers, you’re free to use any format for the data you

think is appropriate.

TTC details

The text context, TTC , contains the most important data of the system. Starting at the

top: the surface, dst . This defines the surface we’re rendering to. The most relevant

items there are its memory address, pitch: the number of bytes per scanline. The

pitch is a very important parameter for rendering, more important than the width and

height in fact. The surface also has palette members, which can be used to access its

colors. Much like the TFont members, how this data is used largely depends on the

renderer.

Tonc - GBA Programming in rot13

472 / 757

https://en.wikipedia.org/wiki/Row-major_order

The members cursorX/Y are for the current cursor position. The margin rectangle

indicates which part of the screen should be used for text. If the cursor exceeds the

right margin, it will be moved to the le� margin and one line down. The margins are

also used for screen-clears and returning to the top of the page.

The cattr table is something special. Its entries are color attributes. Parameters for

ink (foreground color), shadow, paper (background color) are put here, along with a

‘special’ field which is very much context-specific. Note that these color attributes do

not necessarily represent colors. In modes 3 and 5 they’re colors, but for mode 4 and

tile writers they’re color indices. There’s probably a nicer name for this than ‘color

attribute’, but sodomy non sapiens.

Rendering glyphs and erasing (parts of) the screen is done through the callbacks

drawgProc and eraseProc . The idea is that you initialize the system with the

routines appropriate for your text format and TTE uses them to do the actual writing. I

should point out that using callbacks for rendering a single glyph can have a

significant overhead, especially for the simpler kinds of text like tilemaps.

Main TTE variables and functions.

The state of the TTE system is kept in a TTC variable accessible through

tte_get_context() . All changes to the system go through there. In some cases, it is

useful to have two sets of state and switch between them when appropriate (like

when you have two screens. Y hello thar, NDS). For that you can use

tte_set_context) to redirect the pointer.

Tonc - GBA Programming in rot13

473 / 757

To print characters, you can use tte_putc() and tte_write() .

TTC __tte_main_context;
TTC *gp_tte_context= &__tte_main_context;

//! Get the master text-system.
INLINE TTC *tte_get_context()
{ return gp_tte_context; }

//! Set the master context pointer.
void tte_set_context(TTC *tc)
{
 gp_tte_context= tc ? tc : &__tte_main_context;
}

Tonc - GBA Programming in rot13

474 / 757

//! Get the glyph index of character \a ch.
INLINE uint tte_get_glyph_id(int ch)
{
 TTC *tc= tte_get_context();
 ch -= tc->font->charOffset;
 return tc->charLut ? tc->charLut[ch] : ch;
}

//! Get the width of glyph \a id.
INLINE uint tte_get_glyph_width(uint gid)
{
 TFont *font= tte_get_context()->font;
 return font->widths ? font->widths[gid] : font->charW;
}

//! Render a character.
int tte_putc(int ch)
{
 TTC *tc= tte_get_context();
 TFont *font= tc->font;

 // (4) translate from character to glyph index
 uint gid= tte_get_glyph_id(ch);

 // (5) get width for cursor update
 int charW= tte_get_glyph_width(gid);

 if(tc->cursorX+charW > tc->marginRight)
 [[simulate newline]]

 // (6) Draw and update position
 tc->drawgProc(gid);
 tc->cursorX += charW;

 return charW;
}

Tonc - GBA Programming in rot13

475 / 757

I’ve omitted the code for a few things here, the idea should be clear. First, read a

character. Then, check whether it’s a special character (new line, tab, formatting

command) and if so, act accordingly. Because tte_write() supports UTF-8, we also

check for that and decode the string for a full UFT-8 character. A�er that’s all done, we

pass the character on to tte_putc() , which translates it to a glyph index, draws the

glyph and advances the cursor.

//! Render a string.
/*! \param text String to parse and write.
 \return Number of parsed characters.
*/
int tte_write(const char *text)
{
 int ch;
 uint gid, charW;
 const char *str= text;
 TTC *tc= tte_get_context();

 while((ch= *str++) != '\0')
 {
 // (1) Act according to character type
 switch(ch)
 {
 case '\n': [[update cursorX/Y for newline]]; break;
 case '\t': [[update cursorX for tab]]; break;
 default:
 // (2) more special thingies
 if(ch=='#' && str[0]=='{') // (2a) Command sequence
 {
 str= tte_cmd_default(str+1);
 break;
 }
 else if(ch=='\\' && str[0]=='#') // (2b) Escaped command
 ch= *str++;
 else if(ch>=0x80) // (2c) UTF8 character
 ch= utf8_decode_char(str-1, &str);

 // (3) draw character
 tte_putc(ch);
 }
 }

 return str - text;
}

Tonc - GBA Programming in rot13

476 / 757

Note: the way described here is a method of doing things; it’s not the method,

because that doesn’t actually exist. Several steps done here may be overkill for the

kind of text you had in mind. For example, getting from the character to the glyph

index is done by the font’s character offset and a potential character look-up table,

neither of which is strictly necessary. Likewise, wrapping at the edges may already be

done in the string itself with newline characters. On the other hand, you might like

more complex wrapping, text alignment, scrolling, and who knows what else. If you

want these things, creating your own routine shouldn’t be too difficult.

On nomenclature

Some terms I use in TTE have a very specific meaning. Because the differences

between terms can be subtle, it is important to define the term explicitly. Additionally,

TTE uses several acronyms and abbreviations that need to be clarified.

char(acter) vs glyph index. ‘Character’ refers to the ASCII character; the ‘glyph

index’ is the corresponding index in the font. For example, ‘A’ is character 65, but

if the font starts at a space (’ ’, ASCII 32) the ‘A’ is glyph index 65−32=33. As a rule,

variables named ch are characters and gid means glyph index. The input of

the renderers is the glyph index, and not the character.

Surface. Surface is the term I’m using to describe whatever I’m manipulating to

show text. This is usually VRAM, but can be other things as well, like OBJ_ATTRs

for object text.

Pitch. The pitch is actually a common term in graphics, but since graphics terms

may not be so common, it’s worth repeating. Technically, the pitch is the

number of scanlines between rows. I’m extending it a little to mean the

characteristic major distance for matrices. Matrices are 2D entities, and they’ll

have adjacent elements in one direction and a larger distance for the other.

These usually are x and y, respectively, but not always. The minor distance will

be referred to as stride.

Tonc - GBA Programming in rot13

477 / 757

Color vs color attribute. The ‘color’ is the real 5.5.5 BGR color; the ‘color

attribute’ is whatever the renderer will use on the surface. This can be a color,

but it can also be a palette index or something else entirely. The interpretation is

up to the renderer.

Render/Text family. This is a conceptual group-name for a specific kind of text.

Table 22.1 gives an overview of the families available. This largely corresponds

to the TSurface types.

Renderer types. Within each family there can be different renderers for different

kinds of fonts and effects. For example, when rendering to an 8bpp bitmap (the

bmp8 family), you can have different renderers for different font bitdepths (1bpp

or 8bpp, for example) or glyph layouts (bitmapped or tiled). They can render

some pixels transparently, or apply anti-aliasing. Or any combination of those.

The point is there are a lot of options here.

Because I really don’t like names that span a whole line, I will use abbreviations

in the renderer’s name to indicate what it does; see table 22.2 for what they

mean. For the most part, the renderers will be for fonts with arbitrary width and

height, with a 1bpp tile-stripped glyphs, with they will draw them transparently

and re-coloring of pixels. This is indicated by *_b1cts .

Family prefix Initializer

Regular tilemap

(mode 0/1)
se

void tte_init_se(int bgnr, u16 bgcnt,

SCR_ENTRY se0, u32 colors, u32 bupofs, const

TFont *font, fnDrawg proc);

Affine tilemap

(mode 1/2)
ase

void tte_init_ase(int bgnr, u16 bgcnt, u8 ase0,

u32 colors, u32 bupofs, const TFont *font,

fnDrawg proc);

4bpp Tiles

(modes 0/1/obj)
chr4(c/r)

void tte_init_chr4(c/r)(int bgnr, u16 bgcnt, u32

cattrs, u32 colors, const TFont *font, fnDrawg

proc);

8bpp bitmap bmp8 void tte_init_bmp(int vmode, const TFont

Tonc - GBA Programming in rot13

478 / 757

(mode 4) *font, fnDrawg proc);

16bpp bitmap

(mode3/5)
bmp16

void tte_init_bmp(int vmode, const TFont

*font, fnDrawg proc);

objects obj

void tte_init_obj(OBJ_ATTR *dst, u32 attr0,

u32 attr1, u32 attr2, u32 colors, u32 bupofs,

const TFont *font, fnDrawg proc);

Table 22.1: TTE render family indicators and initializers. 4bpp Tiles can be row or

column major (crh4r or chr4c).

Code Description

bx Bitdepth of source font. (b1 = 1 bpp)

wx Specific width (w8 = width 8)

hx Specific height (h8 = height 8)

c Re-coloring. Color attributes are applied to the pixels in some way.

t/o Transparent or opaque paper pixels.

s Glyphs are in tile-strip format.

Table 22.2: Render type summary.

Lastly, a note on some of the abbreviations I use in the rendering code. A number of

terms come up again and again, and I’ve taken to use a shorthand notation for these

items. The basic format is fooX where foo is the relevant bitmap/surface and X is a

one-letter code for things like width, height, data and others. Yes, the use of single-

letter names is frowned upon and I don’t advocate their use in general, but I’ve found

that in this particular case, if used judiciously, they have helped me read my own

code.

Term Meaning

fooW Width of foo

fooH Height of foo

fooB Bitdepth of foo

fooP Pitch of foo

Tonc - GBA Programming in rot13

479 / 757

fooD Primary data-pointer for foo

fooL Secondary data-pointer for foo

fooS Size of foo

fooN Number/count of foo

Table 22.3: Abbreviations used in rendering

code.

Tilemapped text

Regular tilemap text

Tilemapped text is the easiest to implement, because you don’t really have to render

anything at all. You simply load up all the font’s tiles into a charblock and place

screen-entries for the actual text.

The initializer for regular tilemaps is tte_init_se() . It’s identical to txt_init_se()

except for the two extra parameters at the end: font and proc . These represent the

font to use and the renderer that does the surface manipulation. Every initializer in

TTE has those two parameters. It’s safe to pass NULL to them if you’re not sure what

to use; in that case, the default option for that family will be used.

If font is NULL, you’ll get the default font. This is either system8Font for fixed-width

occasions or verdana9Font (fig 22.1) when variable width is suitable. These can also

be referenced via fwf_default and vwf_default , respectively.

Each family also has a default renderer, #defined as foo _drawg_default , where foo

is the family prefix. The default renderers are the general routines, suitable for all

character widths and heights (fixed or variable fonts). Of course, this does mean that

they will be slower than routines written to work with a specific glyph size. This is

particularly true for tilemapped text, and for that reasons specific _w8h8 and _w8h16

versions are available there as well.

Tonc - GBA Programming in rot13

480 / 757

The initializers tend to be long and boring, so I won’t waste too much space on them

here. Basically, they clear out the text context, assign some sensible values to the

margins and surface variables, set up the font, the renderer and the eraser. They also

fill some of the palette and color attributes.

The code I’ll show in this chapter will mostly be about the renderers themselves.

Below you can see the code for the default screen-entry writer, se_drawg_s() , and

the one specific for 8×8 fonts, se_drawg_w8h8

Tonc - GBA Programming in rot13

481 / 757

Let’s start with the simpler one: se_drawg_w8h8() . An 8×8 glyph on a GBA tilemap

simply means write a single screen-entry to the right place. The right place here is

derived from the cursor position and the surface data (tc->dst). The ‘special’ color

attribute is used as a modifier to the glyph index for things like palette swapping.

Note that the routine just handles plotting the glyph. Transforming from ASCII to

glyph index and repositioning the cursor is all done elsewhere.

//! Character-plot for reg BGs, any sized, vertically tiled font.
void se_drawg_s(uint gid)
{
 int ix, iy;

 // (1) Get main variables.
 TTC *tc= tte_get_context();
 TFont *font= tc->font;
 uint charW= (font->cellW+7)/8, charH= (font->cellH+7)/8;

 uint x0= tc->cursorX, y0= tc->cursorY;
 uint dstP= tc->dst.pitch/2;
 u16 *dstD= (u16*)(tc->data + (y0*dstP+x0)*2);

 // (2) Get the base tile index.
 u32 se= tc->cattr[TTE_SPECIAL] + gid*charW*charH;

 // (3) Loop over all tiles to draw glyph.
 for(ix=0; ix<charW; ix++)
 {
 for(iy=0; iy<charH; iy++)
 dstD[iy*dstP]= se++;
 dstD++;
 }
}

//! Character-plot for reg BGs using an 8x8 font.
void se_drawg_w8h8(uint gid)
{
 TTC *tc= tte_get_context();

 uint x0= tc->cursorX, y0= tc->cursorY;
 uint dstP= tc->dst.pitch/2;
 u16 *dstD= (u16*)(tc->data + (y0*dstP+x0)*2);

 dstD[0]= tc->cattr[TTE_SPECIAL] + gid;
}

Tonc - GBA Programming in rot13

482 / 757

The more generalized routine, se_drawg_s() is a little more complex. It still starts by

getting a pointer to the glyph’s destination, dstD , and pitch (the distance to the next

line), dstP . All renderers start with something like this. All renderers also retrieve the

character’s width and height – unless the sizes are specified in advance. The names I

use for rendering are always the same, so you should be able to tell what means what

even when the formulas for initializing them can be a tad icky.

Anyway, a�er getting the pointer and pitch, the tile-index for the top-le� of the glyph

is calculated and put this into se . A�er that, we loop over the different tiles of the

glyph in both directions. Note that the order of the loop is column-major, not row-

major, because that’s the way the default fonts were ordered.

As it happens, column-major rendering tends to be more efficient for text, because

glyphs are usually higher than they are wide. Also, for tilemap text charW and charH

tend to be small – o�en 1 or 2. This means that it is extremely inefficient to use loops;

we’ll see how inefficient in the “Profiling the renderers” subsection.. Unrolling them,

like se_drawg_w8h8() and se_drawg_w8h16() do, gives a much better performance.

Tonc - GBA Programming in rot13

483 / 757

Regular tilemap example

void test_tte_se4()
{
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 // --- (1) Base TTE init for tilemaps ---
 tte_init_se(
 0, // Background number (BG 0)
 BG_CBB(0)|BG_SBB(31), // BG control (for REG_BGxCNT)
 0, // Tile offset (special cattr)
 CLR_YELLOW, // Ink color
 14, // BitUnpack offset (on-pixel = 15)
 NULL, // Default font (sys8)
 NULL); // Default renderer (se_drawg_s)

 // --- (2) Init some colors ---
 pal_bg_bank[1][15]= CLR_RED;
 pal_bg_bank[2][15]= CLR_GREEN;
 pal_bg_bank[3][15]= CLR_BLUE;
 pal_bg_bank[4][15]= CLR_WHITE;
 pal_bg_bank[5][15]= CLR_MAG;

 pal_bg_bank[4][14]= CLR_GRAY;

 // --- (3) Print some text ---

 // "Hello world in different colors"
 tte_write("\n Hello world! in yellow\n");
 tte_write(" #{cx:0x1000}Hello world! in red\n");
 tte_write(" #{cx:0x2000}Hello world! in green\n");

 // Color use explained
 tte_set_pos(8, 64);
 tte_write("#{cx:0x0000}C#{cx:0x1000}o#{cx:0x2000}l");
 tte_write("#{cx:0x3000}o#{cx:0x4000}r#{cx:0x5000}s");
 tte_write("#{cx:0} provided by \\#{cx:#}.");

 // --- (4) Init for 8x16 font and print something ---
 GRIT_CPY(&tile_mem[0][256], cyber16Glyphs); // Load tiles
 tte_set_font(&cyber16Font); // Attach font
 tte_set_special(0x4100); // Set special to tile
256, pal 4
 tte_set_drawg(se_drawg_w8h16); // Attach renderer

 tte_write("#{P:8,80}Also available in 8x16");

Tonc - GBA Programming in rot13

484 / 757

Fig 22.2: Cybernator

font: 8×16.

The code above demonstrates a few of the things you can do with TTE for tilemaps.

The call to tte_init_se() initializes the system to display text on BG 0, using

charblock 0 and screenblock 31 and to use the default font and renderer. Parameter

five is the bit-unpack offset; by setting it to 14, all the 1-valued pixels in the font move

to 14+1=15, the last index in a palette bank. I’m also setting a few other colors so that

the palette will look like fig 22.3b.

In step 3, I print some text with tte_write() . The different colors are done by using

#{cx: num } in the string, which sets the special color-attribute to num. More on

these kinds of commands in the “Scripting, console IO and other niceties” section..

Since the se -renderers add this value to the glyph index for the final output, it can be

used for palette swapping.

Step 4 demonstrates how to load up and use a second font. The cyber16Font is a

rendition of the 8×16 font used in ye olde SNES game, Cybernator (see fig 22.2). This

font was exported as 4bpp data so I can just copy it into VRAM directly, but I do need

to use an offset because I want to keep the old font as well. The charblock now has

two sets of glyphs (see fig 22.3c).

Fig 22.3a: test_tte_se4 output.

 key_wait_till_hit(KEY_ANY);
}

Tonc - GBA Programming in rot13

485 / 757

Fig 22.3b: Palette. Fig 22.3c: Tileset.

In principle, all I need to do to use a different font is to select it with tte_set_font() ,

but since the tiles are at an offset, I also need to adjust the special color attribute. The

value of 0x4100 is used here to account for the offset (0x0100) as well as the palette-

bank (0x4000). I’m also selecting a different renderer for the occasion, although that’s

mostly for show here because the default renderer can handle 8×16 fonts just as well.

A�er that, I just call tte_write() again to print a new string in using the new font.

Affine tilemap text

Text for affine tilemaps works almost the same as for regular tilemaps; you just have

to remember the differences between the two kinds of backgrounds, like map size

and available bitdepth. The functions’ prototypes are the same, except that se is

replaced by ase .

Internally, the only real difference is in what the renderers are to output, namely bytes

instead of halfwords. And here we run into that quaint little fact of VRAM again: you

can’t write single bytes to VRAM. This means that the renderers will be a little more

complicated. But only a little: simply call a byte-plotting routine for the screen-entry

placement. Because affine maps are essentially 8bpp bitmap surfaces, I can use the

standard plotter for 8bpp bitmap surfaces: _sbmp8_plot() . Aside from this one

difference, the ase_ renderers are identical to the se_ counterparts.

Tonc - GBA Programming in rot13

486 / 757

The demo for affine map text is text_tte_ase() . The idea is simple here: set up the

text for a 256×256 pixel map, write some text onto it and rotate the background to

illustrate that it is indeed an affine background. The center of rotation is the “o” at the

center of the screen. To place it there, I’ve used the #{P:x,y} code; this sets the

cursor to the absolute position given by (x, y). The other string is also positioned on

the map in this manner.

//! Character-plot for affine BGs using an 8x8 font.
void ase_drawg_w8h8(uint gid)
{
 TTC *tc= tte_get_context();
 u8 se= tc->cattr[TTE_SPECIAL] + gid;

 _sbmp8_plot(&tc->dst, tc->cursorX/8, tc->cursorY/8, se);
}

//! Character-plot for affine BGs, any sized, vertically oriented font.
void ase_drawg_s(int gid)
{
 TTC *tc= tte_get_context();
 TFont *font= tc->font;
 uint charW= (font->cellW+7)/8, charH= (font->cellH+7)/8;
 uint x0= tc->cursorX/8, y0= tc->cursorY/8;

 u8 se= tc->cattr[TTE_SPECIAL] + gid*charW*charH;

 int ix, iy;
 for(ix=0; ix<charW; ix++)
 for(iy=0; iy<charH; iy++, se++)
 _sbmp8_plot(&tc->dst, ix+x0, iy+y0, se);
}

Tonc - GBA Programming in rot13

487 / 757

Fig 22.4: test_tte_ase .

void test_tte_ase()
{
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 REG_DISPCNT= DCNT_MODE1 | DCNT_BG2;

 // Init affine text for 32x32t bg
 tte_init_ase(
 2, // BG number
 BG_CBB(0) | BG_SBB(28) | BG_AFF_32x32, // BG control
 0, // Tile offset (special cattr)
 CLR_YELLOW, // Ink color
 0xFE, // BUP offset (on-pixel = 255)
 NULL, // Default font (sys8)
 NULL); // Default renderer (ase_drawg_s)

 // Write something
 tte_write("#{P:120,80}o");
 tte_write("#{P:72,104}Round, round, #{P:80,112}round we go");

 // Rotate it
 AFF_SRC_EX asx= { 124<<8, 84<<8, 120, 80, 0x100, 0x100, 0 };
 bg_rotscale_ex(®_BG_AFFINE[2], &asx);

 while(1)
 {
 VBlankIntrWait();
 key_poll();

 asx.alpha += 0x111;
 bg_rotscale_ex(®_BG_AFFINE[2], &asx);

 if(key_hit(KEY_START))
 break;
 }
}

Tonc - GBA Programming in rot13

488 / 757

Bitmapped text

Bitmap text rendering is a little different from map text and can range in difficulty

from easy to insane, depending on your wishes. At its core, though, it’s always the

same process: loop over all pixels and draw them on the destination surface. For

example, a generic glyph renderer that draws pixels transparently could look

something like this.

Here, foo can mean any rendering family. foo_plot() is a general pixel plotter and

font_get_pixel() a pixel retriever. The implementations of those functions depend

on the specifics of the font and surface, but the glyph renderer doesn’t need to know

about that.

Basic bmp16 to bmp16 glyph printer

This next function is an example of a 16bpp font to 16bpp bitmap printer.

// Pseudo code for a general glyph printer.
void foo_drawg(uint gid)
{
 TTC *tc= tte_get_context();
 TFont *font= tc->font;

 // Drawing with color keying.
 // Loop over all pixels. If the glyph's pixel is not zero, draw it.
 // Other wise, nevermind.
 for(iy=0; iy<tte_get_glyph_height(gid); iy++)
 {
 for(ix=0; ix<tte_get_glyph_width(gid); ix++)
 {
 u16 color= font_get_pixel(font, gid, ix, iy);
 if(color != 0)
 foo_plot(&tc->dst, tc->cursorX+ix, tc->cursorY+iy,
color);
 }
 }
}

Tonc - GBA Programming in rot13

489 / 757

Blocks 1a and 1b set up the main variables to use in the loop. The most important are

the source and destination pointers, srcD and dstD , and their pitches, srcP and

dstP . Notice that the source pitch, srcP , is the not the character width, but the cell

width, because the fonts are organized on a cell-grid. The code at point 2 selectively

copies pixels from the font to the surface.

Intermezzo : considerations for performance

You may wonder why bmp16_drawg() doesn’t follow the pattern in the earlier

foo_drawg() more closely. The answer is, of course, performance. And before

anyone quotes Knuth on me: not every effort to make your code fast is premature

optimization. When you can improve the speed of the code without spending too

much effort of a loss of readability, there’s not much reason not to.

//! Glyph renderer from bmp16 glyph to bmp16 destination.
void bmp16_drawg(uint gid)
{
 // (1a) Basic variables
 TTC *tc= tte_get_context();
 TFont *font= tc->font;

 u16 *srcD= (u16*)(font->data+gid*font->cellSize), *srcL= srcD;
 uint charW= tte_get_glyph_width(gid)
 uint charH= tte_get_glyph_height(gid);

 uint x0= tc->cursorX, y0= tc->cursorY;
 uint srcP= font->cellW, dstP= tc->dst.pitch/2;
 u16 *dstD= (u16*)(tc->dst.data + (y0*dstP + x0)*2);

 // (2) The actual rendering
 uint ix, iy;
 for(iy=0; iy<charH; iy++)
 {
 for(ix=0; ix<charW; ix++)
 if(srcD[ix] != 0)
 dstD[ix]= srcD[ix];

 srcD += srcP;
 dstD += dstP;
 }
}

Tonc - GBA Programming in rot13

490 / 757

In this case, the optimizations I’ve applied here fall into two categories: local variables

and pointer arithmetic. These techniques – that every C programmer should know –

managed to boost the speed by a factor of 5.

Let’s start with pointers. I’m using pointer to my advantage in two places here. First,

instead of using the font-data pointer and destination pointer directly, I create

pointers srcD and dstD and direct them the top-le�s of the glyph and where it will

be rendered to. Short-circuiting the accesses like this means that I don’t have to apply

extra offsets to get to where I want to go in the loop. This will be both faster and in fact

more readable as well, because the loops won’t contain any non-essential

expressions.

A second point here is using incremental offsets instead of the y*pitch+x form (see

above). I suppose this is mostly a matter of preference, but avoiding the wholly

unnecessary multiplications does matter.

The second optimization is local variables. By this I mean loading variables that reside

in memory (globals and struct members) or o�-used function results in local

temporaries. This may seem like a silly thing to point out, but the amount of time you

can save with this is actually quite high.

Consider the use of tte_get_glyph_width() here. I know the width of a glyph won’t

change during the loop, so calling a function to get the width in the loop-condition

itself is just stupid. Another example of this would be calling strlen() when looping

over all characters in a string. For those who do this: NO! Bad programmer, bad! Save

the value in a local variable and use that instead.

The other point is to pre-load things like globals and struct/class members if you use

them more than once. Consider the following code. It’s the same as the one given

//# Example of a more standard bitmap copier.
for(iy=0; iy < charH; iy++)
 for(ix=0; ix < charW; ix++)
 dstD[iy*dstP + ix]= srcD[iy*srcP+ix];

Tonc - GBA Programming in rot13

491 / 757

before, only now I have not loaded character height and the pitches into local

temporaries.

The result: the speed of the function was halved! I expected it to be slower, but that

this innocuous-looking modification would actually cost me a factor two was quite a

surprise to me.

So yes, spam your code width locals for loop-invariant, memory-based quantities.

This avoids them being loaded from memory every time. As a bonus, the loops

themselves win contain less text and be more generalized, making it more reusable.

Both the pointer work and pre-loading variables are actually the job of the compiler’s

optimizer, but the current version of GCC doesn’t do these very well or at all. Also,

sometimes it can’t do this optimization. When functions are called between memory

dereferences, the compiler has to reload the data because those functions may have

changed their contents. Obviously, this wouldn’t happen for locals.

USE LOCAL VARIABLES FOR STRUCT MEMBERS AND GLOBALS

Struct members and global variables live in memory, not CPU registers. Before

the CPU can use their data, they have to be loaded from memory into registers

first, and this o�en happen more times then necessary. Since memory access

(especially ROM access) is slower than register access, this can really bog down

an algorithm if the thing is used more than once. You can avoid this needless

work by creating local variables for them.

Aside from the speed-boost, local variables can use shorter names, resulting in

shorter and more readable code in the parts that actually do the work. It’s win-

freakin’-win, baby.

//# Another bitmap-copy example. DO NOT USE THIS !!!
for(iy=0; iy < font->charH; iy++)
 for(ix=0; ix < charW; ix++)
 dstD[iy*tc->dst.pitch/2 + ix]= srcD[iy*font->cellW + ix];

Tonc - GBA Programming in rot13

492 / 757

Glyph and surface formats

The renderer described above assumes that the glyphs are in formatted as 16-bpp

bitmaps. However, TTE’s default fonts are in a 1-bpp tilestrip format, so I’ll have to use

something else. Before I go into the details of that function, I’d like to discuss the

different glyph formats and why I’m using tile-strips instead of just plain bitmaps.

When I say glyph formats, what I really mean is the order in which pixels are accessed.

Three key variations exist.

Linear or bitmap layout. This is a simple, row-major matrix. This gives you two

loops; one for y and one for x.

Tiled. In particular: 8×8 tiled. This is the standard GBA tile format where each

group of 8×8 pixels form a row-major matrix, and then the tiles themselves are

part of a larger row-major matrix again. Going through this required four loops:

two for each matrix.

Tile-strips. This also uses 8×8 tiles, but this time the tiles ordered in a column-

major order. In other words, tile 1 comes below tile 0 instead of to the right. This

has the rather nice property that the rows in successive tiles are consecutive. It

eliminates the break in the y direction, resulting in only 3 loops and has simpler

code to boot.

Fig 22.5 shows these three layouts, including the loop structure and the order in

which the pixels are traversed for 1bpp fonts. The case is a little bit different because

of the bit-packing: 1 bpp means 8 pixels per byte. As a result, the bitmap-x loops have

to be broken up into groups of 8, so that the bitmap format now uses three nests of

loops instead of just two. There is no difference for the tiled formats, as those are

grouped by 8 pixels anyway. Not only that, if you were to calculate the total loop-

overhead for commonly used glyph sizes it turns out that this arrangement actually

works particularly well for tile-strips. This is le� as an exercise for the reader (hint:

count the number of comparisons).

Tonc - GBA Programming in rot13

493 / 757

Fig 22.5: Pixel traversal in glyphs for 1-bpp bitmap, tile and tile-strip formats. The numbers indicate

the loops and their nestings.

bmp16_drawg_b1cts : 1- to 16-bpp with transparency and coloring

The next routine takes 1-bpp tile-strip glyphs and turns them into output suitable for

16-bpp bitmap backgrounds. The output will use the ink attribute for color and it will

only draw a pixel if the bit was 1 in the source data, giving us transparency. The three

macros at the top declare and define the basic variables, comparable to step 1a in

bmp16_drawg() .

Tonc - GBA Programming in rot13

494 / 757

The routine starts by calls to three macros: TTE_CHAR_VARS() , TTE_CHAR_VARS and

TTE_DST_VARS() . These declare and define most of the relevant local variables,

similar to step 1a in bmp16_drawg() . Note that two of the arguments here are

datatype identifiers for the source and destination pointers, respectively. srcD and

srcL will initially point to the start of the source data. The other pointers, dstD and

dstL , point to the start of the scanline in the destination area. They haven’t been

corrected for the x-position just yet; that’s done right a�er it.

The reason I’m using two pairs of pointers here (a main data pointer, fooD and a line

pointer fooL) is because of the pointer arithmetic. The data-pointer stays fixed and

the line-pointer moves around in the inner loop.

void bmp16_drawg_b1cts(uint gid)
{
 // (1) Basic variables
 TTE_BASE_VARS(tc, font);
 TTE_CHAR_VARS(font, gid, u8, srcD, srcL, charW, charH);
 TTE_DST_VARS(tc, u16, dstD, dstL, dstP, x0, y0);
 uint srcP= font->cellH;

 dstD += x0;

 u32 ink= tc->cattr[TTE_INK], raw;

 // (2) Rendering loops.
 uint ix, iy, iw;
 for(iw=0; iw<charW; iw += 8) // loop over tile-strips
 {
 dstL= &dstD[iw];
 for(iy=0; iy<charH; iy++) // loop over tile-lines
 {
 raw= srcL[iy];
 for(ix=0; raw>0; raw>>=1, ix++) // loop over tile-scanline
(8 pixels)
 if(raw&1)
 dstL[ix]= ink;

 dstL += dstP/2;
 }
 srcL += srcP;
 }
}

Tonc - GBA Programming in rot13

495 / 757

The tile-strip portion of fig 22.5 illustrates how the routine moves over all the pixels.

Because it’s for a 1-bpp bitpacked font and because there are 8 pixels per tile-line, we

can get an entire line’s worth of pixels in one byte-read. Rendering transparently gives

us a nice chance for optimization as well: if the tile-line is empty (i.e., raw ==0), we

have no more visible pixels in that line and we can move on to the next. A glance at

the verdana 9 font in fig 22.1, will tell you that you may be able to skip 50% of the

pixels because of this.

bmp8_drawg_b1cts : 1 to 8 bpp with transparency and coloring

The 8 bpp counterpart of the previous function is called bmp8_drawg_b1cts() , and is

given below. The code is very similar to the 16 bpp function, but because the pixels

are now bytes there are a few differences in the details.

Tonc - GBA Programming in rot13

496 / 757

The only real difference with bmp16_drawg_b1cts is in the inner-most loop. The no-

byte-write issue for VRAM means that we need to write two pixels in one pass. To do

this, I retrieve and unpack two bits into two bytes and use them to create the new

pixels and the pixel masks. The first line in the inner loop does the unpacking. It

transforms the bit-pattern ab into 0000 000 a 0000 000 b . Both bytes in this

halfword are now 0 or 1, depending on whether a and b were on or off. By multiplying

with ink and 255, you can get the colored pixels and the appropriate mask for

insertion.

void bmp8_drawg_b1cts(uint gid)
{
 // (1) Basic variables
 TTE_BASE_VARS(tc, font);
 TTE_CHAR_VARS(font, gid, u8, srcD, srcL, charW, charH);
 TTE_DST_VARS(tc, u16, dstD, dstL, dstP, x0, y0);
 uint srcP= font->cellH;

 dstD += x0/2;

 u32 ink= tc->cattr[TTE_INK], raw, px;
 uint odd= x0&1; // (2) Source offset.

 uint ix, iy, iw;
 for(iw=0; iw<charW; iw += 8) // Loop over strips.
 {
 dstL= &dstD[iw/2];
 for(iy=0; iy<charH; iy++) // Loop over lines.
 {
 raw= srcL[iy]<<odd; // (3) Apply source offset.
 for(ix=0; raw>0; raw>>=2, ix++) // Loop over pixels.
 {
 // (4) 2-bit -> 2-byte unpack, then used as masks.
 px= ((raw&3)<<7 | (raw&3)) &~ 0xFE;
 dstL[ix]= (dstL[ix]&~(px*255)) + ink*px;
 }
 dstL += dstP/2;
 }
 srcL += srcP;
 }
}

Tonc - GBA Programming in rot13

497 / 757

Preparing the right halfword is only part of the work. If cursorX (i.e., x0) is odd, then

the glyph should be plotted to an odd starting location as well. However, the

destination pointer dstL is halfword pointer and these must always be halfword

aligned. To take care of this, note that unpacking the pattern ‘ abcd efgh ’ to an odd

boundary is equivalent to unpacking ‘ a bcde fgh 0 ’ to an even boundary. This is

exactly what the extra shi� by odd is for.

Example : sub-pixel rendering

For the demo of this section, I’d like to use a technique called sub-pixel rendering.

This is a method for effectively tripling the horizontal resolution for rendering by

‘borrowing’ colors from other pixels.

Consider the letter ‘A’ as shown in fig 22.6a. As you know, each pixel is composed of

three colors: red, green and blue. These are the sub-pixels. The letter on the sub-pixel

grid looks like fig 22.6b. Notice how the colors are still grouped by pixels, which on the

sub-pixel grid gives very jagged edges. The trick to sub-pixel rendering is to shi�

groups of sub-pixels le� or right, resulting in smoother edges (fig 22.6c). Now combine

the pixels to RGB colors again to get fig 22.6d. Zoomed in as it is in fig 22.6, sub-pixel

rendering may not look like much, but when used in the proper size the effects can be

quite stunning.

2-bit to 2-byte unpacking.
0000 0000 hgfe dcba p = raw (start)
0000 0000 0000 00ba p &= 3
0000 000b a000 00ba p |= p<<7;
0000 000b 0000 000a p &= ~0xFE;

Tonc - GBA Programming in rot13

498 / 757

https://en.wikipedia.org/wiki/Subpixel_rendering

Fig 22.7: 4×8

subpixel font

Fig 22.6: Subpixel rendering. a: ‘A’ on 8×8 grid. b: as le�, in R,G,B sub-grid. c: shi�ing rows to

distribute sub-pixels evenly. d: new color distribution in pixels (black/white inverted).

Sub-pixel rendering isn’t useful for everything. Because it muddles the concept of

pixel and color a little, it’s only useful for gray-scale images. This does make it great

for text, of course. Secondly, the order in which the sub-pixels are ordered also

matters. The process shown in fig 22.6 will work for RGB-ordered screens, but would

fail quite spectacularly when the pixels are BGR-ordered. Going into all the gritty

details it too much to do here, so I’ll refer you to http://www.grc.com/ctwhat.htm,

which explains the concept in more detail and gives a few examples too.

JanoS (http://www.haluz.org/yesh/) has created nice 4×8 sub-

pixel font for use on GBA and NDS (see fig 22.7). A width of 4 is

really tiny; it’s impossible to have glyphs of that size with normal

rendering and still have readable text. With sub-pixel rendering,

however, it still looks good and now you can have many more

characters on the screen than usual.

The output of the demo can be seen in fig 22.8. Because sub-pixel rendering is so

closely tied to the hardware you’re viewing with, it will probably look crummy on

most screens or paper. You really have to see it on a GBA screen for the full effect.

In this particular case, I’ve converted the font to work with bmp16_drawg() : a 16bpp

font in bitmap layout. Creating an 8-bit version would not be very hard either. A 1-bpp

bitpacked font would of course be impossible because the font has more than two

colors. To make sub-pixel fonts look right, you’ll actually need a lot of colors: one for

each combination of R,G,B, and with difference shades of each. That said, JanoS has

Tonc - GBA Programming in rot13

499 / 757

https://www.grc.com/ctwhat.htm
http://www.haluz.org/yesh/

managed to reduce the amount of colors to 20 here without too much loss in quality.

If anyone wants it, I also have a 15-color version to use with 4bpp fonts.

Fig 22.8: Sub-pixel rendering demo

//! Testing a bitmap renderer with JanoS' sub-pixel font.
void test_tte_bmp16()
{
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 REG_DISPCNT= DCNT_MODE3 | DCNT_BG2;

 tte_init_bmp(3, &yesh1Font, bmp16_drawg);
 tte_init_con();

 const char *str=
 "https://en.wikipedia.org/wiki/Subpixel_rendering :\n"
 "Subpixel rendering is a way to increase the "
 "apparent \nresolution of a computer's liquid crystal "
 "display (LCD).\nIt takes advantage of the fact that "
 "each pixel on a color\nLCD is actually composed of "
 "individual red, green, and\nblue subpixel stripes to "
 "anti-alias text with greater\ndetail.\n\n"
 " 4x8 sub-pixel font by JanoS.\n"
 " http://www.haluz.org/yesh/\n";

 tte_write(str);
 key_wait_till_hit(KEY_ANY);
}

Tonc - GBA Programming in rot13

500 / 757

Object text

Object text is useful if you want the characters to move around a bit, or if you simply

don’t have any room on a background. There are a few possibilities for object text.

The most obvious one is to load all the characters into object VRAM and set the tile-

indices of the objects to use the right tiles. This is what the TTE object system uses.

In many ways, this kind of object text is similar to tilemap text. The tiles are loaded up

front and you change the relevant mapping entries (in this case attr2 of the objects)

to the right number. Of course, there are some notable differences as well.

For one thing, the positions of the characters must be written to the objects. But not

only that, the objects also need to know how big they’re supposed to be, and whether

they have any other interesting qualities like rotation and palettes. For that reason,

I’ve chosen to use the color attributes 0, 1 and 2 to store the object attributes 0, 1 and

2.

Another problem is which objects to use and how many. This last one could present a

big problem, actually, because you may also want to use objects for normal sprites

and it would be a really bad idea if they were suddenly overridden by the text system.

For the latter issue, I use (or perhaps abuse) the dst member of the context. Each

glyph is represented by an object, so I’ll need an object array, but I’m doing it with a

little twist. I’m going to start at the end of the array, so that the lower objects can still

be used for sprites as normal. Essentially, I’m using OAM as an empty-descending

stack. In this arrangement, dst.data points to the top of the stack (i.e., the last

element in the array), dst.pitch is the index to the current object, and dst.width is

the length of the stack.

The default plotter of objects is obj_drawg . Remember, dst.pitch is used as an

index here and dst.data is the top of the stack, so a negative index is used to get the

current object. A�er that, the coordinates and the correct glyph index are merged

with the color attributes to create the final object.

Tonc - GBA Programming in rot13

501 / 757

And, yes, I know that this use of the dst member is somewhat … unorthodox; but it

wasn’t used here anyway so why not. I am considering using something more proper,

but not just yet. Also, remember that this system assumes that the font is already

loaded into VRAM and that this can take up a lot of the available tiles. Using the

verdana 9 font, that’d be 2*240 = 480 tiles. That’s nearly half of object VRAM. A safer

alternative would be to load the necessary tiles dynamically, but that would require

more resource management.

TTE OBJECT TEXT IS UGLY

The way object text is handled in TTE works, but it the implementation is not

exactly pretty. The way I’m using TTC.dst here is, well, bad. There is a good

chance I’ll clean it up a bit later, or at the very least hide the implementation

better.

Example: letters. Onna path

The defining characteristic of objects is that they’re separate from backgrounds; they

can move around the screen independently. Object text is most likely used for text

//! Glyph-plotter using objects.
void obj_drawg(uint gid)
{
 TTC *tc= tte_get_context();
 TFont *font= tc->font;
 uint x0= tc->cursorX, y0= tc->cursorY;

 // (1) find the right object, and increment index.
 uint id= tc->dst.pitch;
 OBJ_ATTR *obj= &((OBJ_ATTR*)tc->dst.data)[-id];
 tc->dst.pitch= (id+1 < tc->dst.width ? id+1 : 0);

 // (2) Set object attributes.
 obj->attr0= tc->cattr[0] + (y0 & ATTR0_Y_MASK);
 obj->attr1= tc->cattr[1] + (x0 & ATTR1_X_MASK);
 obj->attr2= tc->cattr[2] + gid*font->cellW*font->cellH/64;
}

Tonc - GBA Programming in rot13

502 / 757

Fig 22.9: Object text on a path.

that is dynamic or has to travel along some sort of path. In this case, I’ll make them fly

on a parameterized path called a Lissajous curve (see fig 22.9).

The code is given below. A�er initializing the usual

suspects, tte_init_obj() is called. The object

stack starts at the back of OAM, which is also what

the system defaults to if NULL passed as the first

parameter. The next three are the object

attributes. Because I want to use the default

variable width font, verdana 9, the attributes

should be set to 8×16 objects. The bitdepth of the

tiles will always be 4 to keep the number of used tiles within limits. The rest of the

initialization should be easy to understand.

Making the string itself is done at step 2. Note that the string also set the paper color

attribute (which corresponds to obj.attr2) to 0x1000 to make the “omg” red. A�er

these few lines, the text handling itself is complete.

In step 3, the coordinates on the path are calculated. The t parameter indicates the

how far along the path we are. It is used to calculate the coordinates of each letter –

the first one using t itself, and the rest are essentially time-delayed. Don’t be

distracted by the magic numbers: the only reason for their values is to make the effect

look alright. Try tweaking them a little to see what they do exactly.

Tonc - GBA Programming in rot13

503 / 757

https://en.wikipedia.org/wiki/Lissajous_curve

// Object text demo
void test_tte_obj()
{
 // Base inits
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 REG_DISPCNT= DCNT_MODE0 | DCNT_OBJ | DCNT_OBJ_1D;
 oam_init(oam_mem, 128);
 VBlankIntrWait();

 // (1) Init object text, using verdana 9 (8x16 objects)
 OBJ_ATTR *objs= &oam_mem[127];
 tte_init_obj(
 objs, // Start at back of OAM
 ATTR0_TALL, // attr0: 8x16 objects
 ATTR1_SIZE_8, // attr1: 8x16 objects
 0, // attr2: nothing special
 CLR_YELLOW, // Yellow ink
 0x0E, // ink pixel 14+1 = 15
 &vwf_default, // Verdana 9 font
 NULL); // Default renderer (obj_drawg)

 pal_obj_bank[1][15]= CLR_RED;

 // (2) Write something (and prep for path)
 const char *str= "Parametrized object text, omg!!!";
 const int len= strlen(str);
 tte_write("Parametrized object text, #{cp:0x1000}omg#{cp:0}!!!");

 // Play with the objects
 int ii, t= 0x9000;
 while(1)
 {
 VBlankIntrWait();
 key_poll();

 // (3) Make lissajous figure
 for(ii=0; ii<len; ii++)
 {
 int ti= t-0x380*ii; // Get the path param for
letter ii
 obj_set_pos(&objs[-ii],
 (96*lu_cos(ti)>>12)+120, // y= Ay*cos(t) + y0
 (64*lu_sin(2*ti)>>12)+80); // x= Ax*sin(2*t) + x0
 }
 t += 0x00A0;

 if(key_hit(KEY_START))
 break;

Tonc - GBA Programming in rot13

504 / 757

Rendering to tiles

Using tilemaps for text is nice, but will only work if the dimensions of the glyphs are

multiples of 8. There are a few drawbacks in terms of readability: narrow characters

such as ‘i’ will seem either overly wide, or be surrounded by many empty pixels. Also,

you can’t put many characters on a line because there are only so many tiles.

Variable-width fonts (vwf; also known as proportional fonts) solve this problem. Using

variable-width fonts on bitmaps is quite easy, as shown in the “Bitmapped text”

section.. However, using it in tilemap modes is a little trickier: how do you draw on a

tilemap where the tiles are 8×8 in size?

Well, you don’t. Not exactly. The key is not to draw to the map, but to the tiles that the

map shows.

Basic tile rendering

The usual way to work with tilemaps is that you load up a tileset, and then select the

ones you want to show up on the screen by filling the tilemap. In those circumstances,

the tileset is o�en static, with the map being updated for things like scrolling.

Rendering to tiles reverses that procedure.

First, you need to set up a map where each entry points to a unique tile. This

essentially forms a graphical surface out of the tiles, which you can then draw to like

any other. The most obvious way to do this is to simply fill up the screenblock with

consecutive numbers (see fig 22.10a). However, a better way to map the tiles is by

mapping tiles in column-major order (see fig 22.10b) , for the same reason I chose it

for the glyph format: the words in a column of tiles are consecutive.

 }
}

Tonc - GBA Programming in rot13

505 / 757

Fig 22.10a. Row-major

tile indexing.
Fig 22.10b. Column-

major tile indexing.

Preparing the map is the easy part; the problem is knowing which part of which tile to

edit to plot a pixel. First, you need to split the coordinates into tile coordinates and

pixel-in-tile coordinates. This comes down to division and modulo by 8, respectively.

Note that in column-major mode you only need to do this for the x coordinate. With

this information, you can find the right word. The horizontal in-tile coordinate tells

you which nybble in the word to update and at that point it’s the usual bitfield

insertion.

Tonclib has routines for drawing onto 4bpp, column-major tiles (referred to as chr4c

mode). The plotter and the map preparation functions are given below, along with a

demonstration routine to explain their use.

Tonc - GBA Programming in rot13

506 / 757

//# From tonc_schr4c.c

//! Plot a pixel on a 4bpp tiled, column-major surface.
void schr4c_plot(const TSurface *dst, int x, int y, u32 clr)
{
 uint xx= x; // fluff to make x unsigned.
 u32 *dstD= (u32*)(dst->data + xx/8*dst->pitch);
 uint shift= xx%8*4;

 dstD[y] = (dstD[y] &~ (15<<shift)) | (clr&15)<<shift;
}

//! Prepare a screen-entry map for use with chr4c mode.
void schr4c_prep_map(const TSurface *srf, u16 *map, u16 se0)
{
 uint ix, iy;
 uint mapW= srf->width/8, mapH= srf->height/8, mapP= srf->pitch/32;

 for(iy=0; iy<mapH; iy++)
 for(ix=0; ix<mapW; ix++)
 map[iy*32+ix]= ix*mapP + iy + se0;
}

//# --- Simple test ---

void test_chr4()
{
 // (1) The usual
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;
 REG_BG0CNT= BG_CBB(0) | BG_SBB(31);

 pal_bg_mem[1]= CLR_RED;
 pal_bg_mem[2]= CLR_GREEN;
 pal_bg_mem[3]= CLR_BLUE;
 pal_bg_mem[4]= CLR_WHITE;

 // (2) Define a surface
 TSurface srf;
 srf_init(&srf,
 SRF_CHR4C, // Surface type.
 tile_mem[0], // Destination tiles.
 SCREEN_WIDTH, // Surface width.
 SCREEN_HEIGHT, // Surface height.
 4, // Bitdepth (ignored due to SRF_CHR4C).
 pal_bg_mem); // Palette.

 // (3) Prepare the map
 schr4c_prep_map(&srf, se_mem[31], 0);

Tonc - GBA Programming in rot13

507 / 757

The pixel plotter starts by finding the tile-column that the desired pixel is in. The

column-index is simply x/8; this is multiplied by the pitch to get a pointer to the top of

the column. Note that pitch is used a little different than usual. Normally, it denotes

the number of bytes to the next scanline, but in this case it’s used as the byte-offset to

next tile-column. For a column-major mode, this comes down to the height×bpp*8/8,

but all that is done in srf_init() . Once you have the right tile, the pixel you want is

in the x%8th nybble, meaning the required shi� for the insertion is x%8*4. A�er that,

it’s just a matter of inserting the color. (For the curious: I’m casting x to unsigned int

first because division and modulo will then be optimized to shi�s/masks properly.)

The schr4c_prep_map() function just initializes the map in the order given in fig

22.10b. Well, almost.I’m also adding a value to each screen-entry like I usually do for

palettes and tile-offsets.

The output of test_chr4() can be seen in fig 22.11a. It’s a white rectangle with red,

green and blue lines, as expected. Fig 22.11b is a picture taken from VBA’s tile viewer,

showing how the contents of the surface. Doesn’t quite look what’s on the screen,

does it? Still, if you look closely, you can figure out how it works. Each set of 20 tiles

forms one tile-column on the screen (indicated by yellow blocks). When you place

these tiles on top of each other, you’ll see the picture of fig 22.11a emerge.

 // (4) Plot some things
 int ii, ix, iy;
 for(iy=0; iy<20; iy++)
 for(ix=0; ix<20; ix++)
 schr4c_plot(&srf, ix+3, iy+11, 4);

 for(ii=0; ii<20; ii++)
 {
 schr4c_plot(&srf, ii+4, 12, 1); // Red line
 schr4c_plot(&srf, ii+4, ii+12, 2); // Green line
 schr4c_plot(&srf, 4, ii+12, 3); // Blue line
 }
}

Tonc - GBA Programming in rot13

508 / 757

Fig 22.11a:

chr4_test()

output

Fig 22.11b: chr4_test() tiles. The yellow blocks

indicate tiles of a single column.

Text rendering on tiles

Version 1 : pixel by pixel

The easiest way to render glyphs to tiles is to follow the template from the

“Bitmapped text” section.. This is done in the function below.

Now, you may think that this runs pretty slowly thanks to all the recalculations in

schr4c_plot() . And you’d be right, but in truth, it’s not as bad as I originally thought.

//! Simple version of chr4 renderer.
void chr4_drawg_b1cts_base(uint gid)
{
 TTE_BASE_VARS(tc, font);
 TTE_CHAR_VARS(font, gid, u8, srcD, srcL, charW, charH);
 uint x0= tc->cursorX, y0= tc->cursorY;
 uint srcP= font->cellH;

 u32 ink= tc->cattr[TTE_INK], raw;

 uint ix, iy, iw;
 for(iw=0; iw<charW; iw += 8)
 {
 for(iy=0; iy<charH; iy++)
 {
 raw= srcD[iy];
 for(ix=0; raw>0; raw>>=1, ix++)
 if(raw&1)
 schr4c_plot(&tc->dst, x0+ix, y0+iy, ink);
 }
 srcD += srcP;
 x0 += 8;
 }
}

Tonc - GBA Programming in rot13

509 / 757

It is possible to speed it up by simply inlining things, but the real gain comes from

drawing pixels in parallel.

Version 2 : 8 pixels at once.

Instead of plotting pixel individually, you can also plot multiple pixels simultaneously.

The bmp8_drawg_b1cts() renderer we saw earlier did this: it unpacked 2 pixels and

drew together. In the case of 4bpp tiles, you can unpack the source byte into one

(32bit) word and plot eight pixels at once. The only downside is that you’ll probably

have to split it over two tiles.

The next function is TTE’s main glyph renderer for tiles, and it is a doozy. There are

two stages for the rendering in the inner loop: bit unpacking the source byte, raw and

splitting the prepared pixel px into two adjacent tiles. These correspond to steps 3

and 4, respectively.

Normally, the bitunpack is done in a loop, but sometimes it’s faster to do it in other

ways. For details, see my document on bit tricks. The first five lines of step 3 do the

unpacking. For example, it turns a binary 0001 1011 into a hexadecimal

0x00011011 . This is then multiplied by 15 and ink to give the pixel mask pxmask

and the colored pixels px , respectively.

Step 4 distributes the word with the pixels over two tiles if necessary. In step 1, le�

and right shi�s were prepared to supply the bit offsets for this procedure. Now, for

larger glyphs this will mean that certain destination words are used twice, but this

can’t be helped (actually it can, but the procedure is ugly and possibly not worth it).

An alternative to this is using the destination once and read (and unpack/color) the

source twice; however, as VRAM is considerably faster than ROM I doubt this would be

beneficial.

Tonc - GBA Programming in rot13

510 / 757

https://www.coranac.com/documents/bittrick/#sec-bup

//! Render 1bpp fonts to 4bpp tiles; col-major order.
void chr4c_drawg_b1cts(uint gid)
{
 // Base variables.
 TTE_BASE_VARS(tc, font);
 TTE_CHAR_VARS(font, gid, u8, srcD, srcL, charW, charH);
 uint x= tc->cursorX, y= tc->cursorY, dstP= tc->dst.pitch/4;
 uint srcP= font->cellH;

 // (1) Prepare dst pointers and shifts.
 u32 *dstD= (u32*)(tc->dst.data + (y + x/8*dstP)*4), *dstL;
 x %= 8;
 uint lsl= 4*x, lsr= 32-4*x, right= x+charW;

 // Inner loop vars.
 u32 px, pxmask, raw;
 u32 ink= tc->cattr[TTE_INK];
 const u32 mask= 0x01010101;

 uint iy, iw;
 for(iw=0; iw<charW; iw += 8) // Loop over strips
 {
 // (2) Update and increment main data pointers.
 srcL= srcD; srcD += srcP;
 dstL= dstD; dstD += dstP;

 for(iy=0; iy<charH; iy++) // Loop over scanlines
 {
 raw= *srcL++;
 if(raw)
 {
 // (3) Unpack 8 bits into 8 nybbles and create the mask
 raw |= raw<<12;
 raw |= raw<<6;
 px = raw & mask<<1;
 raw &= mask;
 px = raw | px<<3;

 pxmask= px*15;
 px *= ink;

 // (4a) Write left tile:
 dstL[0] = (dstL[0] &~ (pxmask<<lsl)) | (px<<lsl);

 // (4b) Write right tile (if any)
 if(right > 8)
 dstL[dstP]= (dstL[dstP] &~ (pxmask>>lsr)) |
(px>>lsr);
 }
 dstL++;

Tonc - GBA Programming in rot13

511 / 757

chr4c_drawg_b1cts() is pretty fast. It certainly is faster than the earlier version by

about 33%. It’s actually even faster than the bmp8 renderer, but only by a slim

margin.

Of course, you can always go one better. The various shi�s and conditionals make it

perfect for ARM code, rather than Thumb. And to make sure it goes exactly according

to plan, I’m doing this in assembly.

Version 3: ARM asm

The next function is chr4_drawg_b1cts_fast() , the ARM assembly equivalent of

version 2. There’s an almost one-to-one correspondence between the C and asm

loops, so just loop to the C version for the explanation.

Speed-wise, the asm version is much better than the C version. Even in ROM, which is

very bad for ARM code, it is still faster than the Thumb version. There are one or two

tiny details by which you can speed this thing up, but by and large this should be it for

fonts of arbitrary dimensions. Of course, if you have fixed sizes for your font and do

not require recoloring or transparency, things will be a little different.

 }
 }
}

Tonc - GBA Programming in rot13

512 / 757

// Include TTC/TFont member offsets plz.
#include "tte_types.s"

/*
IWRAM_CODE void chr4c_drawg_b1cts_fast(int gid);
*/
 .section .iwram, "ax", %progbits
 .arm
 .align
 .global chr4c_drawg_b1cts_fast
chr4c_drawg_b1cts_fast:
 stmfd sp!, {r4-r11, lr}

 ldr r5,=gp_tte_context
 ldr r5, [r5]

 @ Preload dstBase (r4), dstPitch (ip), yx (r6), font (r7)
 ldmia r5, {r4, ip}
 add r3, r5, #TTC_cursorX
 ldmia r3, {r6, r7}

 @ Get srcD (r1), width (r11), charH (r2)
 ldmia r7, {r1, r3} @ Load data, widths
 cmp r3, #0
 ldrneb r11, [r3, r0] @ Var charW
 ldreqb r11, [r7, #TF_charW] @ Fixed charW
 ldrh r3, [r7, #TF_cellS]
 mla r1, r3, r0, r1 @ srcL
 ldrb r2, [r7, #TF_charH] @ charH
 ldrb r10, [r7, #TF_cellH] @ cellH

 @ Positional issues: dstD(r0), lsl(r8), lsr(r9), right(lr), cursorX
 mov r3, r6, lsr #16 @ y
 bic r6, r6, r3, lsl #16 @ x

 add r0, r4, r3, lsl #2 @ dstD= dstBase + y*4
 mov r3, r6, lsr #3
 mla r0, ip, r3, r0

 and r6, r6, #7 @ x%7
 add lr, r11, r6 @ right= width + x%8
 mov r8, r6, lsl #2 @ lsl = x%8*4
 rsb r9, r8, #32 @ lsr = 32-x%8*4

 ldr r6,=0x01010101
 ldrh r7, [r5, #TTC_ink]

 @ --- Reg-list for strip/render loop ---
 @ r0 dstL
 @ r1 srcL

Tonc - GBA Programming in rot13

513 / 757

 @ r2 scanline looper
 @ r3 raw
 @ r4 px / tmp
 @ r5 pxmask
 @ r6 bitmask
 @ r7 ink
 @ r8 left shift
 @ r9 right shift
 @ r10 dstD
 @ r11 charW
 @ ip dstP
 @ lr split indicator (right edge)
 @ sp00 charH
 @ sp04 deltaS = cellH-charH (delta srcL)

 cmp r11, #8
 @ Prep for single-strip render
 suble sp, sp, #8
 ble .Lyloop
 @ Prep for multi-strip render
 sub r3, r10, r2
 mov r10, r0
 stmfd sp!, {r2, r3} @ Store charH, deltaS
 b .Lyloop

 @ --- Strip loop ---
.Lsloop:
 @ (2) Update and increment main data pointers.
 ldmia sp, {r2, r3} @ Reload charH and deltaS
 add r10, r10, ip @ (Re)set dstD/dstL
 mov r0, r10
 add r1, r1, r3
 sub lr, lr, #8

 @ --- Render loop ---
.Lyloop:
 @ (3) Prep px and pxmask
 ldrb r3, [r1], #1
 orrs r3, r3, r3, lsl #12
 beq .Lnopx @ Skip if no pixels
 orr r3, r3, r3, lsl #6
 and r4, r3, r6, lsl #1
 and r3, r3, r6
 orr r3, r3, r4, lsl #3

 rsb r5, r3, r3, lsl #4
 mul r4, r3, r7

 @ (4a) Render to left tile
 ldr r3, [r0]

Tonc - GBA Programming in rot13

514 / 757

Multi-color and shaded fonts.

Bitpacked fonts will give you monochrome glyphs. If you want more colors – for

shading or anti-aliasing – you’ll need to use more bits. The code for this is nearly

identical to the 1bpp bitpacked version; the most important differences being a

different source datatype and an alternative method for finding the right mask. Oh,

and you won’t have to unpack the bits anymore, of course.

The following snippet shows how you can make a transparency mask out of a word of

4bit pixels. Essentially, you mask all the bits of a nybble together and mask out the

other bits of that nybble. This gives 0 if the whole nybble was empty, or 1 is it wasn’t.

This can then again be multiplied by 15 to give the proper mask.

 bic r3, r3, r5, lsl r8
 orr r3, r3, r4, lsl r8
 str r3, [r0]

 @ (4b) Render to right tile
 cmp lr, #8
 ldrgt r3, [r0, ip]
 bicgt r3, r3, r5, lsr r9
 orrgt r3, r3, r4, lsr r9
 strgt r3, [r0, ip]
.Lnopx:
 add r0, r0, #4
 subs r2, r2, #1
 bne .Lyloop

 @ Test for strip loop
 subs r11, r11, #8
 bgt .Lsloop

 add sp, sp, #8
 ldmfd sp!, {r4-r11, lr}
 bx lr

@ EOF

Tonc - GBA Programming in rot13

515 / 757

Fig 22.12: Verdana 9,

with shade.

Shaded characters

No, not shady characters; shaded characters. What you’ll o�en

see in games is that the text has either an outline or a bit of

shading on one side. While it is possible to create shading with a

1bpp font, it’s easier to simply build it into the font itself (see fig

22.12). Because this means more colors than 1bpp can handle,

you may be tempted to use a 2bpp font here. However, unless

you are really stressed for memory, it’s more convenient to use

4bpp here as well.

At that point, you can follow the procedure described earlier. But by cleverly using the

bits that make up the shading, you can allow the shadow color to be variable as well.

For example, you can designate bit 0 as the ‘ink’ bit, bit 1 as the ‘shadow’ bit and if

necessary bit 2 as the ‘paper’ bit. Then raw&0x11111111 gives the ‘ink’ mask, and

(raw>>1)&0x11111111 gives the ‘shadow’ mask; these can then be used to apply

colors and to create the full mask. The following is a demonstration of how this can be

done. Note that each line here corresponds exactly to one ARM instruction, so this

should be an efficient method. Well, in ARM code anyway.

// Create pixel mask from 8x 4 bits
u32 *srcL= ...; // Source is now 32bit.

raw = *srcL++; // Source word: 8x 4 bits
pxmask = raw;
pxmask |= pxmask>>2; // bit0 = bit0 | bit2
pxmask |= pxmask>>1; // bit0 = bit0 | bit1 | bit2 | bit3;
pxmask &= 0x11111111; // bit0 is 0 only if bits 0-3 were all 0
pxmask *= 15;

Tonc - GBA Programming in rot13

516 / 757

The chr4c_drawg_b4cts() renderer uses this method to color both the ink and

shadow pixels. It’s essentially chr4c_drawg_b4cts() except for the things in bold and

the removal of the bit unpacking. Also note the ‘no-pixel’ condition here. If pxmask is

zero, there’s nothing to do; and so we won’t.

// Use bits 0 and 1 from each nybble to create masks and apply colors.
u32 *srcL= ...;

raw = *srcL++; // Source word: 8x 4 bits
px = raw & 0x11111111; // Bit 0 for ink pixels
raw = raw>>1 & 0x11111111; // Bit 1 for shadow pixels
pxmask = px | raw; // Mask of ink and shadow bits
pxmask *= 15;

px = px * ink; // Color with ink
px += raw* shadow; // Add shadow pixels

Tonc - GBA Programming in rot13

517 / 757

//! 4bpp font, tilestrips with ink/shadow coloring.
void chr4c_drawg_b4cts(uint gid)
{
 TTE_BASE_VARS(tc, font);
 TTE_CHAR_VARS(font, gid, u32, srcD, srcL, charW, charH);
 uint x= tc->cursorX, y= tc->cursorY;
 uint srcP= font->cellH, dstP= tc->dst.pitch/4;

 // (1) Prepare dst pointers and shifts.
 u32 *dstD= (u32*)(tc->dst.data + (y+x/8*dstP)*4), *dstL;
 x %= 8;
 uint lsl= 4*x, lsr= 32-4*x, right= x+charW;

 // Inner loop vars
 u32 amask= 0x11111111;
 u32 px, pxmask, raw;
 u32 ink= tc->cattr[TTE_INK];
 u32 shade= tc->cattr[TTE_SHADOW];

 uint iy, iw;
 for(iw=0; iw<charW; iw += 8) // Loop over strips
 {
 srcL= srcD; srcD += srcP;
 dstL= dstD; dstD += dstP;

 for(iy=0; iy<charH; iy++) // Loop over scanlines
 {
 raw= *srcL++;

 // (3a) Prepare pixel mask
 px = (raw & amask);
 raw = (raw>>1 & amask);
 pxmask= px | raw;
 if(pxmask)
 {
 px *= ink; // (3b) Color ink pixels
 px += raw*shade; // (3c) Color shadow pixels
 pxmask *= 15; // (3d) Create mask

 // (4a) Write left tile:
 dstL[0] = (dstL[0] &~ (pxmask<<lsl)) | (px<<lsl);

 // (4b) Write right tile (if any)
 if(right > 8)
 dstL[dstP]= (dstL[dstP] &~ (pxmask>>lsr)) |
(px>>lsr);
 }
 dstL++;
 }

Tonc - GBA Programming in rot13

518 / 757

Tips for fast tile rendering

I’ve done a fair bit of profiling for these tile renderers and think I have a decent

knowledge of which techniques will be efficient and which won’t. These are some of

my observations.

Profile. Before conjuring up tricky routines, make sure the original simple

version warrants optimizing and that the clever routine is actually faster.

Render transparently. Now, you’d think that this would be slower, but it may

not be. The thing about transparent text is that there are much less foreground

pixels then there are background pixels, so the number of pixels to render is

lower as well.

Don’t buffer. My first trials had separate stages for unpacking/coloring and

inserting into VRAM. It put the prepared pixels into an IWRAM buffer, then copied

that to VRAM. If I recall correctly, combining the loops and tossing the buffer

saved me 30%.

Parallelize. The road to getting the right data is long. It helps if you don’t have to

travel it that much. That said, if you have many empty pixels, drawing 8 of them

at once may be a waste of effort. This will depend on the font.

ARM code is teh r0xx0rz. There are lots of shi�s, masks and quantities in these

routines. This makes them particularly apt for ARM code instead of Thumb. In

fact, even in ROM with its 16-bit bus, the ARM versions beat out the Thumb-

compiled ones. Having said that …

Do not let GCC use constant masks in ARM. There is an unfortunate bug in the

ARM optimizer concerning ANDing literals (like 0x11111111). Instead of emitting

a simple ldr + and pair, it will get clever and avoid the load by splitting the

mask out over multiple byte-size masks. So instead of one instruction in the

inner-loop, you now have four. Perhaps even more, depending on how many

extra registers this takes. Note, this only happens for constants and only for ARM-

compiled code. A work-around is to have the mask in a global variable to be

 }
}

Tonc - GBA Programming in rot13

519 / 757

Fig 22.13: Text on tiles.

loaded before the loops. This is in part why I’ve hand-assembled some of the

routines.

Code for special case if you can. If you only have one font and don’t require

things like coloring, you can code for that case only and potentially save much

time. Using constants for source and destination dimensions instead of using the

ones in memory will also help a little.

Use column-major accessing. The routines presented above require extra code

to move from one tile-row to another. If you use the tiles in a column-major

layout, you won’t have to do this.

Please apply the standard disclaimer to this list. I’ve found these techniques to work

for my cases, but they won’t apply to every case. For example, other systems (*cough*

NDS) will have different CPU architectures and memory characteristics, and that

would affect the speed.

Colored text on a dialog window.

The situation depicted in fig 22.13 should be

familiar. The key point here is that there is a

background map, and a dialog box with text in it.

This text is static, but the position in the top-le�

corner is continually updated as you scroll along

the map.

The core function for this demo is

test_tte_chr4() . The first thing it does is call tte_init_chr4c() to initialize the

text system for chr4c-mode. The third argument is the offset for map-entries: 0xF000

meaning it uses sub-palette 15. The fourth is a word for the color attributes: 13 for the

ink, 15 for the shadow and 0 for the others. For this demonstration, I’m using the 4bpp

version of verdana9 (see fig 22.12) and the fast assembly version to render the glyphs.

Step 2 loads the background map and the dialog box. Note that the dialog box is

copied to the tiles that the text is rendered to. When the text is printed, this will show

Tonc - GBA Programming in rot13

520 / 757

that the glyphs indeed are rendered transparently. This does more or less mean that I

can’t use the standard eraser, because that’d wipe the box as well.

The dialog text is drawn in step 3. The ci and cs tags set the ink and shadow color

attributes, respectively. This makes the string “arrows” use colors 1 and 2 (well, 0xF1

and 0xF2), and so forth.

Tonc - GBA Programming in rot13

521 / 757

//! Set up a rectangle for text, with the non-text layers darkened for
contrast.
void win_textbox(uint bgnr, int left, int top, int right, int bottom,
uint bldy)
{
 REG_WIN0H= left<<8 | right;
 REG_WIN0V= top<<8 | bottom;
 REG_WIN0CNT= WIN_ALL | WIN_BLD;
 REG_WINOUTCNT= WIN_ALL;

 REG_BLDCNT= (BLD_ALL&~BIT(bgnr)) | BLD_BLACK;
 REG_BLDY= bldy;

 REG_DISPCNT |= DCNT_WIN0;

 tte_set_margins(left, top, right, bottom);
}

//! Test chr4 shaded text renderer
void test_tte_chr4()
{
 irq_init(NULL);
 irq_add(II_VBLANK, NULL);
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0 | DCNT_BG2;

 // (1) Init for text
 tte_init_chr4c(
 0, // BG number.
 BG_CBB(0)|BG_SBB(10), // BG control.
 0xF000, // Screen-entry base
 bytes2word(13,15,0,0), // Color attributes.
 CLR_BLACK, // Ink color
 &verdana9_b4Font, // Verdana 9, with shade.
 (fnDrawg)chr4c_drawg_b4cts_fast); // b4cts renderer, asm
version
 tte_init_con(); // Initialize console I/O

 // (2) Load graphics
 LZ77UnCompVram(dungeon01Map, se_mem[12]);
 LZ77UnCompVram(dungeon01Tiles, tile_mem[2]);
 LZ77UnCompVram(dungeon01Pal, pal_bg_mem);

 GRIT_CPY(&tile_mem[0][16*30], dlgboxTiles);
 GRIT_CPY(pal_bg_bank[15], dlgboxPal);

 // (3) Create and print to a text box.
 win_textbox(0, 8, 160-32+4, 232, 160-4, 8);
 CSTR text=
 "#{P}Scroll with #{ci:1;cs:2}arrows#{ci:13;cs:15}, "
 "quit with #{ci:1;cs:2}start#{ci:13;cs:15}\n"

Tonc - GBA Programming in rot13

522 / 757

I’ll close off this section with a word on the text box. If you look carefully, you’ll see

that it’s semi-transparent. Or, to be precise, the text and the box itself are at normal

intensity, but the background that it covers is darker than usual. Two things are

necessary for this nice, little effect.

An inside and outside window must be defined. Both windows should contain all

layers, but the inner window must be set to use blending (WIN_BLD). This

enables blending for the inside only.

 "Box opacity with #{ci:3;cs:4}L/R#{ci:7;cs:9}";
 tte_write(text);

 // Reset margins for coord-printing
 tte_set_margins(8, 8, 232, 20);

 int x=128, y= 32, ey=8<<3;

 REG_BG2HOFS= x;
 REG_BG2VOFS= y;

 // Invisible map buildup!
 REG_BG2CNT= BG_CBB(2) | BG_SBB(12) | BG_REG_64x64;
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0 | DCNT_BG2 | DCNT_WIN0;

 while(1)
 {
 VBlankIntrWait();
 key_poll();

 // (4) Scroll and blend
 x = clamp(x + key_tri_horz(), 0, 512+1-SCREEN_WIDTH);
 y = clamp(y + key_tri_vert(), 0, 512+1-SCREEN_HEIGHT);
 ey= clamp(ey+ key_tri_shoulder(), 0, 0x81);

 REG_BG2HOFS= x;
 REG_BG2VOFS= y;
 REG_BLDY= ey>>3;

 // (5) Erase and print new position.
 tte_printf("#{es;P}%d, %d", x, y);

 if(key_hit(KEY_START))
 break;
 }
}

Tonc - GBA Programming in rot13

523 / 757

The blending mode should be set to fade-to-black (BLD_BLACK) for all layers

except the background with the text box.

This is what win_textbox() is for. The function also sets the margins so that the text

would wrap nicely inside the box.

Scripting, console IO and other niceties

TTE formatting commands

The TTE context contains members that control positioning, colors, fonts as well as a

few other things. There are two approaches to changing these parameters. The first is

to hard code changes in the state through direct member access or functions like

tte_set_ink() . This works nice and fast, but isn’t very flexible. The second is to use

formatting tags in the strings themselves – the system parses the string for these tags

and interprets them accordingly. This is basically a form of scripting.

The tags that TTE uses look like this:

The code itself is starts with ` #{ ’ and ends with ` } ‘. Each command consists of a

tag, followed by a colon and comma-separated arguments when appropriate.

Multiple commands can be separated by a semi-colon. For example, ` #{es;

P:10,16} ’ would clear the screen and set the cursor to (10, 16).

Now, I could show you how to parse this, but the parser currently in use for this is,

well, let’s just say it’s long and very ugly. Essentially, it’s a massive switch-block

(sometimes a double switch-block) with stuff like this:

#{`_`tag0`_`:`_`args`_`; `_`tag1`_`:`_`args`_`}

Tonc - GBA Programming in rot13

524 / 757

Like I said, ugly; but it’ll have to do for now. The incoming pointer points to the first

character past the ‘ #{ ’. The command tags are all single or double-lettered; the

switch looks for a recognized letter and acts accordingly.

One of the tags is ‘ X ’, which sets the absolute X-coordinate of the cursor. The tc-

>cursorX will be set to the argument if it is present, or to the le� margin if it is not.

Note the use of strtol() here. This is a very interesting function. Not only does it

work for both decimal and hex strings, but through the second argument you can

char *tte_cmd_default(const char *str)
{
 int ch, val;
 char *curr= (char*)str, *next;

 TTC *tc= tte_get_context();

 while(1)
 {
 ch= *curr;
 next= curr+1;

 // (1) Check first character
 switch(ch)
 {
 // (2) --- Absolute Positions ---
 case 'X':
 tc->cursorX= curr[1]==':' // If there's an
argument ...
 ? strtol(curr+2, &next, 0) // set cursor X to arg
 : tc->marginLeft; // else move to start of
line.
 break;

 // ... more cases ...

 // (3) Find EOS/EOC/token and act on it
 curr= tte_cmd_next(next);

 if(curr[0] == '\0')
 return curr;
 else if(curr[0] == '}')
 return curr+1;
 }
}

Tonc - GBA Programming in rot13

525 / 757

https://en.cppreference.com/w/c/string/byte/strtol

retrieve a pointer to right a�er the number in the string. Alternatives would be

sscanf() or atoi() , but strtol() is nicer.

A�er handling a tag, it’ll look for more tags, or exit if the end delimiter or end of string

is found.

Table 22.4 shows the available tags. Note that they are case-sensitive and some items

can do more than one thing, depending on the number of parameters.

Code Description

P Reset position to top-le� margin.

Pr
Restore cursor position (see also

Ps).

Ps Save cursor position.

P: x,y Set cursor to coordinates (x, y).

X Reset cursorX to le� margin.

X: x Set cursorX to x.

Y Reset cursorY to top margin.

Y: y Set cursorY to y.

c[ispx]: cattr

Set ink (ci), shadow (cs), paper

(cp) or special (cx) color attribute

to cattr.

e[slbf]

Erase the screen between margins

(es), the current line (el), the

current line up to the cursor (eb ;
backwards), the current line from the

cursor (ef ; forwards).

er: l,t,r,b Erase a rectangle given by (l,t) to (r,b).

f: idx Set font to TTC.fontTable[idx] .

m[ltrb]: value
Set le� (ml), top (mt),right (mr) or

bottom (mb) margin to value.

Tonc - GBA Programming in rot13

526 / 757

m: l,t,r,b Set margins to rectangle (l,t) - (r,b)

p: dx, dy Move the cursor by (dx, dy).

s: idx
Print the idx'th string in

TTC.stringTable .

w: count Wait for count frames.

x: dx Move the cursor to the right by dx.

y: dy Move the cursor down by dy.

Table 22.4: Available TTE formatting tags.

I should point out that at present the commands are still fragile, so be careful with

this stuff. For example, the positioning commands will simply move the cursor, but

not clip to the margins. Also take care with the font and string commands (f and s ,

respectively). tte_cmd_default() doesn’t test whether the index is out of the bounds

of the arrays, so you could end up with … odd things. At some point, I hope to fix

these things, but it’s not a priority right now. If anyone has something more robust

that I can use, please speak up.

TTE FORMATTING COMMANDS : CAVEAT EMPTOR.

The current commands in TTE aren’t exactly idiot-proof yet. If you stick to

sensible things, it should work quite nicely. But it is still easy to shoot yourself

in the foot if you’re not careful.

Using console I/O

Something like tte_write() is nice for pure strings, but what would really help is if

you had something like printf() . In the old days (pre-2006), printf() , putc and

other console output functions were unavailable, but Wintermute added a

mechanism to devkitArm’s standard C library that allows it on consoles as well.

Tonc - GBA Programming in rot13

527 / 757

The key to this is the devoptab_t struct, defined in sys/iosupport.h . This contains

a table of function pointers to device operations. The pointer we’re interested in here

is write_r ; this is the function that printf() et al. call for the final output.

The key to making the standard console routines work on a GBA is to redirect the

default write_r for console output to one of our own making. Before explaining how

this works, I want you to understand that this comes very close to black magic. It

involves descending to the roots of the library and there is next to no documentation

about how this stuff works. This story is the closest thing I could find to a full

description: Embedding GNU: Newlib, Part 2, but this isn’t high on explanations

either.

To put it in other way: you’re in a cave; it’s pitch black and there are grues about.

Now that that’s done, let’s continue. The first step is creating our replacement writer.

In TTE’s case, this is tte_con_write() . It is almost identical to tte_write() , but has

to fit in the format given by devoptab_t.write_r . It comes down to this:

// Partial devoptab_t definition
typedef struct {
 const char *name;
 int structSize;
 int (*open_r)(struct _reent *r, void *fileStruct, const char *path,
 int flags,int mode);
 int (*close_r)(struct _reent *r,int fd);
 int (*write_r)(struct _reent *r,int fd,const char *ptr,int len);
 ...
} devoptab_t;

Tonc - GBA Programming in rot13

528 / 757

https://web.archive.org/web/20100209210107/https://www.embedded.com/story/OEG20020103S0073
https://en.wikipedia.org/wiki/Grue_(monster)

While I’ve added documentation for the arguments here, it’s mostly based on

guesswork. The r parameter contains re-entrancy information, useful if you have

multiple threads. Since the GBA is a single-thread system, this should not concern us. I

believe fd is a file handle of some sort, but since we’re not writing to files this again

does not concern us.

//! internal output routine used by printf.
/*! \param r Reentrancy parameter.
 \param fd File handle (?).
 \param text Text buffer containing the string prepared by printf.
 \param len Length of string.
 \return Number of output bytes (?)
 \note \a text is NOT zero-terminated!!!!one!
*/
int tte_con_write(struct _reent *r, int fd, const char *text, int len)
{
 // (1) Safety checks
 if(!sConInitialized || !text || len<=0)
 return -1;

 int ch, gid, charW;
 const char *str= text, *end= text+len;

 // (2) check for end of text
 while((ch= *str) != 0 && str < end)
 {
 str++;
 switch(ch)
 {

 // (3) --- VT100 sequence (ESC[foo;) ---
 case 0x1B:
 if(str[0] == '[')
 str += tte_cmd_vt100(str);
 break;

 //# (4) Other character cases. See tte_write()
 }
 }

 return str - text;
}

Tonc - GBA Programming in rot13

529 / 757

https://en.wikipedia.org/wiki/Reentrancy_(computing)

The real arguments of interest are text and len . The text argument points to the

buffer with the string to render. In the case of printf() , it’s the string a�er

formatting: all codes like %d are already done. And now for the most important part:

text is not null-terminated. This is why there’s a length variable as well.

As far as I can tell, printf uses a large buffer (approximately 1300 bytes) on the stack

to which it writes the formatted numbers. This buffer isn’t cleared you call it again, or

terminated by ‘\0’ when sent to the writer. This has the following consequences:

1300 bytes is a fair bit of IWRAM. Make sure you have enough room for it. Do not

call printf() from interrupts, as the routine is slow and the things can start to

nest and clobber everything.

Don’t forget the len parameter. As the buffer isn’t zeroed, remnants of old data

may still be there, and you get crap.

There’s an additional potential danger with respect to parsing of formatting

commands here. When strings exceed the buffer length, I imagine that it’s

broken up into smaller chunks. I don’t know what will happen if the break occurs

in the middle of a command, but I doubt it’s good. Of course, you shouldn’t have

strings that long anyway, as the screen isn’t big enough to fit them.

Aside from that, tte_con_write() is straightforward. As said, the contents of the

loop are nearly identical to the one in tte_write() . The only real difference is point

3. This is a test for VT100 formatting strings, which will be covered in the next

subsection.

To make use of the new writer, you have to hook it into the device list somehow. First,

create a devoptab_t instance which the writer in the right place. There is a list of

device operations called devoptab_list . The devices of interest are the streams

stdout and stderr , which are entries STD_OUT and STD_ERR in the list. Simply

point these entries to your own struct.

A second item is to set the buffers for these streams. I’m not sure this is really

necessary, but that’s how it’s done in libgba and its author knows this system best so

Tonc - GBA Programming in rot13

530 / 757

I’m not going to argue here. The function for this is setvbuf() . You find the required

initialization steps below.

Calling tte_init_con() activates stdio’s functionality so you can use printf() and

such. Note that the raw printf() is rather heavy and it also has floating point

options, which are rarely used in a GBA environment, if ever. For that reason, you’ll

usually use its integer-only cousin, iprintf() . Also note that TTE’s implementation

is different from libgba’s, and the two should not be confused. For that reason, I’ve

hidden the iprintf() name behind a tte_printf macro.

The following is a short example of its use. I’m using tte_printf() here, but

printf() or iprintf() would have worked just as well.

static int sConInitialized= 0;

const devoptab_t tte_dotab_stdout=
{
 "ttecon",
 0,
 NULL,
 NULL,
 tte_con_write,
 NULL,
 NULL,
 NULL
};

//! Init stdio capabilities for TTE.
void tte_init_con()
{
 // attach our operations to stdout and stderr.
 devoptab_list[STD_OUT] = &tte_dotab_stdout;
 devoptab_list[STD_ERR] = &tte_dotab_stdout;

 // Set buffers.
 setvbuf(stderr, NULL , _IONBF, 0);
 setvbuf(stdout, NULL , _IONBF, 0);

 sConInitialized = 1;
}

Tonc - GBA Programming in rot13

531 / 757

PRINTF BAGAGE

As wonderful as printf() is, there are some downsides to it too. First, it’s a

very heavy function that calls quite a large amount of functions which all have

to be linked in. Second, it is pretty damn slow. Because it can do so much, it has

to check for all these different cases. Also, for the string to decimal conversion it

uses divisions, which is really bad for the GBA.

Be aware of how much printf() costs. If it turns out to be a bottle-neck, try

making your own slimmed down version. A decent sprintf() alternative is

posprintf() , created by Dan Posluns.

VT100 escape sequences

Every book on C will tell you that you can place text on a console screen. What they

usually don’t tell you is that, in some environments, you can control formatting as

well. One such environment is the VT100, which used escape sequences to indicate

#include <stdio.h>
#include <tonc.h>

int main()
{
 REG_DISPCNT= DCNT_MODE0 | DCNT_BG0;

 // Init BG 0 for text on screen entries.
 tte_init_se_default(0, BG_CBB(0)|BG_SBB(31));

 // Enable TTE's console functionality
 tte_init_con();

 tte_printf("#{P:72,64}"); // Goto (72, 64).
 tte_printf("Hello World!"); // Print "Hello world!"

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

532 / 757

https://www.danposluns.com/gbadev/
https://en.wikipedia.org/wiki/VT100

formatting. The libraries that devkitPro distributes for various systems use these

sequences, so it’s a good idea to support them as well.

The general format for the codes is this:

CSI here is the ASCII code for the command sequence indicator, which in this case is

the escape character (27, 0x1B or 033) followed by ‘[’. The letter at the end denotes the

kind of formatting code, and n1, n2 … are the formatting parameters. Wikipedia has a

nice overview of the standard set here and there’s another one here: VT100

commands and control sequences. Note that not all of the codes are supported in the

devkitPro libraries. The ones you’ll encounter most are the following:

ESC[dyA Move cursor up dy rows.

ESC[dyB Move cursor down dy rows.

ESC[dxC Move cursor right dx columns.

ESC[dxD Move cursor le� dx columns.

ESC[y;xH Set cursor to column x, row y.

ESC[2J Erase screen.

ESC[nK

0. Erase to end of line.

1. Erase to start of line.

2. Erase whole line.

ESC[y;xf As ESC[y;xH

ESC[s Save cursor position.

ESC[u Restore cursor position.

Table 22.5: Common VT100 sequences

If you compare this list to table 22.4, you’ll see that most of these codes have

corresponding TTE commands. You can use either, but if you plan to make something

CSI n1;n2 ... letter

Tonc - GBA Programming in rot13

533 / 757

https://en.wikipedia.org/wiki/ANSI_escape_code
https://web.archive.org/web/20080813073220/http://local.wasp.uwa.edu.au/~pbourke/dataformats/vt100/
https://web.archive.org/web/20080813073220/http://local.wasp.uwa.edu.au/~pbourke/dataformats/vt100/

that’s supposed to be cross-platform, use the VT100 codes.

DEVIATIONS FROM THE STANDARD

I’m trying to keep my implementation as close to the standard as possible. This

is mainly because TTE uses other things just 8x8 characters on a regular

background. In particular, scrolling is absent here and there are no color codes.

Yet.

UTF-8

You may have heard of a little thing called ASCII. This is (or was; I’m not sure) the

standard encoding for character strings. Each character is 1 byte long, giving 256

numbers for letters, numbers et cetera. Fig 22.1 and fig 22.12 contain character 32 to

255, as they usually appear on Windows. ASCII works fine for Western languages but

are completely inadequate for languages like Japanese, which have thousands of

characters. To remedy this, they came up with Unicode, which has 16 bits per

character.

An intermediate between this is UTF-8. This still uses 8-bit characters for the lower

128 ASCII codes, but bytes over 0x80 denote the start of a multi-byte code, where it

and a few of the following characters form a single, larger character of up to 21 bits.

UTF-8 is a nice way of having your cake and eating it too: you can still use normal

characters for Latin characters, meaning it’ll still work with ASCII programs, but you

also have a method of representing bigger numbers.

String (binary) Number (binary) Range (hex)

0zzzzzzz 0zzzzzzz
0x000000 - 0x00007F

(7 bit)

110yyyyy 10zzzzzz 00000yyy yyzzzzzz
0x000080 - 0x0007FF

(11 bit)

Tonc - GBA Programming in rot13

534 / 757

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8

1110xxxx 10yyyyyy 10zzzzzz xxxxyyyy yyzzzzzz
0x000800 - 0x00FFFF

(16 bit)

11110www 10xxxxxx

10yyyyyy 10zzzzzz

000wwwxx xxxxyyyy

yyzzzzzz

0x010000 - 0x10FFFF

(21 bit)

Table 22.6. UTF-8 to u32 conversion table.

Table 22.6 shows the conversion works. If a byte is lower than 128, it’s a simple ASCII

character. If it’s higher, it can fall into three classes of multi-byte numbers. The range

of the byte determines the number of bytes for the whole thing; once you know that,

you need to grab the appropriate bit-patterns from these bytes and join them into a

single number as the table indicates. For more details, I will refer you to the wikipedia

page.

Below you can find a routine that reads and decodes a single utf-8 character from a

string. Yes, it’s a cluster-f**k of conditions, but that’s necessary to check whether all

the characters really follow the format; and if it doesn’t, it’ll interpret the first byte of

the range as an extended ASCII character. If you want, you can omit all the

` if((*src>>6)!=2) break; ’ statements.

Tonc - GBA Programming in rot13

535 / 757

//! Retrieve a single multibyte utf8 character.
uint utf8_decode_char(const char *ptr, char **endptr)
{
 uchar *src= (uchar*)ptr;
 uint ch8, ch32;

 // Poor man's try-catch.
 do
 {
 ch8= *src;
 if(ch8 < 0x80) // 7bit
 {
 ch32= ch8;
 }
 else if(0xC0<=ch8 && ch8<0xE0) // 11bit
 {
 ch32 = (*src++&0x1F)<< 6; if((*src>>6)!=2) break;
 ch32 |= (*src++&0x3F)<< 0;
 }
 else if(0xE0<=ch8 && ch8<0xF0) // 16bit
 {
 ch32 = (*src++&0x0F)<<12; if((*src>>6)!=2) break;
 ch32 |= (*src++&0x3F)<< 6; if((*src>>6)!=2) break;
 ch32 |= (*src++&0x3F)<< 0;
 }
 else if(0xF0<=ch8 && ch8<0xF8) // 21bit
 {
 ch32 = (*src++&0x0F)<<18; if((*src>>6)!=2) break;
 ch32 |= (*src++&0x3F)<<12; if((*src>>6)!=2) break;
 ch32 |= (*src++&0x3F)<< 6; if((*src>>6)!=2) break;
 ch32 |= (*src++&0x3F)<< 0;
 }
 else
 break;

 // Proper UTF8 char: set endptr and return
 if(endptr)
 endptr= (char)src;

 return ch32;
 } while(0);

 // Not really UTF: interpret as single byte.
 src= (uchar*)ptr;
 ch32= *src++;
 if(endptr)
 endptr= (char)src;

Tonc - GBA Programming in rot13

536 / 757

Both tte_write() and tte_write_con() use utf_decode_char() when the string

requires it. The larger characters can be used to access larger font sheets. You could

use the larger sheets for better language support, or perhaps to extend the standard

set of characters with arrows, and other types of symbols.

There is, however, one catch to using UTF-8 with stdio. Internally, stdio is really picky

about what’s acceptable. For example, the copywrite symbol, © is extended number

0xA9. In non-UTF-8, you could use just 0xA9 in a string and it’d use the right symbol.

However, 0xA9 alone wouldn’t fit any of the formats from Table 22.6, so it’s an invalid

code in UTF-8. While utf8_decode_char() is forgiving in this case, stdio isn’t, an will

interpret it as a terminator. In other words, be careful with extended ASCII character;

you have to use the proper UTF-8 formats if you want to use the stdio functions.

PRINTF, UTF-8, AND EXTENDED ASCII

As of devkitArm r22, printf() and the other stdio functions use the UTF-8

locale. This effectively means that you cannot use characters like ‘©’ and ‘è’

directly like you used to in older versions. You need to use the full multi-byte

UTF-8 notations.

Profiling the renderers

It’s always a good idea to see how fast the things you make are. This is particularly

true when the functions are complex, like most of the bitmap and tile renderers are.

Table 22.7 lists the cycles per glyph for the majority of the available renderers. These

have been measured with the string (and library code) in ROM with the default

waitstates, under -O2 optimization. The font used was verdana 9, with has a cell size

of 8x16, meaning it can be used for both fixed and variable widths with ease. The test

string was a 194 character line from Portal:

 return ch32;
}

Tonc - GBA Programming in rot13

537 / 757

https://en.wikipedia.org/wiki/Portal_(video_game)

“Please note that we have added a consequence for failure. Any contact with the

chamber floor will result in an ‘unsatisfactory’ mark on your official testing

record followed by death. Good luck!”

Renderer Cycles/char

null 221

se_drawg 595

se_drawg_w8h16 370

ase_drawg_w8h16 458

chr4_drawg_b1cts_base 3049

chr4_drawg_b1cts 2044

chr4_drawg_b1cts_fast 631

bmp8_drawg_b1cts_base 2875

bmp8_drawg_b1cts 2078

bmp8_drawg_b1cts_fast 619

bmp16_drawg_b1cts_base 2456

bmp16_drawg_b1cts 1503

obj_drawg 423

Table 22.7: Renderer times. Conditions: 194

chars, verdana 9, ROM code, default waits, -

O2.

First, note the great differences in values: from hundreds for the tilemaps and objects

to thousands in the case of bitmaps and tile renderers. And this is per character, so

writing large swats of text can lead to significant slowdown.

The null() renderer is a dummy renderer, used to find the overhead of the TTE

system. 200 isn’t actually that bad, all things considered (remember: ROM code). That

said, now compare this number to the regular tilemap time: the overhead is takes up

Tonc - GBA Programming in rot13

538 / 757

a significant fraction of the time here. Also note the difference between the standard

and 8×16 versions of se_drawg : this is purely due the loops

Half of the TTE overhead actually comes from the wrapping code; cursor setting and

checking can be relatively slow. And I’m not even considering clipping here.

For the bitmap and tile renderers, I’ve timed three versions. A ‘base’ version, using the

template from chr4_drawg_b1cts_base() in the “Text rendering on tiles” section.; C-

optimized versions, which are the default renderers; and a fast asm version.

The bmp16 variants are faster than the others because you don’t have to mask items

into the surface. What’s interesting, though, is that the difference between bmp8 and

chr4 is practically zero. This probably has something to do with the layout of the font

itself.

Also note how the base, the normal and the fast versions compare.

chr4_drawg_b1cts() is 33% faster than the base version, and

chr4_drawg_b1cts_fast is three times faster still. And remember, 200 of that 631 is

TTE overhead, so it’s actually 4.5 times faster. This is not just from the IWRAM benefit:

it also has to do with ARM vs Thumb, and hand-cra�ed assembly vs compiled code.

Conclusions

As far as I’m concerned, this chapter is basically the earlier text chapter done right. It’s

covered all types of graphics:regular/affine tilemaps, 8bpp/16bpp bitmaps, 4bpp tiles

and objects. Okay, so I le� 8bpp tiles out, but that’s an awful mode for tile-rendering

anyway. The functions for glyph rendering given here are work for arbitrary sizes,

fixed and variable width fonts and should be doing so efficiently as well.

Furthermore, it has presented Tonc’s Text Engine, a system for handling all these

different text families with relative ease. A�er the initial set-up, the surface-specific

aspects are basically dealt with, making its functionality much more re-usable. I’ve

Tonc - GBA Programming in rot13

539 / 757

also covered the most basic aspects of processing strings for printing: how to

translate from a UTF-8 encoded character to a glyph-index in a font-sheet, and how

you can implement formatting tags to change positions, colors and fonts dynamically.

Lastly, I illustrated how you can build a callback that the stdio routines can call for

output, making printf() and its friends available for general use.

This whole chapter has been a showcase for TTE and what it can do. Even though it’s

not in a fully finished state, I think that it can be a valuable asset for dealing with text.

If nothing else, the concepts put forth here should help you design your own glyph

renderers or text systems.

Tonc - GBA Programming in rot13

540 / 757

23. Whirlwind Tour of ARM Assembly

Introduction

General assembly

The ARM instruction set

Thumb assembly

GAS: the GNU assembler

A real world example: fast 16/32-bit copiers

Introduction

Very broadly speaking, you can divide programming languages into 4 classes. At the

lowest level is machine code: raw numbers that the CPU decodes into instructions to

execute. One step up is assembly. This is essentially machine code in words: each

assembly instruction corresponds to one machine code instruction. Above this are

compiled languages like C, which use structured language element to read more like

English, but need to be compiled to machine code to be able to run. Finally, there are

scripted languages like PHP (and usually VB and Java) which are run through

interpreters configured to run the right kinds of machine code for the desired effects.

Every step up the ladder increases the human readability factor and portability, at the

cost of runtime speed and program size. In the old days, programmers were Real

Programmers and did their work in machine code or assembly because of clock speed

and/or memory constraints. For PCs, these days are long gone and most work is done

in the higher level languages. This, admittedly, is a good thing: code can be written

faster and maintained more easily. However, there are still a few instances where the

higher languages are insufficient. The GBA, with its 16.7Mhz CPU and less than 1 MB of

work RAM is one of them. Here the inefficiency of the highest languages will cost you

dearly, if it’d run at all. This is why most GBA work is done in C/C++, sometimes

Tonc - GBA Programming in rot13

541 / 757

affectionately nicknamed ‘portable assembly’, because it still has the capability of

working with memory directly. But sometimes even that isn’t enough. Sometimes you

really have to make every cycle count. And for this, you need assembly.

Now, in some circles the word “assembly” can be used to frighten small programmers.

Because it is so closely tied to the CPU, you can make it do everything; but that also

means you have to do everything. Being close to hardware also means you’re

bypassing all the safety features that higher languages may have, so that it’s much

easier to break things. So yeah, it is harder and more dangerous. Although some may

prefer the term ‘adventurous’.

To program in assembly, you need to know how a processor actually works and write

in a way it can understand, rather than rely on a compiler or interpreter to do it for

you. There are no structured for- or while- loops or even if/else branches, just goto ;

no structs or classes with inheritance, and even datatypes are mostly absent. It’s

anarchy, but the lack of bureaucracy is exactly what makes fast code possible.

Speed/size issues aside, there are other reasons why learning assembly might be a

good idea. Like I said, it forces you to actually understand how the CPU functions, and

you can use that knowledge in your C code as well. A good example of this is the ‘best’

datatype for variables. Because the ARM processor is 32bit, it will prefer ints for most

things, and other types will be slower, sometimes much slower. And while this is

obvious from the description of the processor itself, knowledge of assembly will show

you why they are slower.

A third reason, and not an inconsiderable one, is just for general coolness =B) . The

very fact that it is harder than higher languages should appeal to your inner geek,

who relishes such challenges. The simplicity of the statements themselves have an

aesthetic quality as well: no messing about with classes, different loop styles,

operator precedence, etc – it’s one line, one opcode and never more than a handful of

parameters.

Anyway, about this chapter. A complete document on assembly is nothing less than a

full user’s manual for a CPU. This would require an entire book in itself, which is not

Tonc - GBA Programming in rot13

542 / 757

something I’m aiming at. My intention here is to give you an introduction (but a

thorough one) to ARM assembly. I’ll explain the most important instructions of the

ARM and Thumb instruction sets, what you can and cannot do with them (and a little

bit about why). I’ll also cover how to use GCC’s assembler to actually assemble the

code and how to make your assembly and C files work together. Lastly, I’ll give an

example of a fast memory copier as an illustration of both ARM and Thumb code.

With that information, you should be able to do a lot of stuff, or at least know how to

make use of the various reference documents out there. This chapter is not an island, I

am assuming you have some or all of the following documents:

The rather large official ARM7TDMI Technical manual: DDI0210B.pdf.

GBATEK’s ARM CPU reference: ARM + Thumb.

Official ARM quick-references (PDF): ARM + Thumb

Re-eject’s quick-references (PDF): GAS / ARM / Thumb. (note: minor syntax

discrepancies at times)

GNU Assembler manual: GAS.

If you want more ARM/Thumb guides, you’ll have to find them yourself.

General assembly

Assembly is little more than a glorified macro language for machine code. There is a

one-to-one relationship between the assembly instructions and the actual machine

code and assembly uses mnemonics for the operations the processor is capable of,

which are much easier to remember than the raw binary. The tool that converts the

asm code into machine code is the assembler.

Basic operations

Every processor must be able to do basic data processing: arithmetic and bit

manipulation. They should also have instructions to access memory, and be able to

Tonc - GBA Programming in rot13

543 / 757

https://documentation-service.arm.com/static/5f4786a179ff4c392c0ff819?token=
https://problemkaputt.de/gbatek.htm#armcpureference
https://documentation-service.arm.com/static/5ed66080ca06a95ce53f932d?token=
http://www.coranac.com/files/gba/re-ejected-gasref.pdf
http://www.coranac.com/files/gba/re-ejected-armref.pdf
http://www.coranac.com/files/gba/re-ejected-thumbref2.pdf
http://sourceware.org/binutils/docs/as/index.html

jump from one place in the code to another of conditionals and loops and such.

However, different processors will have different ways of doing these things, and

some operations of one set might not be present in another. For example, ARM lacks a

division instruction, and can’t perform data processing on memory directly. However,

the ARM instruction set has some benefits too, like a fair amount of general-purpose

registers and a simple instruction set, for the proper definition of “simple”. And it has

a very ni�y way of dealing with bit-shi�s.

In the snippet below you can find a few examples of additions and memory reads in

three different assembly languages: x86 (Intel), 68000, and ARM. The basic format is

usually something like ‘ operation operand1, operand2, ... ’, though there are

always exceptions. Note that where x86 and ARM put the destination in Op1, 68000

asm puts it in the last. The terminology of the registers is also different. Some

semantics are pretty universal, the addition ‘ x += y is found in all three, for example,

but x86 also has a special instruction for increments by one, and in ARM the result

register can be different from the two operands. These differences correspond to how

the processors actually work! Higher languages allow you to use operations that do

not seem present in the instruction set, but in fact they only appear to do so: the

compiler/interpreter will convert it to a form the processor can actually handle.

Another point I must make here is that even for a given processor, there can be

differences in how you write assembly. Assemblers aren’t difficult to write, and there’s

nothing to stop you from using a different kind of syntax. Apart from the wrath of

other programmers, of course.

Tonc - GBA Programming in rot13

544 / 757

Variables: registers, memory and the stack

In HLLs you have variables to work on, in assembly you can have registers, variables

(that is, specific ranges in memory), and the stack. A register is essentially a variable

inside the chip itself, and can be accessed quickly. The downside is that there are

usually only a few of them, from just one to perhaps a few dozen. Most programs will

require a lot more, which is why you can put variables in addressable memory as well.

There’s a lot more bytes in memory than in registers, but it’ll also be slower to use.

Note that both registers and memory are essentially global variables, change them in

one function and you’ll have changed them for the rest of the program. For local

variables, you can use the stack.

// Some examples
// Addition and memory loads in different assemblies

// === x86 asm ==
add eax, #2 // Add immediate: eax += 2;
add eax, ebx // Add register: eax += ebx;
add eax, [ebx] // Add from memory: eax += ebx[0];
inc eax // Increment: eax++;

mov eax, DWORD PTR [ebx] // Load int from memory: eax=
ebx[0];
mov eax, DWORD PTR [ebx+4] // Load next int: eax=
ebx[1];

// === 68000 asm ==
ADD #2, D0 // Add immediate: D0 += 2;
ADD D1, D0 // Add register: D0 += D1;
ADD (A0), D0 // Add from memory: D0 += A0[0];

MOVE.L (A0), D0 // Load int from memory: D0= A0[0];
MOVE.L 4(A0), D0 // Load next int: D0= A0[1];

// === ARM asm ==
add r0, r0, #2 // Add immediate: r0 += 2;
add r0, r0, r1 // Add register: r0 += r1;
add r0, r1, r2 // Add registers: r0= r1 + r2;

ldr r0, [r2] // Load int from memory: r0= r2[0];
ldr r0, [r2, #4] // Load int from memory: r0= r2[1];
ldmia r2, {r0, r1} // Load multiple: r0= r2[0]; r1=
r2[1];

Tonc - GBA Programming in rot13

545 / 757

https://en.wikipedia.org/wiki/Processor_register

The stack is a special region of memory used as, well, a stack: a Last-In, First-Out

mechanism. There will be a special register called the stack pointer (SP for short)

which contains the address of the top of the stack. You can push variables onto the

top of the stack for safe keeping, and then pop them off once you’re done with them,

restoring the registers to their original values. The address of the stack (that is, the top

of the stack, the contents of SP) is not fixed: it grows as you move deeper in the code’s

hierarchy, and shrinks as you move out again. The point is that each block of code

should clean up a�er itself so that the stack pointer is the same before and a�er it. If

not, prepare for a spectacular failure of the rest of the program.

For example, suppose you have functions foo() and which uses registers A, B, C and

D. Function foo() calls function bar() , which also uses A, B and C, but in a different

context than foo() . To make sure foo() would still work, bar() pushes A, B and C

onto the stack at its start, then uses them the way it wants, and then pops them off

the stack into A, B and C again when it ends. In pseudo code:

Tonc - GBA Programming in rot13

546 / 757

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

While the syntax above is asm-like, it’s not actually part of any assembly – at least not

as far as I know. It is also particularly bad assembly, because it’s inefficient in its use of

// Use of stack in pseudo-asm

// Function foo
foo:
 // Push A, B, C, D onto the stack, saving their original values
 push {A, B, C, D}

 // Use A-D
 mov A, #1 // A= 1
 mov B, #2 // B= 2
 mov C, #3 // well, you get the idea
 call bar
 mov D, global_var0

 // global_var1 = A+B+C+D
 add A, B
 add A, C
 add A, D
 mov global_var1, A

 // Pop A-D, restoring then to their original values
 pop {A-D}
 return

// Function bar
bar:
 // push A-C: stack now holds 1, 2, 3 at the top
 push {A-C}

 // A=2; B=5; C= A+B;
 mov A, #2
 mov B, #5
 mov C, A
 add C, B

 // global_var0= A+B+C (is 2*C)
 add C, C
 mov global_var, C

 // A=2, B=5, C=14 here, which would be bad when we
 // return to foo. So we restore A-C to original values.
 // In this case to: A=1, B=2, C=3
 pop {A-C}
 return

Tonc - GBA Programming in rot13

547 / 757

registers, for one. If you were to write the corresponding C code and compile it (with

optimizations, mind you), you get better code. But the point was here stack-use, not

efficiency.

What you see here is that foo() sets A, B and C to 1, 2 and 3, respectively (mov stands

for ‘move’, which usually comes down to assignment), and then calls bar() , which

sets them to something else and sets a global variable called global_var0 to A+B+C.

Because A, B and C are now different from what they were foo() , that function

would use the wrong values in later calculations. To counter that, bar() uses the

stack to save and restore A, B and C so that functions that call bar() still work. Note

that foo() also uses the stack for A, B, C and D, because the function calling foo()

may want to use them as well.

Stacking registers inside the called function is only a guideline, not a law. You could

make the caller save/restore the variables that it uses. You could even not use the

stack at all, as if you meant A, B and C to change and consider them return values of

the function. By not setting the registers manually in bar() , A and B would effectively

be function arguments. Or you could use the stack for function arguments. And return

values. Or use both registers and the stack. The point is, you are free to do deal with

them in any way you want. At least, in principle. In practice, there are guidelines

written down by the original manufacturers, and while not written in stone, it can be

considered bad form not to adhere to them. And you can see just how bad a form if

you intend to make the code interface with compiled code, which does adhere to

them.

Branching and condition codes

The normal operation for a computer is to take instructions one by one and execute

them. A special register known as the program counter (PC) indicates the address of

the next instruction. When it’s time, the processor reads that instruction, does its

magic and increments the program counter for the next instruction. This is a relatively

straightforward process; things start to get interesting when you can set the program

Tonc - GBA Programming in rot13

548 / 757

counter to a completely different address, redirecting the flow of the program. Some

might say that you can really only speak of a computer if such a thing is possible.

The technical term for this redirection is branching, though the term ‘jump’ is used as

well. With branching you can create things like loops (infinite loops, mind you) and

implement subroutines. The usual mnemonic for branching is something like b or

j(mp)

The full power of branching comes from branching only when certain conditions are

met. With that, you can perform if-else blocks and loops that can actually end. The

conditions allowed depend on the processor, but the most common ones are:

Zero (Z). If the result of operation was 0.

Negative (N). Result was negative (i.e. most significant bit set).

Carry bit set (C). If the ‘mostest’ significant bit is set (like bit 32 for 32bit

operations).

Arithmetic overflow (V). Like adding two positive numbers and getting a

negative number because the result got too big for the registers.

These condition flags are stores in the Program Status Register (PSR), and each data

processing instruction will set these one of more of these flags, depending on the

outcome of the operation. Special versions of the branch instruction can use these

flags to determine whether to make the jump.

Below you can see a simple example of a basic for-loop. The cmp instruction

compares A to 16 and sets the PSR flags accordingly. The instruction bne stands for

‘branch if Not Equal’, which corresponds to a clear Z-flag. the reason for the Zero-flag’s

// Asm version of the while(1) { ... } endless loop

// Label for (possible) branching destination
endless:

 ... // stuff

 b endless // Branch to endless, for an endless loop.

Tonc - GBA Programming in rot13

549 / 757

involvement is that the equality of two numbers is indicated by whether the

difference between them is zero or not. So if there’s a difference between A and 16,

we jump back to for_start ; if not, then we continue with the rest of the code.

The number and names of the conditional codes depends on the platform. The ARM

has 16 of these, but I’ll cover these later.

An example: GCC generated ARM assembly

Before getting into ARM assembly itself, I’d like to show you a real-life example it.

Assembly is an intermediary step of the build process, and you can capture GCC’s

assembly output by using the ‘ -S ’ or ‘ -save-temps ’ flags. This gives you the

opportunity to see what the compiler is actually doing, to compare the C and

assembly versions of a given algorithm, and provides quick pointers on how to code

non-trivial things in assembly, like function calling, structures, loops etc. This section

is optional, and you may not understand all the things here, but it is very educational

nonetheless.

// Asm version of for(A=0; A != 16; A++)

 mov A, #0
// Start of for-loop.
for_start:

 ... // stuff

 add A, #1
 cmp A, #16 // Compare A to 16
 bne for_start // Branch to beginning of loop if A isn't 16

Makefile settings for producing asm output
 $(CC) $(RCFLAGS) -S $<

Tonc - GBA Programming in rot13

550 / 757

// gen_asm.c :
// plotting two horizontal lines using normal and inline functions.
#include <tonc.h>

void PlotPixel3(int x, int y, u16 clr)
{
 vid_mem[y*240+x]= clr;
}

int main()
{
 int ii;

 // --- using function ---
 ASM_CMT("using function");
 for(ii=0; ii<240; ii++)
 PlotPixel3(ii, 16, CLR_LIME);

 // --- using inline ---
 ASM_CMT("using inline");
 for(ii=0; ii<240; ii++)
 m3_plot(ii, 12, CLR_RED);

 while(1);

 return 0;
}

Tonc - GBA Programming in rot13

551 / 757

@@ gen_asm.s :
@@ Generated ASM (-O2 -mthumb -mthumb-interwork -S)
@@ Applied a little extra formatting and comments for easier reading.
@@ Standard comments use by @; my comments use @@

@@ Oh, and DON'T PANIC! :)

 .code 16
 .file "gen_asm.c" @@ - Source filename (not required)
 .text @@ - Code section (text -> ROM)

@@ <function block>
 .align 2 @@ - 2^n alignment (n=2)
 .global PlotPixel3 @@ - Symbol name for function
 .code 16 @@ - 16bit Thumb code (BOTH are required!)
 .thumb_func @@ /
 .type PlotPixel3, %function @@ - symbol type (not req)
@@ Declaration : void PlotPixel3(int x, int y, u16 clr)
@@ Uses r0-r3 for params 0-3, and stack for param 4 and over
@@ r0: x
@@ r1: y
@@ r2: clr
PlotPixel3:
 lsl r3, r1, #4 @@ \
 sub r3, r3, r1 @@ - (y*16-1)*16 = y*240
 lsl r3, r3, #4 @@ /
 add r3, r3, r0 @@ - (y*240+x)
 mov r1, #192 @@ - 192<<19 = 0600:0000
 lsl r1, r1, #19 @@ /
 lsl r3, r3, #1 @@ - *2 for halfword, not byte, offset
 add r3, r3, r1
 @ lr needed for prologue
 strh r2, [r3] @@ store halfword at vid_mem[y*240+x]
 @ sp needed for prologue
 bx lr
 .size PlotPixel3, .-PlotPixel3 @@ - symbol size (not req)
@@ </ function block>

 .align 2
 .global main
 .code 16
 .thumb_func
 .type main, %function
main:
 push {r4, lr} @@ Save regs r4, lr
 @ --- using function --- @@ Comment from ASM_CMT, indicating
 .code 16 @@ the PlotPixel3() loop
 mov r4, #0 @@ r4: ii=0
.L4:
 mov r2, #248 @@ - r2: clr= 248*4= 0x03E0= CLR_LIME

Tonc - GBA Programming in rot13

552 / 757

A�er the initial shock of seeing a non-trivial assembly file for the first time, you may

be able to notice a few things, even without any prior knowledge of assembly.

First, the assembly is much longer than the C file. This is not surprising as you

can only have one instruction per line. While it makes the file longer, it also

makes parsing each line easier.

There are four basic types of line formats: labels (lines ending in a colon ‘:’), and

instructions, and then in lines starting with a period or not. The instructions that

start with a period are not really instructions, but directives; they are hints to the

assembler, not part of the CPU’s instruction set. As such, you can expect them to

differ between assemblers.

 lsl r2, r2, #2 @@ /
 mov r0, r4 @@ r0: x= ii
 mov r1, #16 @@ r1: y= 16
 add r4, r4, #1 @@ ii++
 bl PlotPixel3 @@ Call PlotPixel3 (params in r0,r1,r2)
 cmp r4, #240 @@ - loop while(ii<240)
 bne .L4 @@ /
 @ --- using inline --- @@ Comment from ASM_CMT, indicating
 .code 16 @@ the m3_plot() loop
 ldr r3, .L14 @@ r3: starting/current address
(vid_mem[12*240])
 ldr r2, .L14+4 @@ r2: terminating address
(vid_mem[13*240])
 mov r1, #31 @@ r1: clr (CLR_RED)
.L6:
 strh r1, [r3] @@ - *r3++ = clr
 add r3, r3, #2 @@ /
 cmp r3, r2 @@ - loop while(r3<r2)
 bne .L6 @@ /
.L12:
 b .L12
.L15:
 .align 2
.L14:
 .word 100669056 @@ 0600:1680 =&vid_mem[12*240]
 .word 100669536 @@ 0600:1886 =&vid_mem[13*240]
 .size main, .-main

 .ident "GCC: (GNU) 4.1.0 (devkitARM release 18)"

Tonc - GBA Programming in rot13

553 / 757

The real instructions are usually composed of a mnemonic (add , ldr , b , mov)

followed by register identifiers, numbers or labels. With a little thought, you

should be able to piece together what each of these might do. For example, add

performs an addition, ldr read something from memory, b branches, i.e.

jumps to another memory address and mov does an assignment.

Function structure and calling. In GAS, a function is preceded by a number of

directives for alignment, code section and instruction set, and a ‘ .global ’

directive to make it globally visible. And a label to mark the start of the function

of course. Note that for thumb functions, require a ‘ .thumb_func ’ directive as

well as either ‘ .code 16 ’ or ‘ .thumb ’. GCC also inserts a size info, but this are

not required.

Calling and returning from functions uses the bl and bx instructions. What

isn’t very clear from this code, except in my added comments, is that the

arguments of the functions are put in registers r0-r3. What you definitely don’t

see is that if there are more than 4 parameters, these are put on the stack, and

that the return value is put in r0.

You also don’t see that r0-r3 (and r12) are expected to be trashed in each

function, so that the functions calling them should save their values if they want

to use them a�er the call. The other registers (r4-r15) should be pushed into the

stack by the called function. The standard procedure for function calling can be

found in the AAPCS. Failure to adhere to this standard will break your code if you

try to combine it with C or other asm.

Loading the CLR_LIME color (0x03E0) doesn’t happen in one go, but is spread

over two instructions: a move and a shi�. Why not move it in one go? Well,

because it can’t. The ARM architecture only allows byte-sized immediate values;

bigger things have to be constructed in other ways. I’ll get back to this later.

The last thing I’d like to mention is the performance of the PlotPixel3() loop

versus the m3_plot() loop, which you can find in the assembly because I’ve

Tonc - GBA Programming in rot13

554 / 757

https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs32.pdf

used a macro that can write asm comments in C. The m3_plot() loop contains 4

instructions. The PlotPixel3() loop takes 8, plus an additional 10 from the

function itself. So that’s 4 instructions against 18 instructions. The C code seems

pretty much the same, so what gives?

Welcome to the wonderful world of function call overhead. In principle, you only

need the instructions of the shorter loop: a store, an add for the next

destination, a compare and a loop-branch. Because m3_plot() is inlined, the

compiler can see that this is all that’s required and optimize the loop

accordingly.

In contrast, because PlotPixel() is a full function, the caller does not know

what its internal code is, hence no optimizations are possible. The loop should

reset the registers on every iteration because PlotPixel() will clobber them,

making the loop in main() unnecessarily long. Furthermore, PlotPixel3()

doesn’t know under what conditions it will be called, so there are no

optimizations there either. That means piecing together the destination in every

iteration, rather than just incrementing it like the inline version does. All in all,

you get a line plotter that’s nearly 4 times as slow purely because you’ve used a

function for a single line of code instead of inlining it via a macro or inline

function. While anyone could have told you something like that would happen,

actually looking at the differences leaves a stronger impression.

There is a lot more that could be learned from this code, but I’ll leave it at this for now.

The main aim was to show you what assembly (in this case Thumb asm) looks like. In

this small piece of code, you can already see many of the elements that go into a full

program. Even though the lack of variable identifiers is a bit of a pain, it should be

possible to follow along with the code, just as you would with a C program. See, it’s

not all that bad now, is it?

ON WORKING BY EXAMPLE

Tonc - GBA Programming in rot13

555 / 757

Looking at other people’s code (in this case GCC’s assembly) is a nice way of

learning how to make things work, it is not a substitute for the manual. It may

show you how to get something done, there is always the danger of getting

them done wrongly or inefficiently. Programming is hardly ever trivial and you

are likely to miss important details: the compiler may not be not optimising

correctly, you could misinterpret the data, etc. This kind of learning o�en leads

to cargo-cult programming, which o�en does more harm than good. If you

want examples of these problems, look at nearly all other GBA tutorials and a

lot of the available GBA demo code out there.

Assembling assembly

The assembler of the GNU toolchains is known as the GNU assembler or GAS, and the

tool’s name is arm-none-eabi-as . You can call this directly, or you can use the

familiar arm-none-eabi-gcc to act as a gateway. The latter is probably a better

choice, as it’ll allow the use of the C preprocessor with ‘ -x assembler-with-cpp ’.

That’s right, you can then use macros, C-style comments and #include if you wish. A

rule for assembling things might look something like this.

This rule should work on the generated output of gcc -S . Note that it will probably

not assemble under other assemblers (ARM SDT, Goldroad) because they have

different standards for directives and comments and the like. I’ll cover some

important directives of GAS later, a�er we’ve seen what ARM assembly itself is like.

AS := arm-none-eabi-gcc
ASFLAGS := -x assembler-with-cpp

Rule for assembling .s -> .o files
$(SOBJ) : %.o : %.s
 $(AS) $(ASFLAGS) -c $< -o $@

Tonc - GBA Programming in rot13

556 / 757

http://www.catb.org/~esr/jargon/html/C/cargo-cult-programming.html

The ARM instruction set

The ARM core is a RISC (Reduced Instruction Set Computer) processor. Whereas CISC

(Complex Instruction Set Computer) chips have a rich instruction set capable of doing

complex things with a single instruction, RISC architectures try to go for more

generalized instructions and efficiency. They have a comparatively large number of

general-purpose registers and data instructions usually use three registers: one

destination and two operands. The length of each instruction is the same, easing the

decoding process, and RISC processors strive for 1-cycle instructions.

There are actually two instruction sets that the ARM core can use: ARM code with 32bit

instructions, and a subset of this called Thumb, which has 16bit long instructions.

Naturally, the ARM set is more powerful, but because the most used instructions can

be found in both, an algorithm coded in Thumb uses less memory and may actually

be faster if the memory buses are 16bit; which is true for GBA ROM and EWRAM and

the reason why most of the code is compiled to Thumb. The focus in this section will

be the ARM set, to learn Thumb is basically a matter of knowing which things you

cannot do anymore.

The GBA processor’s full name is ARM7TDMI, meaning it’s an ARM 7 code (aka ARM v4),

which can read THUMB code, has a Debug mode and a fast Multiplier. This chapter

has this processor in mind, but most of it should be applicable to other chips in the

ARM family as well.

Basic features

ARM registers

ARM processors have 16 32bit registers named r0-r15, of which the last three are

usually reserved for special purposes: r13 is used as the stack pointer (SP); r14 is the

link register (LR), indicating where to return to from a function, and r15 is the

program counter (PC).. The rest are free, but there are a few conventions. The first

four, r0-r3, are argument and/or scratch registers; function parameters go here (or

Tonc - GBA Programming in rot13

557 / 757

https://en.wikipedia.org/wiki/RISC
https://en.wikipedia.org/wiki/ARM7TDMI

onto the stack), and these registers are expected to be clobbered by the called

function. r12 falls into this category too. The rest, r4-r11, are also known as variable

registers.

std gcc arm description

r0-r3 r0-r3 a1-a4 argument / scratch

r4-r7 r4-r7 v1-v4 variable

r8

r9

r8

r9

v5 variable

v6/SB platform specific

r10

r11

sl v7 variable

fp v8 variable / frame pointer

r12 ip IP Intra-Procedure-call scratch

r13 sp SP Stack Pointer

r14 lr LR Link Register

r15 pc PC Program Counter

Table 23.1. Standard and alternative register names.

ARM instructions

Nearly all of the possible instructions fall into the following three classes: data

operations, such as arithmetic and bit ops; memory operations, load and store in

many guises and branches for jumping around code for loops, ifs and function calls.

The speed of instructions almost follows this scheme as well. Data instructions

usually happen in a cycle; memory ops uses two or three and branches uses 3 or 4.

The whole timing thing is actually a lot more complicated than this, but it’s a useful

rule of thumb.

Tonc - GBA Programming in rot13

558 / 757

All instructions are conditional

On most processors, you can only use branches conditionally, but on ARM systems

you can attach the conditionals to all instructions. This can be very handy for small

if/else blocks, or compound conditions, which would otherwise require the use of the

more time-consuming branches. The code below contains asm versions of the

familiar max(a, b) macro. The first one is the traditional version, which requires two

labels, two jumps (although only one of those is executed) and the two instructions

that actually do the work. The second version just uses two mov ’s, but only one of

them will actually be executed thanks to the conditionals. As a result, it is shorter,

faster and more readable.

These kinds of conditionals shouldn’t be used blindly, though. Even though you won’t

execute the instruction if the conditional fails, you still need to read it from memory,

which costs one cycle. As a rough guideline, a�er about 3 skipped instructions, the

branch would actually be faster.

Another optional item is whether or not the status flags are set. Test instructions like

cmp always set them, but most of the other require an ‘ -s ’ affix. For example, sub

would not set the flags, but sub s would. Because this kinda clashes with the plural

@ // r2= max(r0, r1):
@ r2= r0>=r1 ? r0 : r1;

@ Traditional code
 cmp r0, r1
 blt .Lbmax @ r1>r0: jump to r1=higher code
 mov r2, r0 @ r0 is higher
 b .Lrest @ skip r1=higher code
.Lbmax:
 mov r2, r1 @ r1 is higher
.Lrest:
 ... @ rest of code

@ With conditionals; much cleaner
 cmp r0, r1
 movge r2, r0 @ r0 is higher
 movlt r2, r1 @ r1 is higher
 ... @ rest of code

Tonc - GBA Programming in rot13

559 / 757

‘s’, I’m using adding an apostrophe for the plural form, so subs means sub with

status flags, but sub ’s means multiple sub instructions.

ALL INSTRUCTIONS ARE CONDITIONAL

Each instruction of the ARM set can be run conditionally, allowing shorter,

cleaner and faster code.

The barrel shi�er

A barrel shi�er is a circuit dedicated to performing bit-shi�s. Well, shi�s and rotations,

but I’ll use the word ‘shi�’ for both here. The barrel shi�er is part of the ARM core itself

and comes before any arithmetic so that you it can handle shi�ed numbers very fast.

The real value of the barrel shi�er comes from the fact that almost all instructions can

apply a shi� to one of their operands at no extra cost.

There are four barrel-shi� operations: le� shi� (lsl), logical right-shi� (lsr),

arithmetic right-shi� (asr) and rotate-right (ror). The difference between arithmetic

and logical shi� right is one of signed/unsigned numbers; see the bit ops section for

details. These operations are attached to the last register in an operation, followed by

an immediate value or a register. For example, instead of simply Rm you can have

‘ Rm, lsl #2 ’ means Rm<<2 and ‘ Rm, lsr Rs ’ for Rm>>Rs . Because shi�ed registers

can apply to almost all instructions and I don’t want to write it in full all the time, I will

designate the shi�ed register as Op2.

Now this may seem like esoteric functionality, but it’s actually very useful and more

common than you think. One application is multiplications by 2n±1, without resorting

to relatively slow multiplication instructions. For example, x*9 is the same as x*(1+8) =

x + x*8 = x+(x<<3). This can be done in a single add . Another use is in loading values

from arrays, for which indices would have to be multiplied by the size of the elements

to get the right addresses.

Tonc - GBA Programming in rot13

560 / 757

Other uses are certainly possible as well. Like the conditional, you might not really

need use of shi�ed add ’s and such, but they allow for some wonderfully optimized

code in the hands of the clever programmer. These are things that make assembly

fun.

SHIFTS ARE FREE!

Or at least very nearly so. Shi�s-by-value can be performed at no extra cost, and

shi�s-by-register cost only one cycle. Actually, bit-rotates behave like this as

well, but they’re rather rare and since I don’t know of the correct term that

encompasses both, I’ll use the word “shi�” for both.

Restricted use of immediate values

And now for one of the points that makes ARM assembly less fun. As I said, each

instruction is 32bits long. Now, there are 16 condition codes, which take up 4 bits of

the instruction. Then there’s 2x four for the destination and first operand registers,

one for the set-status flag, and then an assorted number of bits for other matters like

the actual opcodes. The bottom line is that you only have 12 bits le� for any

immediate value you might like to use.

That’s right 12. A whole 12 bits. You may have already figured out that, since this will

only allow for 4096 distinct values, this presents a bit of a problem. And you’d be right.

This is one of the major points of bad news for RISC processors: a�er assigning bits to

instruction-type, registers and other fields, there’s very little room for actual numbers

@ Multiplication by shifted add/sub

add r0, r1, r1, lsl #3 @ r0= r1+(r1<<3) = r1*9
rsb r0, r1, r1, lsl #4 @ r0= (r1<<2)-r1 = r1*15

@ word-array lookup: r1= address (see next section)
ldr r0, [r1, r2, lsl #2] @ u32 *r1; r0= r1[r2]

Tonc - GBA Programming in rot13

561 / 757

le�. So how is one to load a number like 0601:0000 (object VRAM) then? Well … you

can’t! At least, not in one go.

So, there is only a limited amount of numbers that can be used directly; the rest must

be pieced together from multiple smaller numbers. Instead of just taking the 12 bits

for a single integer, what the designers have done is split it into an 8bit number (n)

and a 4bit rotation field (r). The barrel shi�er will take care of the rest. The full

immediate value v is given by:

(23.1) 𝑣 = 𝑛 𝑟𝑜𝑟 2 ∗ 𝑟

This means that you can create values like 255 (n=255, r=0) and 0x06000000 (n=6, r=4

(remember, rotate-right)). However, 511 and 0x06010000 are still invalid because the

bit-patterns can’t fit into one byte. For these invalid numbers you have two options:

construct them in multiple instructions, or load them from memory. Both of these can

become quite expensive so if it is possible to avoid them, do so.

The faster method of forming bigger numbers is a matter of debate. There are many

factors involved: the number in mind, memory section, instruction set and amount of

space le�, all interacting in nasty ways. It’s probably best not to worry about it too

much, but as a guideline, I’d say if you can do it in two data instructions do so; if not,

use a load. The easiest way of creating big numbers is with a special form of the ldr

instruction: ‘ ldr Rd,=num ’ (note: no ‘#’!). The assembler will turn this into a mov if

the number allows it, or an ldr if it doesn’t. The space that the number needs will be

created automatically as well.

That there is only room for an 8bit number + 4bit rotate for immediate operands is

something you’ll just have to learn to live with. If the assembler occasionally

 @ form 511(0x101) with mov's
 mov r0, #256 @ 256= 1 ror 24, so still valid
 add r0, #255 @ 256+255 = 511

 @ Load 511 from memory with special ldr
 @ NOTE: no '#' !
 ldr r0,=511

Tonc - GBA Programming in rot13

562 / 757

complains about invalid constants, you now know what it means and how you can

correct for it. Oh, and if you thought this was bad, think of how it would work for

Thumb code, which only has 16 bits to work with.

THE ONLY VALID IMMEDIATE VALUES ARE ROTATED BYTES

When instructions allow immediate values, the only permissible values are

those that can be reduced to a byte rotated by an even number. 0xFF and 0x100

are allowed, but 0x101 is not. This has consequences for data operations, but

also for memory addressing since it will not be possible to load a full 32bit

address in one go. You can either construct the larger value out of smaller parts,

or use a load-assignment construct: ‘ ldr Rd ,= num ’ which the assembler

will convert into a mov if possible, or a PC-relative load if not.

REMEMBER THE PREVIOUS NOTE

Is this worth a separate note? Maybe not, but the previous note is important

enough to remember. It is not exactly intuitive that code should behave that

way and if you found yourself staring at the enigmatic invalid constant error

message, you’d probably be lost without this bit of info.

Data instructions

The data operations carry out the calculations of a program, which includes both

arithmetic and logical operations. You can find a summary of the data instructions in

table 23.2. While this lists them in four groups, the only real division is between the

multiplies and the rest. As you can see, there is no division instruction. While this can

be considered highly annoying, as it turns out the need for division is actually quite

small – small enough to cut it out of the instruction set, anyway.

Tonc - GBA Programming in rot13

563 / 757

https://gbadev.net/forum-archive/thread/8/9602.html

Unlike some processors, ARM can only perform data processing on registers, not on

memory variables directly. Most data instructions use one destination register and

two operands. The first operand is always a register, the second can be four things: an

immediate value or register (#n / Rm) or a register shi�ed by an immediate value or

register (‘ Rm, lsl # n ’, ‘ Rm, lsl Rs ’, and similar for lsr , asr and ror). Because

this arrangement is quite common, it is o�en referred to as simply Op2, even if it’s not

actually a second operand.

Like all instructions, data instructions can be executed conditionally by adding the

appropriate affix. They can also alter the status flags by appending the - s prefix.

When using both, the conditional affix always comes first.

opcode operands function

Arithmetic

adc

Rd,

Rn,

Op2

Rd =

Rn +

Op2 +

C

add

Rd,

Rn,

Op2

Rd =

Rn +

Op2

rsb

Rd,

Rn,

Op2

Rd =

Op2 -

Rn

rsc

Rd,

Rn,

Op2

Rd =

Op2 -

Rn - !C

sbc

Rd,

Rn,

Op2

Rd =

Rn -

Op2

-!C

sub Rd,

Rn,

Rd =

Rn -

 opcode operands function

Status ops

cmp Rn, Op2 Rn - Op2

cmn Rn, Op2 Rn + Op2

teq Rn, Op2
Rn &

Op2

tst Rn, Op2 Rn ^ Op2

Multiplies

mla
Rd, Rm,

Rs, Rn

Rd = Rm

* Rs + Rn

mul
Rd, Rm,

Rs

Rd = Rm

* Rs

smlal

RdLo,

RdHi,

Rm, Rs

RdHiLo

+= Rm *

Rs

smull

RdLo,

RdHi,

Rm, Rs

RdHiLo =

Rm * Rs

umlal RdLo,

RdHi,

RdHiLo

+= Rm *

Tonc - GBA Programming in rot13

564 / 757

Op2 Op2

Logical ops

and

Rd,

Rn,

Op2

Rd =

Rn &

Op2

bic

Rd,

Rn,

Op2

Rd =

Rn &~

Op2

eor

Rd,

Rn,

Op2

Rd =

Rn ^

Op2

mov
Rd,

Op2

Rd =

Op2

mvn
Rd,

Op2

Rd =

~Op2

orr

Rd,

Rn,

Op2

Rd =

Rn |

Op2

Rm, Rs Rs

umull

RdLo,

RdHi,

Rm, Rs

RdHiLo =

Rm * Rs

23.2: Data processing instructions. Basic format op{cond}{s} Rd, Rn, Op2 , cond
and s are the optional condition and status codes, and Op2 a shi�ed register.

The first group, arithmetic, only contains variants of addition and subtraction. add

and sub are their base forms. rsb is a special thing that reverses the operand order;

the difference with the regular sub is that Op2 is now the minuend (the thing

subtracted from). Only Op2 is allowed to have immediate values and shi�ed registers,

which allows you to negate values (0−x) and fast-multiply by 2n−1.

The variants ending in ‘ c ’ are additions and subtractions with carry, which allows for

arithmetic for values larger than the register size. For example, consider you have 8bit

registers and want to add 0x00FF and 0x0104. Because the latter doesn’t fit into one

register, you have to split it and then add twice, starting with with the least significant

byte. This gives 0xFF+0x04=0x103, represented by 0x02 in the destination register and

Tonc - GBA Programming in rot13

565 / 757

a set carry flag. For the second part you have to add 0x00 and 0x01 from the operands,

and the carry from the lower byte, giving 0x00+0x01+1 = 0x02. Now string the separate

parts together to give 0x0203.

Because ARM registers are 32bit wide you probably won’t be using the those

instructions much, but you never know.

The second group are the bit operations, most of which you should be familiar with

already. The all have exact matches in C operators, with the exception of bit-clear.

However, the value of such an instruction should be obvious. You will notice a distinct

absence of shi� instructions here, for the simple reason that they’re not really

necessary: thanks to the barrel shi�er, the mov instruction can be used for shi�s and

rotates. ‘r1 = r0<<4’ could be written as ‘ mov r1, r0, lsl #4 ’.

I have mentioned this a couple of times now, but as we’re dealing with another

language now it bares repeating: there is a difference between right-shi�ing a signed

and unsigned numbers. Right-shi�s remove bits from the top; unsigned numbers

should be zero-extended (filled with 0), but signed numbers should be sign-extended

(filled with the original MSB). This is the difference between a logical shi� right and an

arithmetic shi� right. This doesn’t apply to le�-shi�s, because that fills zeroes either

way.

The third group isn’t much of a group, really. The status flag operations set the status

bits according to the results of their functionality. Now, you can do this with the

regular instructions as well; for example, a compare (cmp) is basically a subtraction

that also sets the status flags, i.e., a subs . The only real difference is that this time

there’s no register to hold the result of the operation.

Lastly, the multiplication formats. At the table indicates, you cannot use immediate

values; if you want to multiply with a constant you must load it into a register first.

Second, no Op2 means no shi�ed registers. There is also a third rule that Rd and Rm

can’t use the same register, because of how the multiplication algorithm is

implemented. That said, there don’t seem to be any adverse effects using Rd=Rm.

Tonc - GBA Programming in rot13

566 / 757

The instruction mla stands for ‘multiply with accumulate’, which can be handy for

dot-products and the like. The mull and mlal instructions are for 64bit arithmetic,

useful for when you expect the result not to fit into 32bit registers.

Memory instructions: load and store

Because ARM processors can only perform data processing on registers, interactions

with memory only come in two flavors: loading values from memory into registers

and storing values into memory from registers.

The basic instructions for that are ldr (LoaD Register) and str (STore Register),

which load and store words. Again, the most general form uses two registers and an

Op2:

@ Possible variations of data instructions
add r0, r1, #1 @ r0 = r2 + 1
add r0, r1, r2 @ r0 = r1 + r2
add r0, r1, r2, lsl #4 @ r0 = r1 + r2<<4
add r0, r1, r2, lsl r3 @ r0 = r1 + r2<<r3

@ op= variants
add r0, r0, #2 @ r0 += 2;
add r0, #2 @ r0 += 2; alternative (but not on all
assemblers)

@ Multiplication via shifted add/sub
add r0, r1, r1, lsl #4 @ r0 = r1 + 16*r1 = 17*r1
rsb r0, r1, r1, lsl #4 @ r0 = 16*r1 - r1 = 15*r1
rsb r0, r1, #0 @ r0 = 0 - r1 = -r1

@ Difference between asr and lsr
mvn r1, #0 @ r1 = ~0 = 0xFFFFFFFF = -1
mov r0, r1, asr #16 @ r0 = -1>>16 = -1
mov r0, r1, lsr #16 @ r0 = 0xFFFFFFFF>>16 = 0xFFFF = 65535

@ Signed division using shifts. r1= r0/16
@ if(r0<0)
@ r0 += 0x0F;
@ r1= r0>>4;
mov r1, r0, asr #31 @ r0= (r0>=0 ? 0 : -1);
add r0, r0, r1, lsr #28 @ += 0 or += (0xFFFFFFFF>>28 = 0xF)
mov r1, r0, asr #4 @ r1 = r0>>4;

Tonc - GBA Programming in rot13

567 / 757

op{cond}{type} Rd, [Rn, Op2]

Here op is either ldr or str . Because they’re so similar in appearance, I will just use

ldr for the remainder of the discussion on syntax, except when things are different.

The condition flag again goes directly behind the base opcode. The type refers to the

datatype to load (or store), which can be words, halfwords or bytes. The word forms

do not use any extension, halfwords use -h or -sh , and bytes use -b and -sb . The

extra s is to indicate a signed byte or halfword. Because the registers are 32bit, the

top bits need to be sign-extended or zero-extended, depending on the desired

datatype.

The first register here, Rd can be either the destination or source register. The thing

between brackets always denotes the memory address; ldr means load from

memory, in which case Rd is the destination, and str means store to memory, so

Rd would be the source there. Rn is known as the base register, for reasons that we

will go into later, and Op2 o�en serves as an offset. The combination works very much

like array indexing and pointer arithmetic.

MEMORY OPS VS C POINTERS/ARRAYS

To make the comparison to C a little easier, I will sometimes indicate what

happens using pointers, but in order to do that I will have to indicate the type of

the pointer somehow. I could use some horrid casting notation, but it would be

easiest to use a form of arrays for this, and use the register-name + an affix to

show the data type. I’ll use ‘_w’ for words, ‘_h’ for halfwords, and ‘_b’ for bytes,

and ‘_sw’, etc. for their signed versions. For example, r0_sh would indicate

that r0 is a signed halfword pointer. This is just a useful bit of shorthand, not

actually part of assembly itself.

@ Basic load/store examples. Assume r1 contains a word-aligned
address
ldr r0, [r1] @ r0= *(u32*)r1; //or r0= r1_w[0];
str r0, [r1] @ *(u32*)r1= r0; //or r1_w[1]= r0;

Tonc - GBA Programming in rot13

568 / 757

Addressing modes

There are several ways of interacting, known as addressing modes. The simplest form

is direct addressing, where you indicate the address directly via an immediate value.

However, that mode is unavailable to ARM systems because full addresses don’t fit in

the instruction. What we do have is several indirect addressing forms.

The first available form is register indirect addressing, which gets the address from a

register, like ‘ ldr Rd, [Rn] ’. An extension of this is pre-indexed addressing, which

adds an offset to the base register before the load. The base form of this is ‘ ldr Rd,

[Rn, Op2] ’. This is very much like array accesses. For example ‘ ldr r1, [r0, r2,

lsl #2] ’ corresponds to r0_w[r2] : an word-array load using r2 as the index.

Another special form of this is PC-relative addressing, which makes up for not having

direct addressing. Suppose you have a variable in memory somewhere. While you

may not be able to use that variable’s address directly, what you can do is store the

address close to where you are in the code. That address is at a certain allowed offset

from the program counter register (PC), so you could load the variable’s address from

there and then read the variable’s contents. You can also use this to load constants

that are too large to fit into a shi�ed byte.

While it is possible to calculate the required offset manually, you’ll be glad to know

you can let the assembler do this for you. There are two ways of doing this. The first is

to create a data-pool where you intend to put the addresses and constants, and label

it. You can then get its address via ‘ ldr Rd, LabelName ’ (note the absence of

brackets here). The assembler will turn this into pc-relative loads. The second method

is to let the assembler do all the work by using ‘ ldr Rd,= foo ’, where foo is the

variable name or an immediate value. The assembler will then allocate space for foo

itself. Please remember that using =varname does not load the variable itself, only its

address.

And then there are the so-called write-back modes. In the pre-index mode, the final

address was made up of Rn +Op2, but that had no effect on Rn . With write-back, the

Tonc - GBA Programming in rot13

569 / 757

final address is put in Rn . This can be useful for walking through arrays because you

won’t need an actual index.

There are two forms of write-back, pre-indexing and post-indexing. Pre-indexing

write-back works much like the normal write-back and is indicated by an exclamation

mark a�er the brackets: ‘ ldr Rd, [Rn, Op2]! ’. Post-indexing doesn’t add Op2 to

the address (and Rn) until a�er the memory access; its format is ‘ ldr Rd, [Rn],

Op2 ’.

PC-RELATIVE SPECIALS

PC-relative instructions are common, and have a special shorthand that is

easier and shorter to use than creating a pool of data to load from. The format

for this is ‘ ldr Rd,= foo ’, where foo is a label or an immediate value. In both

cases, a pool is created to hold these numbers automatically. Note that the

value for the label is its address, not the address’ contents.

@ Examples of addressing modes
@ NOTE: *(u32*)(address+ofs) is the same as ((u32*)address)[ofs/4]
@ That's just how array/pointer offsets work
 mov r1, #4
 mov r2, #1
 adr r0, fooData @ u32 *src= fooData;
@ PC-relative and indirect addressing
 ldr r3, fooData @ r3= fooData[0]; // PC-relative
 ldr r3, [r0] @ r3= src[0]; // Indirect
addressing
 ldr r3, fooData+4 @ r3= fooData[1]; // PC-relative
 ldr r3, [r0, r1] @ r3= src[1]; // Pre-indexing
 ldr r3, [r0, r2, lsl #2] @ r3= src[1] // Pre-index,
via r2
@ Pre- and post-indexing write-back
 ldr r3, [r0, #4]! @ src++; r3= *src;
 ldr r3, [r0], #4 @ r3= *src; src++;
@ u32 fooData[3]= { 0xF000, 0xF001, 0xF002 };
fooData:
 .word 0x0000F000
 .word 0x0000F001
 .word 0x0000F002

Tonc - GBA Programming in rot13

570 / 757

If the label is near enough you can also use adr , which is assembled to a PC-

add instruction. This will not create a pool-entry.

Note that I’m not actually creating far_var here; just storage room for its

address. Creation of variables is covered later.

Data types

It is also possible to load/store bytes and halfwords. The opcodes for loads are ldrb

and ldrh for unsigned, and ldrsb and ldrsh for signed bytes and halfwords,

respectively. The ‘r’ in the signed versions is actually optional, so you’ll also see ldsb

and ldsh now and then. As stores can cast away the more significant bytes anyway,

strb and strh will work for both signed and unsigned stores..

All the things you can do with ldr/str , you can do with the byte and halfword

versions as well: PC-relative, indirect, pre/post-indexing it’s all there … with one

exception. The signed-byte load (ldsb) and all of the halfword loads and stores

cannot do shi�ed register-loads. Only ldrb has the complete functionality of the

word instructions. The consequence is that signed-byte or halfword arrays may

require extra instructions to keep the offset and index in check.

@ Normal pc-relative method:
@ create a nearby pool and load from it
 ldr r0, .Lpool @ Load a value
 ldr r0, .Lpool+4 @ Load far_var's address
 ldr r0, [r0] @ Load far_var's contents
.Lpool:
 .word 0x06010000
 .word far_var

@ Shorthand: use ldr= and GCC will manage the pool for you
 ldr r0,=0x06010000 @ Load a value
 ldr r0,=far_var @ Load far_var's address
 ldr r0, [r0] @ Load far_var's contents

Tonc - GBA Programming in rot13

571 / 757

Oh, one more thing: alignment. In C, you could rely on the compiler to align variables

to their preferred boundaries. Now that you’re taking over from the compiler, it stands

to reason that you’re also in charge of alignment. This can be done with the ‘.align n’

directive, with aligns the next piece of code or data to a 2n boundary. Actually, you’re

supposed to properly align code as well, something I’m taking for granted in these

snippets because it makes things easier.

Block transfers

Block transfers allow you to load or store multiple successive words into registers in

one instruction. This is useful because it saves on instructions, but more importantly,

it saves time because individual memory instructions are quite costly and with block

transfers you only have to pay the overhead once. The basic instructions for block

transfers are ldm (LoaD Multiple) and stm (STore Multiple), and the operands are a

base register (with an optional exclamation mark for Rd write-back) and a list of

registers between braces.

op{cond}{mode} Rd{!}, {Rlist}

 mov r2, #1
@ Byte loads
 adr r0, bytes
 ldrb r3, bytes @ r3= bytes[0]; // r3= 0x000000FF= 255
 ldrsb r3, bytes @ r3= (s8)bytes[0]; // r3= 0xFFFFFFFF= -1
 ldrb r3, [r0], r2 @ r3= *r0_b++; // r3= 255, r0++;
@ Halfword loads
 adr r0, hwords
 ldrh r3, hwords+2 @ r3= words[1]; // r3= 0x0000FFFF= 65535
 ldrsh r3, [r0, #2] @ r3= (s16)r0_h[1]; // r3= 0xFFFFFFFF= -1
 ldrh r3, [r0, r2, lsl #1] @ r3= r0_h[1]? No! Illegal
instruction :(

@ Byte array: u8 bytes[3]= { 0xFF, 1, 2 };
bytes:
 .byte 0xFF, 1, 2
@ Halfword array u16 hwords[3]= { 0xF001, 0xFFFF, 0xF112 };
 .align 1 @ align to even bytes REQUIRED!!!
hwords:
 .hword 0xF110, 0xFFFF, 0xF112

Tonc - GBA Programming in rot13

572 / 757

This register list can be comma separated, or hyphenated to indicate a range. For

example, {r4-r7, lr} means registers r4, r5, r6, r7 and r14. The order in which the

registers are actually loaded or stored are not based on the order in which they are

specified in this list! Rather, the list indicates the number of words used (in this case

5), and the order of addresses follows the index of the registers: the lowest register

uses the lowest address in the block, etc.

The block-transfer opcodes can take a number of affixes that determine how the block

extends from the base register Rd . The four possibilities are: -IA / -IB (Increment

A�er/Before) and -DA / -DB (Decrement A�er/Before). The differences are essentially

those between pre/post-indexing and incrementing or decrementing from the base

address. It should be noted that these increments/decrements happen regardless of

whether the base register carries an exclamation mark or not: that thing only

indicates that the base register itself is updated a�erwards.

The block transfers are also used for stack-work. There are four types of stacks,

depending on whether the address that sp points to already has a stacked value or

not (Full or Empty), and whether the stack grows down or up in memory

(Descending/Ascending). These have special affixes (-FD , -FA , -ED and -EA)

because using the standard affixes would be awkward. For example, the GBA uses an

FD-type stack, which means that pushing is done with stmdb because decrementing

a�er the store would overwrite an already stacked value (full stack), but popping

requires ldmia for similar reasons. A stmfd/ldmfd pair is much easier to deal with.

Or you could just use push and pop , which expand to ‘ stmfd sp!, ’ and ‘ ldmfd

sp!, ’, respectively.

 adr r0, words+16 @ u32 *src= &words[4];
 @ r4, r5, r6, r7
 ldmia r0, {r4-r7} @ *src++ : 0, 1, 2, 3
 ldmib r0, {r4-r7} @ *++src : 1, 2, 3, 4
 ldmda r0, {r4-r7} @ *src-- : -3, -2, -1, 0
 ldmdb r0, {r4-r7} @ *--src : -4, -3, -2, -1
 .align 2
words:
 .word -4, -3, -2, -1
 .word 0, 1, 2, 3, 4

Tonc - GBA Programming in rot13

573 / 757

Block op Standard Stack alt

Increment A�er ldmia / stmia ldmfd / stmea

Increment Before ldmib / stmib ldmed / stmfa

Decrement A�er ldmda / stmda ldmfa / stmed

Decrement Before ldmdb / stmdb ldmea / stmfd

Table 23.3: Block transfer instructions.

PUSH AND POP ARE NOT UNIVERSAL ARM INSTRUCTIONS

They seem to work for devkitARM r15 and up (haven’t checked older versions),

but DevKitAdv for example doesn’t accept them. Just try and see what

happens.

Conditionals and branches

Higher languages typically have numerous methods for implementing choices, loops

and function calls. The all come down to the same thing though: the ability to move

the program counter and thereby diverting the flow of the program. This procedure is

known as branching.

There are three branching instructions in ARM: the simple branch b for ifs and loops,

the branch with link bl used for function calls, and branch with exchange bx used

for switching between ARM and Thumb code, returning from functions and out-of-

section jumps. b and bl use a label as their argument, but bx uses a register with

the address to branch to. Technically there are more ways of branching (PC is just

another register, a�er all) but these three are the main ones.

Status flags and condition codes

I’ve already mentioned part of this in the introduction, so I’ll make this brief. The ARM

processor has 4 status flags, (Z)ero, (N)egative, (C)arry and signed o(V)erflow, which

Tonc - GBA Programming in rot13

574 / 757

can be found in the program status register. There are actually two of these: one for

the current status (CPSR) and a saved status register (SPSR), which is used in interrupt

handlers. You won’t have to deal with either of these, though, as reacting to status

registers usually goes through the conditional codes (table 23.4). But first, a few words

about the flags themselves:

Zero (Z). If the result of operation was 0.

Negative (N). Result was negative (i.e. most significant bit set).

Carry bit set (C). If the ‘mostest’ significant bit is set (like bit 32 for 32bit

operations).

Arithmetic overflow (V). Like adding two positive numbers and getting a

negative number because the result got too big for the registers.

Each of the data instructions can set the status flags by appending -s to the

instruction, except for cmp , cmn , tst and teq , which always set the flags.

Table 23.4 lists 16 affixes that can be added to the basic branch instruction. For

example, bne Label would jump to Label if the status is non-zero, and continue

with the next instruction if it isn’t.

Affix Flags Description

eq Z=1 Zero (EQual to 0)

ne Z=0 Not zero (Not Equal to 0)

cs / hs C=1 Carry Set / unsigned Higher or Same

cc / lo C=0 Carry Clear / unsigned LOwer

mi N=1 Negative (MInus)

pl N=0 Positive or zero (PLus)

vs V=1 Sign overflow (oVerflow Set)

vc V=0 No sign overflow (oVerflow Clear)

hi C=1 & Z=0 Unsigned HIgher

ls C=0 | Z=1 Unsigned Lower or Same

ge N=V Signed Greater or Equal

Tonc - GBA Programming in rot13

575 / 757

lt N != V Signed Less Than

gt Z=0 & N=V Signed Greater Than

le Z=1 | N != V Signed Less or Equal

al - ALways (default)

nv - NeVer

Table 23.4: conditional affixes.

To use these condition codes properly, you need to know what each stands for, but

also how the data operations set the flags. The effect on the status flags depends on

the instruction itself, and not all flags are affected by all instructions. For example,

overflow only has meaning for arithmetic, not bit operations.

In the case of Z and N, the case is pretty easy. The operation gives a certain 32bit value

as its result; if it’s 0, then the Zero flag is set. Because of two’s complement, the

Negative flag is the same as bit 31. The reason -eq and ne are linked to the zero flags

is because a comparison (cmp) is basically a subtraction: it looks at the difference

between the two numbers and when that’s zero, then the numbers are equal.

For the carry bit it can get a little harder. The best way to see it is as an extra most

significant bit. You can see how this work in the example of table 23.5. Here we add

two unsigned numbers, 231 = 0x80000000. When adding them, the result would

overflow 32bits, giving 0 and not 232. However, that overflowed bit will go into the

carry. With the adc instruction you could then go on to build adders for numbers

larger thatn the registers.

231

 8000
0000

231

 8000
0000

+

232
1 0000
0000

Tonc - GBA Programming in rot13

576 / 757

Table 23.5: carry bit in

(unsigned) addition.

Bit-operations like orr or and don’t affect it because they operate purely on the

lower 32bits. Shi�s, however do.

You may find it odd that -cc is the code for unsigned higher than. As mentioned, a

comparison is essentially a subtraction, but when you subtract, say 7−1, there doesn’t

really seem to be a carry here. The key here is that subtractions are infact forms of

additions: 7−1 is actually 7+0xFFFFFFFF, which would cause an overflow into the carry

bit. You can also thing of subtractions as starting out with the carry bit set.

The overflow flag indicates signed overflow (the carry bit would be unsigned

overflow). Note, this is not merely a sign change, but a sign change the wrong way. For

example, an addition of two positive numbers should always be positive, but if the

numbers are big enough (say, 230, see table 23.6) then the results of the lower 30 bits

may overflow into bit 31, therefore changing the sign and you’ll have an incorrect

addition. For subtraction, there can be a similar problem. Short of doing the full

operation and checking whether the signs are correct, there isn’t a simple way of

figuring out what counts as overflow, but fortunately you don’t have to. Usually

overflow is only important for signed comparisons, and the condition mnemonics

themselves should provide you with enough information to pick the right one.

+230

4000
0000

+230

4000
0000

+

−231
8000
0000

Table 23.6: sign overflow.

With these points in mind, the conditional codes shouldn’t be too hard to understand.

The descriptions tell you what code you should use when. Also, don’t forget that any

Tonc - GBA Programming in rot13

577 / 757

instruction can be conditionally executed, not just a branch.

The basic branch

Let’s start with the most basic of branches, b . This is the most used branch, used to

implement normal conditional code and loops of all kinds. It is most o�en used in

conjunction with one of the 16 conditional codes of table 23.4. Most of the times a

branch will look something like this:

First, you have a data processing instruction that sets the status flags, usually a subs

or cmp , but it can be any one of them. Then a b cond diverts the flow to .Llabel if

the conditions are met. A simple example of this would be a division routine which

checks if the denominator is zero first. For example, the Div() routine that uses BIOS

Call #6 could be safeguarded against division by 0 like this:

@ Branch example, pseudo code
 data-ops, Rd, Rn, Op2 @ Data operation to set the flags
 bcnd-code .Llabel @ Branch upon certain conditions

 @ more code A

.Llabel: @ Branch goes here
 @ more code B

@ int DivSafe(int num, int den);
@ \param num Numerator (in r0)
@ \param den Denominator (in r1)
@ \return r0= r0/r1, or INT_MAX/INT_MIN if r1 == 0
DivSafe:
 cmp r1, #0
 beq .Ldiv_bad @ Branch on r1 == 0
 swi 0x060000
 bx lr
.Ldiv_bad:
 mvn r1, #0x80000000 @ \
 sub r0, r1, r0, asr #31 @ - r0= r0>=0 ? INT_MAX : INT_MIN;
 bx lr

Tonc - GBA Programming in rot13

578 / 757

The numerator and denominator will be in registers r0 and r1, respectively. The cmp

checks whether the denominator is zero. If it’s not, no branch is taken, the swi 6 is

executed and the function returns a�erwards. If it is zero, the beq will take the code

to .Ldiv_bad . The two instructions there set r0 to either INT_MAX (231−1 =

0x7FFFFFFF) or INT_MIN (−231 = 0x80000000), depending on whether r0 is positive or

negative. If it’s a little hard to see that, mvn inverts bits, so the first line a�er

.Ldiv_bad sets r0 to INT_MAX. The second line we’ve seen before: ‘ r0, asr #31 ’

does a sign-extension in to all other bits, giving 0 or −1 for positive and negative

numbers, respectively, giving INT_MAX− −1 = INT_MIN for negative values of r0. Little

optimizing tricks like these decide if you’re fit to be an assembly programmer; if not

you could just as well let the compiler do them, because it does know. (It’s where I got

the ‘ asr #31 ’ thing from in the first place.)

Now in this case I used a branch, but in truth, it wasn’t even necessary. The non-

branch part consists of one instruction, and the branched part of two, so using

conditional instructions throughout would have been both shorter and faster:

If the denominator is not zero, the mvneq and subeq are essentially skipped.

Actually, not so much skipped, but turned into nop : non-operations. So is swine (i.e.,

swi + ne , no piggies here) if it is zero. True, the division line has increased by a cycle,

not taking the branch makes the exception line a little faster and the function itself

has shrunk from 7 to 5 instructions.

SYMBOL VS INTERNAL LABELS

@ Second version using conditionally executed code
DivSafe:
 cmp r1, #0
 mvneq r1, #0x80000000
 subeq r0, r1, r0, asr #31
 swine 0x060000
 bx lr

Tonc - GBA Programming in rot13

579 / 757

In the first DivSafe snippet, the internal branch destination used a .L prefix,

while the function label did not. The .L prefix is used by GCC to indicate labels

for the sake of labels, as opposed to symbol labels like DivSafe . While not

required, it’s a useful convention.

Major and minor branches

Any sort of branch will create a fork in the road and, depending on the conditions, one

road will be taken more o�en. That would be the major branch. The other one would

be the minor branch, probably some sort of exception. The branch instruction, b ,

represents a deviation from the normal road and is relatively costly, therefore it pays

to have to branch to the exceptions. Consider these possibilities:

// Basic if statement in C
if(r0 == 0)
{ /* IF clause */ }
...

@ === asm-if v1 : 'bus stop' branch ===
 cmp r0, #0
 beq .Lif
.Lrest:
 ...
 bx lr @ function ends
.Lif
 @ IF clause
 b .Lrest

@ === asm-if v2 : 'skip' branch ===
 cmp r0, #0
 bne .Lrest
 @ IF clause
.Lrest:
 ...
 bx lr @ function ends

Tonc - GBA Programming in rot13

580 / 757

The first version is more like the C version: it splits off for the IF-clause and the returns

to the rest of the code. The flow branches twice if the conditions are met, but if they

aren’t the rest of the code doesn’t branch at all. The second version branches if the

conditions aren’t met: it skips the IF-clause. Overall, the assembly code is simpler and

shorter, but the fact that the branch-conditions are inverted with respect to the C

version could take some getting used to.

So which to use? Well, that depends actually. All things being equal, the second one is

better because it’s one instruction and label shorter. As far as I know, this is what GCC

uses. The problem is that some things may be more equal than others. If the IF-clause

is exceptional (i.e., the minor branch), it’d mean that the second version almost

always takes the branch, while the first version would hardly ever branch, so on

average the latter would be faster.

Which one you chose is entirely up to you as you know your intentions best. I hope.

For the remainder of this chapter I’ll use the skip-branch because in demonstrations

things usually are equal. Of course, if the clause is small enough you can just use

conditional instructions and be done with it �) .

Common branching constructs

Even though all you have now is b , it doesn’t mean you can’t implement branching

construct found in HLLs in assembly. A�er all, the compiler seems to manage. Here’s a

couple of them.

if-elseif

The if-elseif is an extension of the normal if-else , and from it you can extend to

longer if-elseif-else chains. In this case I want to look at a wrapping algorithm for

keeping numbers within certain boundaries: the number x should stay within range

[mn, mx⟩, if it exceeds either boundary it should come out the other end. In C it looks

like this:

Tonc - GBA Programming in rot13

581 / 757

The straightforward compilation would be:

This is what GCC gives, and it’s pretty good. The ordering of the clauses remained,

which means that the condition for the branches have to be inverted, so ‘ if(x >=

mx) {} ’ becomes ‘skip if NOT x >= mx’. At the end of each clause, you’d need to skip all

the others: branch to .Lend . The conditional branches mean ‘go to the next branch’.

And now an optimized version. First, a cmp is equivalent to sub except that it doesn’t

put the result in a register. However, as we need the result later on anyway, we might

as well combine the ‘ cmp ’ and ‘ sub ’. Secondly, the clauses are pretty small, so we

can use conditional ops as well. The new version would be:

// wrap(int x, int mn, int mx), C version:
int res;
if(x >= mx)
 res= mn + x-mx;
else if(x < mn)
 res= mx + x-mn;
else
 res= x;

@ r0= x ; r1= mn ; r2= mx
 cmp r0, r2
 blt .Lx_lt_mx @ if(x >= mx)
 add r3, r0, r1 @ r0= mn + x-mx
 sub r0, r3, r2
 b .Lend
.Lx_lt_mx:
 cmp r0, r1 @
 bge .Lend @ if(x < mn)
 add r3, r0, r2 @ r0= mx + x-mn;
 sub r0, r3, r1
.Lend:
 ...

Tonc - GBA Programming in rot13

582 / 757

Cleans up nicely, wouldn’t you say? Less branches, less code and it matches the C

code more closely. We can even get rid of the last branch too because we can execute

the subs conditionally as well. Because ge and lt are each others complements

there won’t be any interference. So the final version is:

Of course, it isn’t always possible to optimize to such an extent. However, if the

clauses have small bodies conditional instructions may become attractive. Also,

converting a compare to some form of data operation that you’d need later anyway is

common and recommended.

Compound logical expressions

Higher languages o�en allow you to string multiple conditions together using logical

AND (&&) and logical OR (||). What the books o�en won’t say is that these are

merely shorthand notations of a chain of if s. Here’s what actually happens.

@ Optimized wrapper
 subs r3, r0, r2 @ r3= x-mx
 addge r0, r3, r1 @ x= x-mx + mn
 bge .Lend
 subs r3, r0, r1 @ r3= x-mn
 addlt r0, r3, r2 @ r0= x-mn + mx;
.Lend:
 ...

@ Optimized wrapper, version 2
 subs r3, r0, r2 @ r3= x-mx
 addge r0, r3, r1 @ x= x-mx + mn
 sublts r3, r0, r1 @ r3= x-mn
 addlt r0, r3, r2 @ r0= x-mn + mx;
 ...

Tonc - GBA Programming in rot13

583 / 757

The later terms in the AND are only evaluated if earlier expressions were true. If not,

they’re simply skipped. Much fun can be had if the second term happens to be a

function with side effects. A logical OR is basically an if-else chain with identical

clauses; this is just for show of course, in the final version there’s one clause which is

branched to. In assembly, these would look something like this.

// === if(x && y) { /* clause */ } ===
if(x)
{
 if(y)
 { /* clause */ }
}

// === if(x || y) { /* clause */ } ===
if(x)
{ /* clause */ }
else if(y)
{ /* clause */ }

@ if(r0 != 0 && r1 != 0) { /* clause */ }
 cmp r0, #0
 beq .Lrest
 cmp r1, #0
 beq .Lrest
 @ clause
.Lrest:
 ...

@ Alternative
 cmp r0, #0
 cmpne r1, #0
 beq .Lrest
 @ clause
.Lrest:
 ...

Tonc - GBA Programming in rot13

584 / 757

As always, alternative solutions will present themselves for your specific situation.

Also note that you can transform ANDs into ORs using De Morgan’s Laws.

Loops

One of the most important reasons to use assembly is speeding up o�-used code,

which will probably involve loops because that’s where most of the time will be spent.

If you can remove one instruction in a non-loop situation, you’ll have won one cycle. If

you remove one from a loop, you’ll have gained one for every iteration of the loop. For

example, saving a cycle in a clear-screen function would save 240*160 = 19200 cycles

– more, actually, because of memory wait-states. That one cycle can mean the

difference between smooth and choppy animation.

In short, optimization is pretty much all about loops, especially inner loops.

Interestingly, this is where GCC o�en misses the mark, because it adds more stuff than

necessary. For example, in older versions (DKA and DKP r12, something like that) it

o�en kept constructed memory addresses (VRAM, etc) inside the loop. Unfortunately,

DKP r19 also has major issues with struct copies and ldm/stm pairs, which are now

only give a small benefit over other methods. Now, before you blame GCC for slow

loops, it’s also o�en the C programmer that forces GCC to produce slow code. In the

introduction, you could see the major difference that inlining makes, and in the

profiling demo I showed how much difference using the wrong datatype makes.

Anyway, loops in assembly. Making a loop is the easiest thing in the world: just branch

to a previous label. The differences between for , do-while and while loops are a

matter of where you increment and test. In C, you usually use a for-loop with an

@ if(r0 != 0 || r1 != 0){ /* clause */ }
 cmp r0, #0
 bne .Ltrue
 cmp r1, #0
 beq .Lrest
.Ltrue:
 @ clause
.Lrest:
 ...

Tonc - GBA Programming in rot13

585 / 757

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

incrementing index. In assembly, it’s customary to use a while-loop with a

decrementing index. Here are two examples of a word-copy loop that should show

you why.

In an incrementing for-loop you need to increment and then compare against the

limit. In the decrementing while loop you subtract and test for zero. Because the zero-

test is already part of every instruction, you don’t need to compare separately. True,

it’s not much faster, maybe 10% or so, but many 10 percents here and there do add

up. There are actually many versions of this kind of loop, here’s another one using

block-transfers. The benefit of those is that they also work in Thumb:

@ Asm equivalents of copying 16 words.
@ u32 *dst=..., *src= ..., ii // r0, r1, r2

@ --- Incrementing for-loop ---
@ for(ii=0; ii<16; ii++)
@ dst[ii]= src[ii];
 mov r2, #0
.LabelF:
 ldr r3, [r1, r2, lsl #2]
 str r3, [r0, r2, lsl #2]
 add r2, r2, #1
 cmp r2, r2, #16
 blt .LabelF

@ --- Decrementing while-loop ---
@ ii= 16;
@ while(ii--)
@ *dst++ = *src++;
 mov r2, #16
.LabelW:
 ldr r3, [r1], #4
 str r3, [r0], #4
 subs r2, r2, #1
 bne .LabelW

Tonc - GBA Programming in rot13

586 / 757

This is one of those occasions where knowing assembly can help you write efficient C.

Using a decrementing counter and pointer arithmetic will usually be a little faster, but

usually GCC willl do this for you anyway. Another point is using the right datatype.

And with ‘right’ I mean int , of course. Non-ints require implicit casts (lsl / lsr

pairs) a�er every arithmetic operation. That’s two instructions a�er every plus, minus

or whatever. While GCC has become quite proficient in converting non-ints into ints

where possible, this has not always been the case, and it may not always be possible.

I’ve seen the loops above cost between 600% more because the index and pointer

were u16 , I shit you not.

When dealing with loops, be extremely careful with how you start and stop the loop.

It’s very easy to come up with a loop that runs once too o�en or too little. I’m pretty

sure these two versions are correct. The way I usually check it is to see how it runs

when the count should be 1 or 2. If that works out, larger numbers will too.

MERGE COMPARISONS WITH DATA INSTRUCTIONS

The Z status flag revolves around the number zero, so if you use 0 to compare to

you can o�en combine the comparison with the data instruction that sets the

flags.

This is also true for testing individual bits. The N and C flags are effectively bits

31 and 32, respectively. If you can manipulate the algorithm to use those, you

don’t need a cmp or tst .

@ Yet another version, using ldm/stm

 add r2, r0, #16
.LabelW:
 ldmia r1!, {r3}
 stmia r0!, {r3}
 cmp r2, r0
 bne .LabelW

Tonc - GBA Programming in rot13

587 / 757

“NO, THERE IS ANOTHER”

You probably know this already, but this is a good time to repeat the warning:

watch out for off-by-one errors (also known as obi-wan errors). It is just way too

easy to do one iteration too few or too many, so always check whether the code

you have does the right thing. Goes for other programming languages too, of

course.

Function calls

Function calls use a special kind of branching instruction, namely bl . It works exactly

like the normal branch, except that it saves the address a�er the bl in the link

register (r14 or lr) so that you know where to return to a�er the called function is

finished. In principle, you can return with to the function using ‘ mov pc, lr ’, which

points the program counter back to the calling function, but in practice you might be

better off with bx (Branch and eXchange). The difference is that bx can also switch

between ARM and Thumb states, which isn’t possible with the mov return. Unlike b

and bl , bx takes a register as its argument, instead of a label. This register will

usually be lr , but the others are allowed as well.

There’s also the matter of passing parameters to the function and returning values

from it. In principle you’re free to use any system you like, it is recommended to ARM’s

own ARM Architecture Procedure Call Standard (AAPCS) for this. For the majority of

the work this can be summarized like this.

The first 4 arguments go into r0-r3. Later ones go on the stack, in order of

appearance.

The return value goes into r0.

The scratch registers r0-r3 (and r12) are free to use without restriction in a

function. As such, a�er calling a function they should be considered ‘dirty’.

Tonc - GBA Programming in rot13

588 / 757

http://www.catb.org/~esr/jargon/html/O/obi-wan-error.html
https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs32.pdf

The other registers must leave a function with the same values as they came in.

Push them on the stack before use, and pop them when leaving the function.

Note that another bl sets lr , so stack that one too in that case.

Below is a real-world example of function calling, complete with parameter passing,

stackwork and returning from the call. The function oamcpy() copies OBJ_ATTRs.

The function uses the same argument order as memcpy() , and these need to be set by

the calling function; before and a�er the call, lr is pushed and popped. These two

things are part of what’s called the function overhead, which can be disastrous for

small functions, as we’ve already seen. Inside oamcpy() we either jump back

immediately if the count was 0, or proceed with the copies and then return. Note that

r4 is stacked here, because that’s what the caller expects; if I hadn’t and the caller

used r4 as well, I’d be screwed and rightly so. I should probably point out that r12 is

usually considered a scratch register as well, which I could have used here instead of

r4 , removing the need for stacking.

@ Function calling example: oamcpy
@ void oamcpy(OBJ_ATTR *dst, const OBJ_ATTR *src, u32 nn);
@ Parameters: r0= dst; r1= src; r2= nn;
 .align 2
oamcpy:
 cmp r2, #0
 bxeq lr @ Nothing to do: return early
 push {r4} @ Put r4 on stack
.Lcpyloop:
 ldmia r1!, {r3, r4}
 stmia r0!, {r3, r4}
 subs r2, #1
 bne .Lcpyloop
 pop {r4} @ Restore r4 to its original value
 bx lr @ Return to calling function

@ Using oamcpy.
 @ Set arguments
 mov r0, #0x07000000
 ldr r1,=obj_buffer
 mov r2, #128
 push {lr} @ Save lr
 bl oamcpy @ Call oamcpy (clobbers lr; assumes clobbering
of r0-r3,r12)
 pop {lr} @ Restore lr

Tonc - GBA Programming in rot13

589 / 757

USE BX INSTEAD OF MOV PC,LR

The bx instruction is what makes interworking between ARM and Thumb

function possible. Interworking is good. Therefore, bx is good.

This concludes the primary section on ARM assembly. There are more things like

different processor states, and data-swap (swp) and co-processor instructions, but

those are rare. If you need more information, look them up in the proper reference

guides. The next two subsections cover instruction speeds and what an instruction

actually looks like in binary, i.e., what the processor actually processes. Neither

section is necessary in the strictest sense, but still informative. If you do not want to

be informed, move on to the next section: the Thumb instruction set.

Cycle counting

Since the whole reason for coding in asm is speed (well, that and space efficiency), it

is important to know how fast each instruction is so that you can decide on which one

to use where. The term ‘cycle’ actually has two different meanings: there is the clock

cycle, which measures the amount of clock ticks, and there’s functional cycle (for lack

of a better word), which indicates the number of stages in an instruction. In an ideal

world these two would be equal. However, this is the real world, where we have to

deal with waitstates and buswidths, which make functional cycles cost multiple clock

cycles. A wait(state) is the added cost for accessing memory; memory might just not

be as fast as the CPU itself. Memory also as a fixed buswidths, indicating the

maximum number of bits that can be sent in one cycle: if the data you want to

transfer is larger than the memory bus can handle, it has to be cut up into smaller

sections and put through, costing additional cycles. For example, ROM has a 16bit bus

which is fine for transferring bytes or halfwords, but words are transferred as two

halfwords, costing two functional cycles instead of just one. If you hadn’t guessed

already, this is why Thumb code is recommended for ROM/EWRAM code.

Tonc - GBA Programming in rot13

590 / 757

There are three types of functional cycles: the non-sequential (N), the sequential (S)

and the internal (I) cycle. There is a fourth, the coprocessor cycle (C), but as the GBA

doesn’t have a coprocessor I’m leaving that one out.

Anyway, the N- and S-cycles have to do with memory fetches: if the transfer of the

current (functional) cycle is not related to the previous cycle, it is non-sequential;

otherwise, it’s sequential. Most instructions will be sequential (from the instruction

fetch), but branches and loads/stores can have non-sequentials as they have to look

up another address. Both sequential and non-sequential cycles are affected by

section waitstates. The internal cycles is one where the CPU is already doing

something else so that even though it’s clear what the next action should be, it’ll just

have to wait. I-cycles do not suffer from waitstates.

Instruction Cycles

Data 1S

ldr(type)

1N +

1Nd +

1I

str(type)
1N +

1Nd

ldm {n}

1N +

1Nd +

(n-

1)Sd+

1I

stm {n}

1N +

1Nd +

(n-

1)Sd

b/bl/bx/swi
2S +

1N

Section Bus
Wait

(N/S)

Access

8/16/32

BIOS 32 0/0 1/1/1

EWRAM 16 2/2 3/3/6

IWRAM 32 0/0 1/1/1

IO 32 0/0 1/1/1

PAL 16 0/0 1/1/2

VRAM 16 0/0 1/1/2

OAM 32 0/0 1/1/1

ROM 16 4/2 5/5/8

Table 23.8: Section default

timing details. See also GBATEK

memory map.

Tonc - GBA Programming in rot13

591 / 757

https://problemkaputt.de/gbatek.htm#gbamemorymap
https://problemkaputt.de/gbatek.htm#gbamemorymap

Thumb bl
3S +

1N

mul
1S +

mI

mla/mull
1S +

(m+1)I

mlal
1S +

(m+2)I

Table 23.7: Cycle times for

the most important

instructions.

Table 23.7 shows how much the instructions cost in terms of N/S/I cycles. How one

can arrive to these cycle times is explained below. Table 23.8 lists the buswidths, the

waitstates and the access times in clock cycles for each section. Note that these are

the default wait states, which can be altered in REG_WAITCNT.

The data presented here is just an overview of the most important items, for all the

gory details you should look them up in GBATEK or the official documents.

The cost of an instruction begins with fetching it from memory, which is a 1S

operation. For most instructions, it ends there as well.

Memory instructions also have to get data from memory, which will cost 1Nd;

I’ve added a subscript d here because this is an access to the section where the

data is kept, whereas other waitstates are taken from the section where the code

resides. This is an important distinction. Also, because the address of the next

instruction won’t be related to the current address, its timing will begin as a 1N

instead of a 1S. This difference is encompassed in the transfer timing. Note

however that most documentation list ldr as 1S+1N+1I, but this is false! If you

actually test it, you’ll see that it is really 1N+1Nd+1I.

Tonc - GBA Programming in rot13

592 / 757

https://problemkaputt.de/gbatek.htm#gbasystemcontrol

Block transfer behave like normal transfers, except that all accesses a�er the

first are Sd-cycles.

Branches need an extra 1N+1S for jumping to the new address and fetching the

resetting the pipeline (I think). Anything that changes pc can be considered a

branch. The Thumb bl is actually two instructions (or, rather, one instruction

and an address), which is why that has an additional 1S.

Register-shi�ed operations add 1I to the base cost because the value has to be

read from the register before it can be applied.

Multiplies are 1S operations, plus 1I for every significant byte of the second

operand. Yes, this does mean that the cost is asymmetric in the operands. If you

can estimate the ranges of values for the operands, try to put the lower one in

the second operand. Another 1I is required for the add of mla , and one more for

long multiplications.

THERE IS NO 1S IN LOADS!

Official documentation gives 1S+1Nd+1I as the timing of ldr , but this is not

entirely accurate. It is actually 1N+1Nd+1I. The difference is small and only

visible for ROM instructions, but could be annoying if you’re wondering why

what you predicted and what you measured for your routine doesn’t match

exactly. This applies to ldm and perhaps swp too.

See forum:9602 for a little more on the subject.

Anatomy of an addition

As an example of how instructions are actually formatted, I invite you to an in-depth

look at the add instruction. This will be the absolute rock bottom in terms of GBA

Tonc - GBA Programming in rot13

593 / 757

https://gbadev.net/forum-archive/thread/8/9602.html

programming, the lowest level of them all. Understanding this will go a long way in

understanding the hows and whys (and why-nots!) of ARM assembly.

Before I show the bits, I should point out that add (and in fact all data instructions)

come in three forms, depending on the second operand. This can be an immediate

field (numeric value), an immediate-shi�ed register or a register-shi�ed register. Bits 4

and 19h indicate the type of add , the lower 12 bits describe the second operand; the

rest are the same for all add forms.

Table 23.9: The add instruction(s)

 1F - 1C 1B 1A 19 18 - 15 14 13 - 10 F - C B - 8 7
add
Rd,
Rn,
#

cnd TA IF TB S Rn Rd

IR

add
Rd,
Rn,
Rm
Op
#

IS

add
Rd,
Rn,
Rm
Op
Rs

Rs 0

Top 20 bits for add ; denote instruction type, status/conditional flags and

destination and first operand registers.

bits name description

C - F Rd Destination register.

10 - 13 Rn First operand register.

14 S Set Status bits (the -s affix).

15-18 TB Instruction-type field. Must be 4 for add .

19 IF Immediate flag. The second operand is an immediate

value if set, and a (shi�ed) register if clear.

1A - 1C TA Another instruction-type field. Is zero for all data

instructions.

Tonc - GBA Programming in rot13

594 / 757

1D - 1F cnd Condition field.

Lower 12 bits for add ; these form the second operand.

bits name description

0 - 7 IN Immediate Number field. The second operand is IN ror
2*IR .

8 - B IR Immediate Rotate field. This denotes the rotate-right

amount applied to IN.

0 - 3 Rm Second operand register.

4 SF Shi�-operand flag. If set, the shi� is the immediate value in

IS; if clear, the shi� comes from register Rs.

5 - 6 ST Shi� type. 0: lsl , 1: lsr 2: asr , 3: ror

7 - B IS Immediate Shi� value. Second operand is Rm Op IS .

8 - B Rs Shi� Register. Second operand is Rm Op Rs .

These kinds of tables should feel familiar: yes, I’ve also used them for IO-registers

throughout Tonc. The fact of the matter is that the instructions are coded in a very

similar way. In this case, you have a 32bit value, with different bitfields describing the

type of instruction (TA =0 and TB =4 indicate is an add instruction), the registers to

use (Rd , Rd and maybe Rm and Rs too) and a few others. We have seen this thing a

number of times by now, so there should be no real difficulty in understanding here.

The assembly instructions are little more than the BUILD macros I’ve used a couple of

times, only this time it’s the assembler that turn them into raw numbers instead of the

preprocessor. Having said that, it is possible to construct the instructions manually,

even at run-time, but whether you really want to do such a thing is another matter.

Now, the top 20 bits indicate the kind of instruction it is and which registers it uses.

The bottom 12 are for Op2. If this involves a shi�ed register the bottom 4 bits indicate

Rm . Bits 5 and 6 describe the type of shi�-operation (shi�-le�, shi�-right or rotate-

right) and depending on bit 4, bits 7 to 11 form either the register to shi� by (Rs) or a

shi�-value (5 bits for 0 to 31). And then there’s the immediate operand …

Tonc - GBA Programming in rot13

595 / 757

Sigh. Yes, here are the mere twelve bits you can use for an immediate operand,

divided into a 4bit rotate part and 8bit immediate part. The allowable immediate

values are given by IN ror 2*IR . This seems like a small range, but interestingly

enough you can get quite far with just these. It does mean that you can never load

variable addresses into a register in one go; you have to get the address first with a

PC-relative load and then load its value.

Anyway, the bit patterns of table 23.9 is what the processor actually sees when you

use an add instruction. You can see what the other instructions look like in the

references I gave earlier, especially the quick references. The orthogonality of the

whole instruction set shows itself in very similar formatting of a given class of

instructions. For example, the data instructions only differ by the TB field: 4 for add ,

2 for sub , et cetera.

Thumb assembly

The Thumb instruction set is a subset of the full list of ARM instructions. The defining

feature of Thumb instructions is that they’re only 16 bits long. As a result a function in

Thumb can be much shorter than in ARM, which can be beneficial if you don’t have a

lot of room to work with. Another point is that 16bit instructions will pass through a

@ Forming 511(0x101)
 mov r0, #511 @ Illegal instruction! D:

 mov r0, #256 @ 256= 1 ror 24, so still valid
 add r0, #255 @ 256+255 = 511

 @ Load 511 from memory with ldr
 ldr r0, .L0

 @ Load 511 from memory with special ldr
 @ NOTE: no '#' !
 ldr r0,=511
.L0:
 .word 511

Tonc - GBA Programming in rot13

596 / 757

16bit databus in one go and be executed immediately, whereas execution of 32bit

instructions would have to wait for the second chunk to be fetched, effectively halving

the instruction speed. Remember that ROM and EWRAM, the two main areas for code

have 16bit buses, which is why Thumb instructions are advised for GBA programming.

There are downsides, of course; you can’t just cut the size of an instruction in half and

expect to get away with it. Even though Thumb code uses many of the same

mnemonics as ARM, functionality has been severely reduced. For example, the only

instruction that can be conditional is the branch, b ; instructions can no longer make

use of shi�s and rotates (these are separate instructions now), and most instructions

can only use the lower 8 registers (r0-r7); the higher ones are still available, but you

have to move things to the lower ones because you can use them.

In short, writing efficient Thumb code is much more challenging. It’s not exactly

bondage-and-disciple programming, but if you’re used to the full ARM set you might

be in for a surprise now and then. Thumb uses most of ARM’s mnemonics, but a lot of

them are restricted in some way so learning how to code in Thumb basically comes

down to what you can’t do anymore. With that in mind, this section will cover the

differences between ARM and Thumb, rather than the Thumb set itself.

Removed instructions. A few instructions have been cut altogether. Of the

various multiplication instructions only mul remains, reverse subtractions

(rsb , rsc) are gone, as are the swapping and coprocessor instructions, but

those are rare anyway.

‘New’ instructions. The mnemonics are new, but really, they’re just special

cases of conventional ARM instructions. Thumb has separate shi�/rotate

opcodes: lsl , lsr , asr and ror codes, which are functionally equivalent to

‘ mov Rd, Rm, Op2 ’. There is also a ‘ neg Rd,Rm ’ for Rd= 0−Rm, essentially an

rsb . And I suppose you could call push and pop new, as they don’t appear as

ARM opcodes in some devkits.

No conditionals. Except on branch. Hello, gratuitous labelling :\ .

Tonc - GBA Programming in rot13

597 / 757

The Set Status flag is always on. So in Thumb sub will always work as a subs ,

etc.

No barrel shi�er. Well, it still exist, of course; you just can’t use it in conjunction

with the instructions anymore. This is why there are separate bitshi�/-rotate

opcodes.

Restricted register availability. Unless explicitly stated otherwise, the

instructions can only use r0-r7 . The exceptions here are add , mov and cmp ,

which can at times use high-regs as operands. This restriction also applies to

memory operations, with small exceptions: ldr/str can still use PC-or SP-

relative stuff; push allows lr in its register list and pop allows pc . With these,

you could return from functions quickly, but you should use bx for that anyway.

Fortunately, bx also allows use of every register so you can still do ‘ bx lr ’.

Little to no immediate or second operand support. In ARM-code, most

instructions allowed for a second operand Op2, which was either an immediate

value or a (shi�ed) register. Most Thumb data instructions are of the form ‘ ins

Rd, Rm ’ and correspond to the C assignment operators like += and |= . Note

that Rm is a register, not an immediate. The only instructions that break this

pattern are the shi�-codes, add , sub , mov and cmp , which can have both

immediate values and second operands. See the reference docs for more details.

No write-back in memory instructions. That means you will have to use at least

one extra register and extra instructions when traversing arrays. There is one

exception to this, namely block-transfers. The only surviving versions are ldmia

and stmia , and in both versions the write-back is actually required.

Memory operations are tricky. Well, they are! ARM memory opcodes were

identical in what they could do, but here you have to be on your toes. Some

features are completely gone (write-back and shi�ed register offsets), and the

others aren’t always available to all types. Register-offset addressing is always

available, but immediate offsets do not work for the signed loads (ldrsh ,

Tonc - GBA Programming in rot13

598 / 757

ldrsb). Remember that the registers can only be r0-r7 , except for ldr/str :

there you can also use PC and SP-relative stuff (with immediate offsets). Table

23.10 gives an overview.

 [Rn,Rm] [Rn,#] [pc/sp,#]

ldr/str + + +

ldrh/strh + + -

ldrb/strb + + -

ldrsh/ldrsb + - -

Table 23.10. Thumb addressing

mode availability.

Actually, ‘`ldrh Rd,=X`’ also seem to work, but these are actually converted into

‘`ldr Rd,=X`’ internally.

Is that it? Well no, but it’s enough. Remember, Thumb is essentially ARM Lite: it looks

similar, but it has lost a lot of substance. I’d suggest learning Thumb code in that way

too: start with ARM then learn what you can’t do anymore. This list gives most of the

things you need to know; for the rest, just read at the assembler messages you will get

from time to time and learn from the experience.

GAS: the GNU assembler

The instructions are only part of functional assembly, you also need directives to tie

code together, control sections and alignment, create data, etc. Somewhat fittingly,

directives seem to be as unportable as assembly itself: directives for one assembler

might not work under others.

This section covers the main directives of the GNU assembler, GAS. Since we’re

already working with the GNU toolchain, the choice for this assembler is rather

obvious. GAS is already part of the normal build sequence, so there is no real loss of

Tonc - GBA Programming in rot13

599 / 757

functionality, and you can work together with C files just as easily as with other

assembly; it’s all the same to GCC. Another nice feature is that you can use the

preprocessor so if you have header files with just preprocessor stuff (#include and

#define only), you can use those here as well. Of course, you could do that anyway

because cpp is a standalone tool, but you don’t have to resort to trickery here.

But back to directives. In this section you’ll see some of the most basic directives. This

includes creating symbols for functions (both ARM and Thumb) and variables. With

out these you wouldn’t be able to do anything. I’ll also cover basic datatypes and

placing things in specific sections. There are many other directives as well, but these

should be the most useful. For the full list, go to the GAS manual at www.gnu.org.

Symbols

Data (variable and constant) and functions are collectively known as symbols and, just

like in C, these have declarations and definitions. Any label (a valid identifier on a

separate line ending with a colon) is potentially a symbol definition, but it’s better to

distinguish between global and local labels. Simply put, a label is global if there is a

‘ .global lname ’ directive attached to it that makes it visible to the outside world.

Local labels are everything else, and conventionally start with ‘ .L ’, though this is not

required. If you want to use symbols from outside, you have to use ‘ .extern lname ’.

Now, unless you’re using some notational device, a label tells you nothing about what

it actually stands for: it gives you no information on whether it’s data or a function,

nor the number of arguments for the latter. There is ‘ .type, str’ directive that lets

you indicate if it’s a function (str = %function) or some form of data (str = %object),

but that’s about it. Since you can tell that difference by looking at what’s a�er the

label anyway, I tend to leave this out. For other information, please comment on what

the symbols mean.

The directives you’d use for data will generally tell you what the datatypes are, but

that’s something for a later subsection. Right now, I’ll discuss a few directives for

functions. The most important one is ‘ .code n ’, where n is 32 or 16 for ARM or

Tonc - GBA Programming in rot13

600 / 757

https://sourceware.org/binutils/docs-2.22/as/index.html

Thumb code respectively. You can also use the more descriptive .arm and thumb

directives, which do the same thing. These are global settings, remaining active until

you change them. Another important directive is .thumb_func , which is required for

interworking Thumb functions. This directive applies to the next symbol label.

Actually, .thumb_func already implies .thumb , so adding the latter explicitly isn’t

necessary.

A very important and sneaky issue is alignment. You are responsible for aligning code

and data, not the assembler. In C, the compiler did this for you and the only times you

might have had problems was with alignment mismatches when casting, but here

both code and data can be misaligned; in assembly, the assembler just strings your

code and data together as it finds it, so as soon as you start using anything other than

words you have the possibility of mis-alignments.

Fortunately, alignment is very easy to do: ‘ .align n ’ aligns to the next 2n byte

boundary and if you don’t like the fact that n is a power here, you can also use

‘ .balign m ’, which aligns to m bytes. These will update the current location so that

the next item of business is properly aligned. Yes, it applies to the next item of

code/data; it is not a global setting, so if you intend to have mixed data-sizes, be

prepared to align things o�en.

Here are a few examples of how these things would work in practice. Consider it

standard boilerplate material for the creation and use of symbols.

Tonc - GBA Programming in rot13

601 / 757

The functions above show the basic template for functions: three lines of directives,

and a label for the function. Note that there is no required order for the four

directives, so you may see others as well. In fact, the .global directive can be

separated completely from the rest of the function’s code if you want. Also note the

@ ARM and Thumb versions of m5_plot
@ extern u16 *vid_page;
@ void m5_plot(int x, int y, u16 clr)
@ { vid_page[y*160+x]= clr; }

@ External declaration
@ NOTE: no info on what it's a declaration of!
 .extern vid_page @ extern u16 *vid_page;

@ ARM function definition
@ void m5_plot_arm(int x, int y, u16 clr)
 .align 2 @ Align to word boundary
 .arm @ This is ARM code
 .global m5_plot_arm @ This makes it a real symbol
 .type m5_plot_arm STT_FUNC @ Declare m5_plot_arm to be a function.
m5_plot_arm: @ Start of function definition
 add r1, r1, lsl #2
 add r0, r1, lsl #5
 ldr r1,=vid_page
 ldr r1, [r1]
 mov r0, r0, lsl #1
 strh r2, [r1, r0]
 bx lr

@ Thumb function definition
@ void m5_plot_thumb(int x, int y, u16 clr)
 .align 2 @ Align to word boundary
 .thumb_func @ This is a thumb function
 .global m5_plot_thumb @ This makes it a real symbol
 .type m5_plot_thumb STT_FUNC @ Declare m5_plot_thumb to be a
function.
m5_plot_thumb: @ Start of function definition
 lsl r3, r1, #2
 add r1, r3
 lsl r1, #5
 add r0, r1
 ldr r1,=vid_page
 ldr r1, [r1]
 lsl r0, #1
 strh r2, [r1, r0]
 bx lr

Tonc - GBA Programming in rot13

602 / 757

use of .extern to allow access to vid_page , which in libtonc always points to the

current back buffer. To be honest, it isn’t even necessary because GAS assumes that

all unknown identifiers come from other files; nevertheless, I’d suggest you use it

anyway, just for maintenance sake.

And yes, these two functions do actually form functional mode 5 pixel plotters. As an

exercise, try to figure out how they work and why they’re coded the way they are.

Also, notice that the Thumb function is only two instructions longer than the ARM

version; if this were ROM-code, the Thumb version would be a whole lot faster due to

the buswidth, which is exactly why Thumb code is recommended there.

GCC 4.7 NOTE: SYMBOL-TYPE FOR FUNCTIONS NOW REQUIRED

As of GCC 4.7, the .type directive is pretty much required for functions. Or,

rather, it is required if you want ARM and Thumb interworking to work. Just add

the following line to each function definition:

STT_FUNC is an internal macro that expands to the correct attribute

(presumably %function). Replace [function-name] with the real function

name.

IMPLICIT EXTERN CONSIDERED HARMFUL

The .extern directive for external symbols is actually not required: GAS

assumes that unknown identifiers are external. While I can see the benefits of

implicit declarations/definitions, I still think that it is a bad idea. If you’ve ever

misspelled an identifier in languages that have implicit definitions, you’ll know

why.

 .type [function-name] STT_FUNC

Tonc - GBA Programming in rot13

603 / 757

And yes, I know this is actually a non-issue because it’ll get caught by the linker

anyway, but explicitly mentioning externals is probably still a good idea. �P

Definition of variables

Of course, you can also have data in assembly, but before we go there a word about

acceptable number formats and number uses. GAS uses the same number

representations as C: plain numbers for decimals, ‘ 0 ’ for octal and ‘ 0x ’ for

hexadecimal. There is also a binary representation, using the ‘ 0b ’ prefix: for example,

0b1100 is 12. I’ve already used numbers a couple of times now, and you should have

noticed that they’re sometimes prepended by ‘ # ’. The symbol is not actually part of

the number, but is the indicator for an immediate value.

It is also possible to perform arithmetic on numbers in assembly. That is to say, you

can have something like ‘ mov r0, #1+2+3+4 ’ to load 10 into r0 . Not only arithmetic,

but bit operations will work too, which can be handy if you want to construct masks

or colors. Note, this only works for constants.

And now for adding data to your code. The main data directives are .byte , .hword ,

and .word , which create bytes, halfwords and words, respectively. If you want you

can count .float among them as well, but you don’t want to because floats are evil

on the GBA. Their use is simple: put the directive on a line and add a number a�er it,

or even a comma-separated list for an array. If you add a label in front of the data, you

have yourself a variable. There are also a few directives for strings, namely .ascii ,

.asciz and .string . .asciz and .string differ from .ascii in that they add the

terminating ‘ \0 ’ to the string, which is how strings usually work. Just like the other

data directives, you can make an array of strings by separating them with commas.

You can see some examples below; note that what should have been the hword_var

will definitely be misaligned and hence useless.

Tonc - GBA Programming in rot13

604 / 757

Data sections

So now you know how to make code and variables, you have to put them into the

proper sections. A section is a contained area where code and data are stored; the

linker uses a linkscript to see where the different sections are and then adds all your

symbols and links accordingly. The format for sections is ‘ .section secname ’, with

optional ‘ , " flags ", % type ’ information I’ll get to in a minute.

Traditionally, the section for code is called .text and that for data is called .data ,

but there are a few more to consider: the general sections .bss and .rodata , and

the GBA-specific .ewram and .iwram . In principle, these four are data sections, but

they can be used for code by setting the correct section flags. As you might have

guessed, .ewram stands for the EWRAM section (0200:0000h), .iwram is IWRAM

(0300:0000h) and .rodata is ROM (0800:0000). The .bss section is a section

intended for variables that are either uninitialized or filled with zero. The nice thing

about this section is that it requires no ROM space, as it doesn’t have data to store

there. The section will be placed in IWRAM, just like the .data . You may also

sometimes see .sbss which stands for ‘small bss’ and has a similar function as the

standard .bss , but happens to be placed in EWRAM.

These data sections can be used to indicate different kinds of data symbols. For

example, constants (C keyword const) should go into .rodata . Non-zero (and non-

const, obviously) initialised data goes into .data , and zero or uninitialized data is to

be placed into .bss . Now, you still have to indicate the amount of storage you need

 .align 2
word_var: @ int word_var= 0xCAFEBABE
 .word 0xCAFEBABE
word_array: @ int word_array[4]= { 1,2,3,4 }
 .word 1, 2, 3, 4 @ NO comma at the end!!
byte_var: @ char byte_var= 0;
 .byte 0
hword_var: @ NOT short hword_var= 0xDEAD;
 .hword 0xDEAD @ due to bad alignment!
str_array: @ Array of NULL-terminated strings:
 .string "Hello", "Nurse!"

Tonc - GBA Programming in rot13

605 / 757

for each bss-variable. This can be done with ‘ .space n ’, which indicates n zero bytes

(see also .fill and .skip), or ‘ .comm name , n , m ’, which creates a bss

symbol called name, allocates n bytes for it and aligns it to m bytes too. GCC likes to

use this for uninitialized variables.

ASSEMBLY FOR DATA EXPORTERS

// C symbols and their asm equivalents

// === C versions ===
int var_data= 12345678;
int var_zeroinit= 0;
int var_uninit;
const u32 cst_array[4]= { 1, 2, 3, 4 };
u8 charlut[256] EWRAM_BSS;

@ === Assembly versions ===
@ Removed alignment and global directives for clarity

@ --- Non-zero Initialized data ---
 .data
var_data:
 .word 12345678

@ -- Zero initialized data ---
 .bss
var_zeroinit:
 .space 4

@ --- Uninitialized data ---
@ NOTE: .comm takes care of section, label and alignment for you
@ so those things need not be explicitly mentioned
 .comm var_uninit,4,4

@ --- Constant (initialized) data ---
 .section .rodata
cst_array:
 .word 1, 2, 3, 4

@ --- Non-zero initialized data in ewram ---
 .section .sbss
charlut:
 .space 256

Tonc - GBA Programming in rot13

606 / 757

Assembly is a good format for exporting data to. Assembling arrays is faster

than compilation, the files can be bigger and you can control alignment more

easily. Oh, any you can’t be tempted to #include the data, because that simply

will not work.

You need a const section, word alignment, a symbol declaration and definition

and the data in soe form of array. To make use of it, make a suitable declaration

of the array in C and you’re all set.

Code sections

That was data in different sections, now for code. The normal section for code is

.text , which will equate to ROM or EWRAM depending on the linker specs. At times,

you will want to have code in IWRAM because it’s a lot faster than ROM and EWRAM.

You might think that ‘ .section .iwram does the trick, but unfortunately this does

not seem generally true. Because IWRAM is actually a data section, you have to add

section-type information here as well. The full section declaration needs to be

‘ .section .iwram, "ax", %progbits ’, which marks the section as allocatable and

executable ("ax"), and that the section contains data as well (%progbits), although

this last bit doesn’t seem to be required.

 .section .rodata @ in ROM, please
 .align 2 @ Word alignment
 .global foo @ Symbol name
foo:
 @ Array goes in here. Type can be .byte, .hword or .word
 @ NOTE! No comma at the end of a line! This is important
 .hword
0x0000,0x0001,0x0002,0x0003,0x0004,0x0005,0x0006,0x0007
 .hword
0x0008,0x0009,0x000A,0x000B,0x000C,0x000D,0x000E,0x000F
 .hword
0x0010,0x0011,0x0012,0x0013,0x0014,0x0015,0x0016,0x0017

 ...

Tonc - GBA Programming in rot13

607 / 757

Another interesting point is how to call the function once you have it in IWRAM. The

problem is that IWRAM is too far away from ROM to jump to in one go, so to make it

work you have to load the address of your function in a register and then jump to it

using bx . And set lr to the correct return address, of course. The usual practice is to

load the function’s address into a register and branch to a dummy function that just

consists of a bx using that register. GCC has these support functions under the name

_call_via_ rx , where rx is the register you want to use. These names follow the GCC

naming scheme as given in table 23.1.

The _call_by_ rx indirect branching is how function calling works when you use the

-mlong-calls compiler flag. It’s a little slower than straight branching, but generally

safer. Incidentally, this is also how interworking is implemented.

STANDARD AND SPECIAL SECTIONS

Sections .text , .data and .bss are standard GAS sections and do not need

explicit mention of the .section directive. Sections .ewram , .iwram ,

.rodata and .sbss and more GBA specific, and do need .section in front of

them.

@ --- ARM function in IWRAM: ---
 .section .iwram, "ax", %progbits
 .align 2
 .arm
 .global iw_fun
 .type iw_fun STT_FUNC
iw_fun:
 @ <code goes in here>

@ --- Calling iw_fun somewhere ---
 ldr r3,=iw_fun @ Load address
 bl _call_via_r3 @ Set lr, jump to long-call function

@ --- Provided by GCC: ---
_call_via_r3:
 bx r3 @ Branch to r3's address (i.e., iw_fun)
 @ No bl means the original lr is still valid

Tonc - GBA Programming in rot13

608 / 757

With this information, you should be able to create functions, variables and even

place them into the right sections. This is probably 90% of whay you might want to do

with directives already. For the remaining few, read the manual or browse through

GCC generated asm. Both should point you in the right direction.

A real world example: fast 16/32-bit copiers

In the last section, I will present two assembly functions – one ARM and one Thumb –

intended for copying data quickly and with safety checks for alignment. They are

called memcpy16() and memcpy32() and I have already used these a number of times

throughout Tonc. memcpy32() does what CpuFastSet() does, but without requiring

that the word-count is a multiple of 8. Because this is a primary function, it’s put in

IWRAM as ARM code. memcpy16() is intended for use with 16bit data and calls

memcpy32() if alignments of the source and destination allow it and the number of

copies warrant it. Because its main job is deciding whether to use memcpy32 , this

function can stay in ROM as Thumb code.

This is not merely an exercise; these functions are there to be used. They are

optimized and take advantage of most of the features of ARM/Thumb assembly.

Nearly everything covered in this chapter can be found here, so I hope you’ve

managed to keep up. To make things a little easier, I’ve added the C equivalent code

here too, so you can compare the two.

Also, these functions are not just for pure assembly projects, but can also be used in

conjunction with C code, and I’ll show you how to do this too. As you’ve already seen

demos using these functions without any hint that they were assembly functions

(apart from me saying so), this part isn’t actually to hard. So that’s the program for

this section. Ready? Here we go.

Tonc - GBA Programming in rot13

609 / 757

memcpy32()

This function will copy words. Fast. The idea is to use 8-fold block-transfers where

possible (just like CpuFastSet()), and then copy the remaining 0 to 7 words of the

word count with simple transfers. Yes, one could make an elaborate structure of tests

and block-transfers to do these residuals in one go as well, but I really don’t think

that’s worth it.

One could write a function for this in C, which is done below. However, even though

GCC does use block-transfers for the BLOCK struct-copies, I’ve only seen it go up to 4-

fold ldm/stm s. Furthermore, it tends to use more registers than strictly necessary.

You could say that GCC doesn’t do its job properly, but it’s hard to understand what

humans mean, alright? If you want it done as efficient as possible, do it your damn

self. Which is exactly what we’re here to do, of course.

The C version should be easy enough to follow. The number of words, wdcount is split

into a block count and residual word count. If there are full block to copy, then we do

so and adjust the pointers so that the residuals copy correctly. Note that wdcount is

// C equivalent of memcpy32
typedef struct BLOCK { u32 data[8]; } BLOCK;

void memcpy32(void *dst, const void *src, uint wdcount) IWRAM_CODE
{
 u32 blkN= wdcount/8, wdN= wdcount&7;
 u32 *dstw= (u32*)dst, *srcw= (u32*)src;
 if(blkN)
 {
 // 8-word copies
 BLOCK *dst2= (BLOCK*)dst, *src2= (BLOCK*)src;
 while(blkN--)
 *dst2++ = *src2++;
 dstw= (u32*)dst2; srcw= (u32*)src2;
 }
 // Residual words
 while(wdN--)
 *dstw++ = *srcw++;
}

Tonc - GBA Programming in rot13

610 / 757

the number of words to copy, not the number of bytes, and that src and dst are

assumed to be word-aligned.

The assembly version –surprise, surprise– does exactly the same thing, only much

more efficient than GCC will make it. There is little I can add about what it does

because all things have been covered already, but there are a few things about how it

does them that deserve a little more attention.

First, note the general program flow. The movs gives the number of blocks to copy,

and if that’s zero then we jump immediately to the residuals, .Lres_cpy32 . What

happens there also interesting: the three instructions a�er decrementing the word-

count (in r12) all carry the cs flag. This means that if r12 is (unsigned) lower than

one, (i.e., r12 ==0) these instructions are ignored. This is exactly what we want, but

usually there is a separate check for zero-ness before the body of the loop and these

extra instructions cost space and time. With clever use of conditionals, we can spare

those.

The main loop doesn’t use these conditionals, nor, it would seem, a zero-check. The

check here is actually done at that movs lines as well: if it doesn’t jump, we can be

sure there are blocks to copy, so another check is unnecessary. Also note that the non-

scratch registers r4-r10 are only stacked when we’re sure they’ll actually be used.

GCC normally stacks at the beginning and end of functions, but there is no reason not

to delay it until it’s actually necessary.

Lastly, a few words on non-assembly matters. First, the general layout: I use one

indent for everything except labels, and sometimes more for what in higher languages

would be loops or if-blocks. Neither is required, but I find that it makes reading easier.

I also make sure that the instruction parameters are all in line, which works best if you

reserve 8 spaces for the mnemonic itself. How you set the indents is a matter of

personal preference and a subject of many holy wars, so I’m not touching that one

here �P

Another point is comments. Comments are even more important in assembly than in

C, but don’t overdo it! Overcommenting just drowns out the comments that are

Tonc - GBA Programming in rot13

611 / 757

actually useful and maybe even the code as well. Comment on blocks and what each

register is and maybe on important tests/branches, but do you really have to say that

‘ subs r2, r2, #1 ’ decrements a loop variable? No, I didn’t think so either. It might

also help to give the intended declaration of the function if you want to use it in C.

Also, it’s a good idea to always add section, alignment and code-set before a function-

label. Yes, these things aren’t strictly necessary, but what if some yutz decides to add

a function in the middle of the file which screws up these things for functions that

follow it? Lastly, try to distinguish between symbol-labels and branch-labels. GCC’s

take on this is starting the latter with ‘ .L ’, which is as good of a convention as any.

@ === void memcpy32(void *dst, const void *src, uint wdcount)
IWRAM_CODE; =============
@ r0, r1: dst, src
@ r2: wdcount, then wdcount>>3
@ r3-r10: data buffer
@ r12: wdn&7
 .section .iwram,"ax", %progbits
 .align 2
 .code 32
 .global memcpy32
 .type memcpy32 STT_FUNC
memcpy32:
 and r12, r2, #7 @ r12= residual word count
 movs r2, r2, lsr #3 @ r2=block count
 beq .Lres_cpy32
 push {r4-r10}
 @ Copy 32byte chunks with 8fold xxmia
 @ r2 in [1,inf>
.Lmain_cpy32:
 ldmia r1!, {r3-r10}
 stmia r0!, {r3-r10}
 subs r2, #1
 bne .Lmain_cpy32
 pop {r4-r10}
 @ And the residual 0-7 words. r12 in [0,7]
.Lres_cpy32:
 subs r12, #1
 ldrcs r3, [r1], #4
 strcs r3, [r0], #4
 bcs .Lres_cpy32
 bx lr

Tonc - GBA Programming in rot13

612 / 757

memcpy16()

The job of the halfword copier memcpy16() isn’t really copying halfwords. If possible,

it’ll use memcpy32() for addresses that can use it, and do the remaining halfword

parts (if any) itself. Because it doesn’t do much copying on its own we don’t have to

waste IWRAM with it; the routine can stay as a normal Thumb function in ROM.

Two factors decide whether or not jumping to memcpy32() is beneficial. First is the

number of halfwords (hwcount) to copy. I’ve ran a number of checks and it seems

that the break-even point is about 6 halfwords. At that point, the power of word

copies in IWRAM already beats out the cost of function-call overhead and Thumb/ROM

code.

The second is whether the incoming source and destination addresses can be

resolved to word addresses. This is true if bit 1 of the source and destinations are

equal (bit 0 is zero because these are valid halfword addresses), in other words:

(src^dst)&2 should not be zero. If it resolvable, do one halfword copy to word-align

the addresses if necessary, then call memcpy32() for all the word copies. A�er than,

adjust the original halfword stuff and if there is anything le� (or if memcpy32()

couldn’t be used) copy by halfword.

Tonc - GBA Programming in rot13

613 / 757

The C version isn’t exactly pretty due to all the casting and masking, but it works well

enough. If you were to compile it and compare it to the assembly below you should

see many similarities, but it won’t be exactly equal because the assembly

programmer is allowed greater freedoms than GCC, and doesn’t have to contend with

the syntax of C.

Anyway, before the function actually starts I state the declaration, the use of the

registers, and the standard boilerplate for functions. As I need more than 4 registers

and I’m calling a function, I need to stack r4 and lr . This time I am doing this at the

start and end of the function because it’s just too much of a hassle not to. One thing

that may seem strange is why I pop r4 and then r3 separately, especially as it’s lr

that I need and not r3 . Remember the register restrictions: lr is actually r14 ,

which can be reached by push , but not pop . So I’m using r3 here instead. I’m also

doing this separately from the r4 -pop because ‘ pop {r4,r3} ’ pops the registers in

the wrong order (lower regs are loaded first).

// C equivalent of memcpy16
void memcpy16(void *dst, const void *src, uint hwcount)
{
 u16 *dsth= (u16*)dst, *srch= (u16*)src;
 // Fast-copy if and only if:
 // (1) enough halfwords and
 // (2) equal src/dst alignment
 if((hwcount>5) && !(((u32)dst^(u32)src)&2))
 {
 if(((u32)src)&1) // (3) align to words
 {
 *dsth++= *srch++;
 hwcount--;
 }
 // (4) Use memcpy32 for main stint
 memcpy32(dsth, srch, hwcount/2);
 // (5) and adjust parameters to match
 srch += hwcount&~1;
 dsth += hwcount&~1;
 hwcount &= 1;
 }
 // (6) Residual halfwords
 while(hwcount--)
 *dsth++ = *srch++;
}

Tonc - GBA Programming in rot13

614 / 757

The rest of the code follows the structure of the C code; I’ve added numbered points

to indicate where we are. Point 1 checks the size, and point 2 checks the relative

alignment of source and destination. Note that what I actually do here is not AND with

2, but shi� by 31, which pushes bit 1 into the carry bit; Thumb code can only AND

between registers and rather than putting 2 in a register and ANDing, I just check the

carry bit. You can also use the sign bit to shi� to, of course, which is what GCC would

do. I do something similar to check whether the pointers are already word-aligned or

if I have to do that myself.

At point 4 I set up and call memcpy32() . Or, rather, I call _call_via_r3 , which calls

memcpy32() . I can’t use ‘ bl memcpy32 ’ directly because its in IWRAM and

memcpy16() is in ROM and the distance is simply too big. The _call_via_r3 is an

intermediary (in ROM) consisting only of ‘ bx r3 ’ and since memcpy32() ’s address

was in r3 we got where we wanted to go. Returning from memcpy32() will work fine,

as that was set by the call to _call_via_r3 .

The C code’s point 5 consisted of adjusting the source and destination pointers to

account for the work done by memcpy32() ; in the assembly code, I’m being a very

sneaky bastard by not doing any of that. The thing is, a�er memcpy32() is done r0

and r1 would already be where I want them; while the rules say that r0-r3 are

clobbered by calling functions and should therefore be stacked, if I know that they’ll

only end up the way I want them, do I really have to do the extra work? I think not. Fair

enough, it’s not recommended procedure, but where’s the fun in asm programming if

you can’t cheat a little once in a while? Anyway, the right-shi� from r4 counters the

le�-shi� into r4 that I had before, corresponding to a r2&1 ; the test a�er it checks

whether the result is zero, signifying that I’m done and I can get out now.

Lastly, point 6 covers the halfword copying loop. I wouldn’t have mentioned it here

except for one little detail: the array is copied back to front! If this were ARM code I’d

have used post-indexing, but this is Thumb code where no such critter exists and I’m

restricted to using offsets. I could have used another register for an ascending offset

(one extra instruction/loop), or incrementing the r0 and r1 (two extra per loop), or I

could copy backwards which works just as well. Also note that I use bcs at the end of

Tonc - GBA Programming in rot13

615 / 757

the loop and not bne ; bcs is essential here because r2 could already be 0 on the

first count, which bne would miss.

Tonc - GBA Programming in rot13

616 / 757

@ === void memcpy16(void *dst, const void *src, uint hwcount);
=============
@ Reglist:
@ r0, r1: dst, src
@ r2, r4: hwcount
@ r3: tmp and data buffer
 .text
 .align 2
 .code 16
 .thumb_func
 .global memcpy16
 .type memcpy16 STT_FUNC
memcpy16:
 push {r4, lr}
 @ (1) under 5 hwords -> std cpy
 cmp r2, #5
 bls .Ltail_cpy16
 @ (2) Unreconcilable alignment -> std cpy
 @ if (dst^src)&2 -> alignment impossible
 mov r3, r0
 eor r3, r1
 lsl r3, #31 @ (dst^src), bit 1 into carry
 bcs .Ltail_cpy16 @ (dst^src)&2 : must copy by halfword
 @ (3) src and dst have same alignment -> word align
 lsl r3, r0, #31
 bcc .Lmain_cpy16 @ ~src&2 : already word aligned
 @ Aligning is necessary: copy 1 hword and align
 ldrh r3, [r1]
 strh r3, [r0]
 add r0, #2
 add r1, #2
 sub r2, #1
 @ (4) Right, and for the REAL work, we're gonna use memcpy32
.Lmain_cpy16:
 lsl r4, r2, #31
 lsr r2, r2, #1
 ldr r3,=memcpy32
 bl _call_via_r3
 @ (5) NOTE: r0,r1 are altered by memcpy32, but in exactly the right
 @ way, so we can use them as is.
 lsr r2, r4, #31
 beq .Lend_cpy16
 @ (6) Copy residuals by halfword
.Ltail_cpy16:
 sub r2, #1
 bcc .Lend_cpy16 @ r2 was 0, bug out
 lsl r2, r2, #1 @ r2 is offset (Yes, we're copying backward)
.Lres_cpy16:
 ldrh r3, [r1, r2]
 strh r3, [r0, r2]

Tonc - GBA Programming in rot13

617 / 757

Using memcpy32() and memcpy16() in C

While you’re working on uncrossing your eyes, a little story on how you can call these

functions from C. It’s ridiculously simple actually: all you need is a declaration. Yup,

that’s it. GCC does really care about the language the functions are in, all it asks is that

they have a consistent memory interface, as covered in the AAPCS. As I’ve kept myself

to this standard (well, mostly), there is no problem here.

See? They can be called just as any other C function. Of course, you have to assemble

and link the assembly files instead of #include them, but that’s how you’re supposed

to build projects anyway.

You do need to take care to provide the correct declaration, though. The declaration

tells the compiler how a function expects to be called, in this case destination and

source pointers (in that order), and the number of (half)words to transfer. It is legal to

change the order of the parameters or to add or remove some – the function won’t

work anymore, but the compiler does allow it. This is true of C functions too and

 sub r2, r2, #2
 bcs .Lres_cpy16
.Lend_cpy16:
 pop {r4}
 pop {r3}
 bx r3

// Declarations of memcpy32() and memcpy16()
void memcpy16(void *dst, const void *src, uint hwcount);
void memcpy32(void *dst, const void *src, uint wdcount) IWRAM_CODE;

// Example use
{
 extern const u16 fooPal[256];
 extern const u32 fooTiles[512];

 memcpy16(pal_bg_mem, fooPal, 256); // Copy by halfword. Fine
 memcpy32(pal_bg_mem, fooPal, 256/2); // Copy by word; Might be
unsafe
 memcpy32(tile_mem, fooTiles, 512); // Src is words too, no
prob.
}

Tonc - GBA Programming in rot13

618 / 757

should be an obvious point, but assembly functions don’t provide an easy check to

determine if you’ve used the correct declaration, so please be careful.

MAKE THE DECLARATION FIT THE FUNCTION

This is a very important point. Every function has expectations on how it’s

called. The section, return-type and arguments of the declaration must match

the function’s, lest chaos ensues. The best way would be not explicitly mention

the full declaration near the function definition, so that the user just has to

copy-paste it.

USE ‘EXTERN “C”’ FOR C++

Declarations for C++ work a little different, due to the name mangling it

expects. To indicate that the function name is not mangled, add ‘ extern "C" ’

to the declaration.

And that all folks. As far as this chapter goes anyway. Like all languages, it takes time

to fully learn its ins and outs, but with this information and a couple of

(quick)reference documents, you should be able to produce some nice ARM assembly,

or at least be able to read it well enough. Just keep your wits about you when writing

assembly, please. Not just in trying to avoid bugs, but also in keeping the assembly

maintainable. Not paying attention in C is bad enough, but here it can be absolutely

disastrous. Think of what you want to do first, then start writing the instructions.

// C++ declarations of memcpy32() and memcpy16()
extern "C" void memcpy16(void *dst, const void *src, uint
hwcount);
extern "C" void memcpy32(void *dst, const void *src, uint wdcount)
IWRAM_CODE;

Tonc - GBA Programming in rot13

619 / 757

https://en.wikipedia.org/wiki/Name_mangling

Also remember: yes, assembly can be fun. Think of it as one of those shuffle-puzzles:

you have a handful of pieces (the registers) and ways of manipulating them. The goal

is to get to the final picture in then least amount of moves. For example, take a look at

what an optimized palette blend routine would look like. Now it’s your turn �P .

Tonc - GBA Programming in rot13

620 / 757

https://gbadev.net/forum-archive/thread/8/6721.html#53322

24. The Lab

Lab introduction

Priority and drawing order

Lab introduction

The Lab stands for “laboratory”, a place for me to toy with new stuff. If I have

something new that may be useful, but isn’t quite ready to be up anywhere else yet,

I’ll put it here for a while. It does mean it may get messy at times, but that’s alright

because that’s what laboratories are for anyway. As a by-product, “lab” may double

for “labyrinth”, but that’s just a little bonus �) .

Priority and drawing order

This section covers the last of the bits in the background and object control that I

haven’t discussed yet: priority. There are four priority levels, 0-3, and you can set the

priority for backgrounds in REG_BGxCNT bits 0 and 1, and for objects in attribute 2,

bits 10 and 11. The concept of priority is simple: higher priorities are rendered first, so

they appear behind things with a lower priority. This will allow you to have objects

behind backgrounds, for example.

This all sounds very simple, and it is, but there is a little more to the order of the

rendering process than this. On the one hand you have the priority settings, on the

other you have the obj and bg numbers. Objects are numbered 0 to 127, backgrounds

from 0 to 3. Again, higher numbers appear behind lower numbers: in a stack of

objects, obj 0 is on top; bg 0 covers the others, and objects are drawn in front of

Tonc - GBA Programming in rot13

621 / 757

backgrounds. This is not due to the priority settings; in fact the whole point of

priorities is so that the default order can be altered.

The above is true for objects and backgrounds of the same priority. You could argue

that the final obj/bg order is composed of both the priority and the obj/bg number,

where priority is the most significant part. So if, for example you have obj 1 and bg 2

at priority 0, and obj 0 and bg 1 at priority 1, the order would be obj1 (prio0), bg2

(prio0), obj0 (prio1), bg1 (prio1).

Well, mostly …

The object-priority bug and object sorting

For the most part, the order is as mentioned above, except for the parts where obj 0

and obj 1 overlap. Due to a, well I guess you can call it a design flaw, the notion of

order = priority.number isn’t quite true: if you have two objects in which the priorities

and numbers are asymmetrical and there is a background in between, the object

that’s supposed to be below the background will shine through the background in the

region where the two objects overlap. This sounds very complicated, but that’s just

because words can’t really capture what happens. Basically, something like

obj1+prio0, bg0+prio0, obj0+prio1 will cause a pretty nasty graphical artifact if the

rectangles of these objects overlap. However, obj0+prio0, bg0+prio0, obj1+prio1 will

work fine, because the object numbers are now in line with the priorities.

Which brings us to object sorting: the process of making sure the object that should

be first will actually be first, i.e., have a lower obj number. This is actually a separate

issue from priorities, but it’s nice to do them both in one go. In principle, an object

sort is a sort like any other: you have an array or list of things, in this case OBJ_ATTR’s,

and you have to put them into order via some sort of key, a value that indicates what

the sorted order should be.

Now, the key can basically be anything. A lot of top-down or isometric games use Y-

sorting, as higher Y-values means the object is more in the foreground. 3D and mode 7

games can use Z-sorting, of which Y-sorting is technically a special case.

Tonc - GBA Programming in rot13

622 / 757

You’ll also need a sorting algorithm. There are plenty of them to choose from the wiki

on sorting algorithms. When picking an algorithm, remember that the number of

items to sort here is maybe about a hundred tops, and that it’s likely that the items

don’t change order all that o�en. Finally, you need a way to put the whole thing

together; make it work with the sprite and OBJ_ATTR structs that you have.

For the moment, I’ve chosen primarily for simplicity, not speed. The sorter,

id_sort_shell() , uses a slightly modified version of the Shell sort algorithm found

in Numerical Recipes (ch 8, pp 321). Its parameters are an array of key values and the

number of elements. However, it does not sort these directly (which would be fairly

pointless as they’re not tied to objects here), but keeps track of the sorting results in

an index table, ids[] .

An index table is, well, a table of indices, obviously; it will provide the sorted order of

the keys a�er the routine has finished. This strategy allows me to keep the object

double buffer intact, which I like because it makes sprite management simpler. Also, I

don’t have to swap whole structs (although that’s usually done by pointers anyway),

and it makes the routine usable as a general sorter, not just for objects. The choice of

bytes as the type for the index table does limit this, but that’s just one of those space

trade-offs one has to make sometimes. Changing it to use full integers isn’t exactly

hard, of course.

Tonc - GBA Programming in rot13

623 / 757

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Shellsort

// sort routine (in IWRAM!)

//! Sort indices via shell sort
/*! \param keys Array of sort keys
 \param ids Array of indices. After completion keys[ids[ii]]
 will be sorted in ascending order.
 \param number of entries.
*/
IWRAM_CODE void id_sort_shell(int keys[], u8 ids[], int count)
{
 u32 ii, inc;
 // find initial 'inc' in sequence x[i+1]= 3*x[i]+1 ; x[1]=1
 for(inc=1; inc<=count; inc++)
 inc *= 3;
 // actual sort
 do
 {
 // division is done by reciprocal multiplication. So no worries.
 inc /= 3; // for ARM compile
 // inc = (inc*0x5556)>>16); // for Thumb compile
 for(ii=inc; ii<count; ii++)
 {
 u32 jj, id0= ids[ii];
 int key0= keys[id0]
 for(jj=ii; jj>=inc && keys[ids[jj-inc]]>key0; jj -= inc)
 ids[jj]= ids[jj-inc];
 ids[jj]= id0;
 }
 } while(inc > 1);
}

Tonc - GBA Programming in rot13

624 / 757

Note that I intend the routine to be in IWRAM (and compiled as ARM code) because it’s

so very f%#$@*g slow! Or perhaps I shouldn’t say slow, just costly.

Think of how a basic sort works. You have N elements to sort. In principle, each of

these has to be checked with every other element, so that the routine’s speed is

proportional to N2, usually expressed as O(N2), where the O stands for order of

magnitude. For sorting, O(N2) is bad. For example, when N=128, you would be looking

at 16k checks. Times the number of cycles that the actual checks and updates would

take. Not pleasant.

Fortunately, there are faster methods, you’d want at least an O(N·log2(N)) for sorting

algorithms, and as you can see from the aforementioned wiki, there are plenty of

those and shellsort is one of them. Unfortunately, even this can be quite expensive.

Again, with N=128 this is still about 900, and you can be sure the multiplier can be

high, as in 80+. With ARM+IWRAM, I can manage to bring that down to 20-30, and a

simple exercise in assembly gives me an acceptable 13 to 22 × N·log2(N).

// example of use
IWRAM_CODE void id_sort_shell(int keys[], u8 ids[], int count);

int sort_keys[SPR_COUNT]; // sort keys
u8 sort_ids[SPR_COUNT]; // sorted OAM indices

void foo()
{
 int ii;
 for(ii=0; ii<SPR_COUNT; ii++)
 {
 // setup sort keys ... somehow
 sort_keys[ii]= ... ;
 }

 // sort the indices
 id_sort_shell(sort_keys, sort_ids, SPR_COUNT);

 // custom object update
 for(ii=0; ii<SPR_COUNT; ii++)
 oam_mem[ii]= obj_buffer[sort_ids[ii]];
}

Tonc - GBA Programming in rot13

625 / 757

THE BIG O NOTATION

The ‘Big O’ or order notation is a useful expression for comparing algorithms.

The notation is O(f(N)), where N is the number of elements to work on and f(N)

a function, usually a combination of powers and logarithms. It shows how the

runtime of an algorithm rises with increasing N. As lower order functions will

eventually be overtaken by higher order ones, the former is generally

preferable.

The keyword here, though, is ‘eventually’. It does not mention the scale of the

algorithm, which varies from case to case. In some cases if N is low enough and

the scales are different enough, a higher-order routine may actually outperform

a lower-order one.

Now, I’ll be the first to admit that the current design isn’t exactly optimal anyway.

Using linked lists instead of an index table may work faster, and there are other things

too (the division isn’t a problem, as it can be faked). However, then it wouldn’t be

quite as simple anymore, which is what I was going for here.

Once id_sort_shell() is finished, we have an table of indices arranged in such a

way that obj_buffer[sort_ids[ii]] gives the sorted OAM entries, which is used to

update to the real OAM.

Caged DNA

The demo for this section is probably the coolest and most complicated one yet. It

features a double helix of objects, revolving around the center of a toroidal cage (see

24.1). All four backgrounds are used here, one for text (little as there is of that), and

three parts of the cage: one front end, which obscures the objects, one back end that

lies behind everything else and the middle of the toroid around which the the object

rotate, i.e., they pass both in front and behind it at different times. And then there are

the objects that form the helix. The two strands each consist of 48 spherical 16x16

objects. The strands are distinguishable by their colors: one is red and the other cyan.

These will turn to dark red and cyan as they pass behind the central plane. Priority

Tonc - GBA Programming in rot13

626 / 757

Fig 24.1a (le�): Priority and sprite order

demo.

Fig 24.1b: schematic of 24.1a.

settings are used to allow the objects to pass behind nearer backgrounds, and

priorities and sorting make the object order smooth and avoid the previously

mentioned obj-bg-obj bug. To summarize:

4 backgrounds with varying priority settings

96 objects revolving (in 3D) around a central pillar.

Object priorities and number sorting to ensure proper order.

Palette swapping to distinguish near from far objects.

You can see a schematic representation of the whole thing in fig 24.1b; table 24.1

explains the colors.

color description obj/bg prio

yellow cage near bg1 prio0

green cage center bg2 prio1

blue cage far bg3 prio2

red strand 1 obj_buffer[00..47] var

cyan strand 2 obj_buffer[48..95] var

lt red/cyan near orbs OAM[0..47] prio 1

dark red/cyan far orbs OAM[48..95] prio 2

Table 24.1: legend for 24.1b.

Tonc - GBA Programming in rot13

627 / 757

Fig 24.2: 3 periods of a

helix.

Sprites and the helix pattern

As you can imagine, the sprite part is the trickiest thing about this demo. The helix is

inherently a three dimensional path, so we need a 3D vector for each orb’s position,

with the coordinates being fixed-point numbers, of course. It also needs an index to

the OAM shadow, linking a sprite (the orb) to the right OBJ_ATTR (the object on

screen).

A helix is simply a circle parameterization extruded in the

direction of its normal axis (see fig 24.2). Note the directions of

the three principal axes: it is a right-handed system, with x and

y following the directions of the screens axes, and z pointing

into the screen. A helix rotating around the y-axis can be

described by the following relation:

(24.1) x(𝑦, 𝑡) = [
𝐴 ⋅ cos (𝑘 ⋅ 𝑦 + 𝜔𝑡)

𝑦

𝐴 ⋅ sin (𝑘 ⋅ 𝑦 + 𝜔𝑡)
]

A is the radius of the helix, k is the wave number (k=2π/λ) and ω the angular velocity

(ω=2π/T). The wave number defines the spacing between the layers of the helix (i.e.,

the pitch), the angular velocity gives the speed of rotation. Note that to create the

helix in fig 24.2 I actually need a negative wave number, but that’s not really

important right now.

typedef struct tagSPR_BASE
{
 VECTOR pos; // position (x, y, z)
 int id; // oe-id in OAM buffer
} SPR_BASE;

#define SPR_COUNT 96

SPR_BASE sprites[SPR_COUNT]; // Sprite list

Tonc - GBA Programming in rot13

628 / 757

In the actual code I’m going to make a slight change to the formula above to make ω

variable without upsetting the whole helix. Instead of simply ωt, I’ll use the

integration of it for the initial phase angle: φ0=∫ω(t)dt. φ0 will be a parameter to the

function that creates the helix, and managed elsewhere. Another parameter for the

pattern is p0, the reference point of the helix. You gotta have one of those.

The routine is fairly straightforward. A running counter for the y is kept in the form of

dp.y , which is used to calculate the full phase, from which we get our sines and

cosines. Since the red and cyan helices are in counter-phase, I can simply get the x

and z offsets for one by switching the signs of the other. The only really tricky part is

// some constants
const VECTOR P_ORG= { 112<<8, 0<<8, 0<<8 };
#define AMP 0x3800 // amplitude (.8)
#define WAVEN -0x002C // wave number (.12)
#define OMEGA0 0x0200 // angular velocity (.8)

// phi0(t) = INT(w(t'), t', 0, t)
// (x,y,z) = (x0+A*cos(k*y+ft), y0+y, z0+A*sin(k*y+phi0))
void spr_helix(const VECTOR *p0, int phi0)
{
 int ii, phi;
 VECTOR dp= {0, 0, 0};
 SPR_BASE *sprL= sprites, *sprR= &sprites[SPR_COUNT/2];

 for(ii=0; ii<SPR_COUNT/2; ii++)
 {
 // phi: 0.9f ; dp: 0.8f ; WAVEN:0.12f ; phi0: 0.8f
 phi= (WAVEN*dp.y>>11) + (phi0>>7);

 // red helix
 dp.x= AMP*lut_cos(phi)>>8;
 dp.z= AMP*lut_sin(phi)>>8;
 vec_add(&sprL[ii].pos, p0, &dp);

 // cyan helix
 dp.x= -dp.x;
 dp.z= -dp.z;
 vec_add(&sprR[ii].pos, p0, &dp);

 dp.y += 144*256/(SPR_COUNT/2);
 }
}

Tonc - GBA Programming in rot13

629 / 757

managing the different fixed point scales for the phase; when dealing with fixed point

math, always indicate the number of fractional bits, it’s so very easy to get lost there.

Now that we have the double helix pattern, we need a way to link it to the objects,

complete with sorting and all.

Tonc - GBA Programming in rot13

630 / 757

The big loop here updates the OAM shadow, not the real OAM! It updates the object’s

position using the sprites x and y (corrected for fixed point, of course), and uses z to

set the priority: 1 if it’s on the near side (before the central pillar), and 2 if it’s on the

void spr_update()
{
 int ii, prio, zz, *key;
 u32 attr2;
 int *key= sort_keys;
 SPR_BASE *spr= sprites;
 OBJ_ATTR *oe;

 for(ii=0; ii<SPR_COUNT; ii++)
 {
 oe= &obj_buffer[spr->id];
 // set x/y pos
 obj_set_pos(oe, spr->pos.x>>8, spr->pos.y>>8);

 // set priority based on depth.
 // HAX 1: palette swapping
 attr2= oe->attr2 & ~(ATTR2_PRIO_MASK |
(1<<ATTR2_PALBANK_SHIFT));
 zz= spr->pos.z;
 if(zz>0)
 {
 prio= 2;
 attr2 |= 1<<ATTR2_PALBANK_SHIFT;
 }
 else
 prio= 1;
 oe->attr2= attr2 | (prio<<ATTR2_PRIO_SHIFT);

 // HAX 2: sort-key contruction
 *key++= (prio<<30) + (zz>>2) - 6<<28;
 spr++;
 }

 if(g_state & S_SORT) // sort and update
 {
 id_sort_shell(sort_keys, sort_ids, SPR_COUNT);
 for(ii=0; ii<SPR_COUNT; ii++)
 oam_mem[ii]= obj_buffer[sort_ids[ii]];
 }
 else // regular update
 oam_update(0, SPR_COUNT);
}

Tonc - GBA Programming in rot13

631 / 757

bank color

4
light

red

5
dark

red

6
light

cyan

7
dark

cyan

Table 24.2: object

palette banks.

far side (behind the pillar). It also does something funky with the palette, which is the

first hack in the function, shortly followed by the second one.

Hack 1. I’ve arranged the object palette in such a way that the reds

are in palette banks 4 and 5, and the cyans in banks 6 and 7 (table

24.2). This means that I can switch between the light and dark

versions by toggling the first pal-bank bit, attr2 bit 12.

Immediately a�er this is the second hack, creating the sort key.

Hack 2. The sort key is a combination of the priority (2 bits) and

the depth z (the rest). The lower 30 bits of zz work as a signed

offset for the priority levels, so that each priority has its own depth

range of [-2<<30,2<<30⟩ if one is necessary. The problem is that the

keys are also signed, which would mean that priorities 2 and 3 would count as

negative and therefore be sorted in front of prio 0 and 1, which would be bad. To

remedy this, I subtract 0x60000000, which shi�s the range of priority 0 to the most

negative range where it should be.

The last part of the function updates the OAM shadow to OAM, either with or without

sorting.

SORTING DISABLED OBJECTS

Incidentally, you could easily modify the sort-key creation to account for

disabled/hidden objects. All you’d have to do is assign the highest (signed)

value to the sort-key, in this case 0x7FFFFFFF.

if((oe->attr0&ATTR0_MODE_MASK) != ATTR0_HIDE)
 *key++= (prio<<30) + (zz>>2) - 6<<28;
else
 *key++= 0x7FFFFFFF;

Tonc - GBA Programming in rot13

632 / 757

Rest of code

The rest of the code is just main() and the initializer code. Most of the initializer code

is pretty standard stuff: loading graphics, register inits and so on. The only interesting

part is the object initialization, which sets the pal-banks to 0x4000 and 0x6000 for the

red and cyan orbs. And because the sorting uses an index table instead of changing

the object buffer itself, this is all I’ll ever have to keep the primary colors correct.

Tonc - GBA Programming in rot13

633 / 757

#define S_AUTO 0x0001
#define S_SORT 0x0002

const VECTOR P_ORG= { 112<<8, 0<<8, 0<<8 };

int g_phi= 0; // phase, integration of omega over time
int g_omega= OMEGA0; // rotation velocity (.8)
u32 g_state= S_AUTO | S_SORT; // state switches

void main_init()
{
 int ii;
 // --- init gfx ---
 // bgs
 memcpy32(pal_bg_mem, cagePal, cagePalLen/4);
 pal_bg_mem[0]= CLR_BLACK;
 memcpy32(tile_mem[1], cageTiles, cageTilesLen/4);
 // Hacx 3: there are 3 maps in cageMap, which have to be extracted
manually
 // front part, priority 0
 memcpy32(se_mem[5], &cageMap[1*32], 20*32/2);
 REG_BG1CNT= BG_CBB(1) | BG_SBB(5) | BG_8BPP | BG_PRIO(0);
 // center, priority 1
 memcpy32(se_mem[6], &cageMap[22*32], 20*32/2);
 REG_BG2CNT= BG_CBB(1) | BG_SBB(6) | BG_8BPP | BG_PRIO(1);
 // back, priority 2
 memcpy32(se_mem[7], &cageMap[43*32], 20*32/2);
 REG_BG3CNT= BG_CBB(1) | BG_SBB(7) | BG_8BPP | BG_PRIO(2);

 // object
 memcpy32(&tile_mem[4][1], ballTiles, ballTilesLen/4);
 memcpy32(pal_obj_mem, ballPal, ballPalLen/4);

 // -- init vars ---
 // init sort list
 for(ii=0; ii<SPR_COUNT; ii++)
 sprites[ii].id= sort_ids[ii]= ii;

 // --- init sprites and objects ---
 oam_init();
 for(ii=0; ii<SPR_COUNT/2; ii++)
 {
 obj_set_attr(&obj_buffer[ii], 0, ATTR1_SIZE_16, 0x4001);
 obj_set_attr(&obj_buffer[ii+SPR_COUNT/2], 0,
 ATTR1_SIZE_16, 0x6001);
 }

 spr_helix(&P_ORG, 0);
 spr_update();

Tonc - GBA Programming in rot13

634 / 757

The main loop checks for state changes, advances and updates the sprites and

objects and prints the current angular velocity.

 REG_DISPCNT= DCNT_BG_MASK | DCNT_OBJ | DCNT_OBJ_1D;
 int_init();
 int_enable_ex(II_VBLANK, NULL);
 txt_init_std();
 txt_init_se(0, BG_CBB(3)|BG_SBB(31), 0, 0xEC00021F, 0xEE);
}

int main()
{
 char str[32];

 main_init();

 while(1)
 {
 VBlankIntrWait();
 // kery handling
 key_poll();
 if(key_hit(KEY_START))
 g_state ^= S_AUTO;
 if(key_hit(KEY_SELECT))
 g_state ^= S_SORT;

 // movement
 if(g_state & S_AUTO)
 {
 g_omega += key_tri_shoulder()<<4;
 g_phi += g_omega;
 }
 else
 g_phi += g_omega*key_tri_shoulder();

 // sprite/obj update
 spr_helix(&P_ORG, g_phi);
 spr_update();

 // print omega
 siprintf(str, "%6d", g_omega);
 se_puts(8, 136, str, 0);
 }

 return 0;
}

Tonc - GBA Programming in rot13

635 / 757

Fig 24.3: Sorting switched off.

There are two state switches in g_state , one that

toggles the sorting procedure (S_SORT , with the

Select Button), and one that sets the rotation to

automatic or not (S_AUTO , with the Start Button).

Toggling the sorting is interesting because you can

see what happens if you just set the priorities. This

has two effects (see fig 24.3: first, the orb-order in

each strand would be fixed and every object

would partially obscure the one on its le�, which is incorrect for the receding parts of

the strands. This is most visible at the right-most side, where the strands seem

broken. The second effect is the object priority/number order bug where the deeper

object can show through the background that’s supposed to be occluding it.

The start button toggles between automatic and manual rotation. During automatic

mode, you can change ω with the L and R Buttons. In manual mode, L and R update

the phase with the current angular speed. By setting the speed really low, you can

examine what happens in more detail. For example, you can clearly see that the

objects in the vertical centerline are in front of both their le� and right neighbors,

exactly what one would expect. Unless the sorting is off, that is.

And that concludes the topic of priorities and object sorting. Remember that the

priorities of objects and backgrounds aren’t the only thing that determine the

rendering order, the obj or bg number is also important for each priority level. Once

you start mixing objects and background priorities, make sure that the object

numbers follow the same order as their priorities, and that o�en means object

sorting.

I’ve discussed a simple and flexible sorting method, but I warn you that it does take its

time. If it’s good enough, by all means use it. If it’s not, faster methods can certainly be

created. Linked lists, range checks, handcra�ed assembly (see id_sort_shell2.s in the

prio_demo directory for example) can all help make it faster. but the final

implementation will be up to you.

Tonc - GBA Programming in rot13

636 / 757

A. Numbers, bits and bit operations

Numbers

Of bits and bytes

Bit operations

Numbers

The true meaning of symbols

“There are 10 kinds of people in the world, those that understand binary and

those that don’t.”

If you don’t get the joke, you belong in the latter category. Just like everyone else, in

your youth you’ve probably learned that the combination of numerals ‘1’ and ‘0’

means ten. Not so—not exactly. The primary problem here is the meaning of symbols.

Now, what I’m about to tell you is key to understanding mystifying stuff out there, so

gather around and let me tell you something about what they really mean. Listening?

All right then. Your basic everyday symbol, like ‘1’ and ‘0’ and such, your basic symbol

means exactly SQUAT!

That’s right: zilch, zip, nada, noppes, dick, and all the other synonyms you can think

of that mean ‘nothing’. In and of themselves, symbols have no meaning; rather,

meaning is imposed on them by us humans. Symbols are means of communication.

There’s a lot of stuff in the world—objects, people, feelings, actions—and we label

these things with symbols to tell them apart. The symbols themselves mean nothing;

they’re just representations, labels that we can make up as we see fit. Unfortunately,

this is something that is rarely mentioned when you’re growing up, the only thing

Tonc - GBA Programming in rot13

637 / 757

they tell you is which symbol is tied to which concept, which can lead people to

confuse the thing itself with its representation. There are people that do just this, but

still realise that the symbols are just social constructs, and start believing that the

things they represent, stuff like gravity and the number π, are just social constructs

too. (Yet these same people aren’t willing to demonstrate this by, say, stepping out of

a window on the 22nd floor.)

As a simple example of symbol(s), consider the word “chair”. The word itself has no

intrinsic relationship with a “piece of furniture for one person to sit on, having a back

and, usually, four legs.” (Webster’s); it’s just handy to have a word for such an object

so that we know what we’re talking about in a conversation. Obviously, this only

works if all parties in the conversation use the same words for the same objects, so at

some point in the past a couple of guys got together and decided on a set of words

and called it the English language. Since words are just symbols with no intrinsic

meaning, different groups can and have come up with a different set of words.

Such an agreement between people for the sake of convenience is called a convention

(basically, a fancy word for standard). Conventions can be found everywhere. That’s

part of the problem: they are so ubiquitous that they’re usually taken for granted. At

some point in time, a convention has become so normal that people forget that it was

merely an agreement made to facilitate communication, and will attach real meaning

to the thing convened upon: the convention is now a “tradition”.

Back to numbers. Numbers are used for two things: quantities and identifications

(cardinal and ordinal numbers, respectively). It’s primarily quantities we’re concerned

with here: one banana, two bananas, three bananas, that sort of thing. The way

numbers are written down—represented by symbols—is merely a convention; for

most people, it’s probably even a tradition. There are a couple of different ways to

represent numbers: by words (one, two, three, four, five) by carvings (I, II, III, IIII, IIII),

Roman numerals (I, II, III, IV, V). You have all seen these at some point or another. The

system most commonly used, however, is a variant of what’s called the base-N

positional system.

Tonc - GBA Programming in rot13

638 / 757

The Base-N Positional System

“So, Mike, what is the base-n positional system?” Well, it’s probably the most

convenient system to use when you have to write down long numbers and/or do

arithmetic! The basic idea is that you have N symbols—numerals—at your disposal,

for 0 up to N−1, and you represent each possible number by a string of m numerals.

The numeral at position i in the string, ai, is a multiplier of the i-th power of the base

number. The complete number S is the sum of the product of the powers Ni and their

multipliers ai.

(A.1) 𝑆 = Σ𝑎𝑖𝑁
𝑖

Another way of thinking about the system is by looking at these numbers as a set of

counters, like old-style odometers in cars and old cassette players. Here you have a

number of revolving wheels with N numerals on each. Each wheel is set so that they

will increment the counter before it a�er a revolution has been completed. You start

with all zeros, and then begin to turn the last wheel. A�er N numbers have passed,

you will have a full revolution: this counter will be back to zero, and the one next to it

will increase by one. And again a�er N more counts, and a�er N2 the second counter

will be full as well and so a third counter will increase, etc, etc.

Here’s an example using the familiar case of N is ten: the decimal system. Base-ten

means ten different symbols (digits): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Note that the form of

these symbols is arbitrary, but this is how we got/stole them from the Arabs centuries

ago. Note also the zero symbol. The zero is one of the key discoveries in mathematics,

and makes the positional system possible. Now, for our sample string of numerals,

consider “1025”, which is to be read as:

1025ten = 1·103ten + 0·102ten + 2·101ten + 5·100ten

= 1·1000ten + 0·100ten + 2·10ten + 5·1

= one thousand twenty five

Tonc - GBA Programming in rot13

639 / 757

You may have noticed I’m using words for numbers a lot of the time. The thing is that

if you write the ‘N’ in ‘base-N’ in its own base, you will always write ‘base-10’, because

the string “10” always denoted the base number. That’s kind of the point. To point out

which “10” you’re talking about, I’ve followed the usual convention and subscripted it

with the word “ten”. But because it’s a big hassle to subscript every number, I’ll use

another convention that if the number isn’t subscripted, it’s a base-ten number. Yes,

like everyone has been doing all along, only I’ve taken the effort of explicitly

mentioning the convention.

base-2: binary

What you have to remember is that there’s nothing special about using 10 (that is,

ten) as the base number; it could have just as well been 2 (binary), 8 (octal), 16

(hexadecimal). True story: in the later decades of the 18th century, when the French

were developing the metric system to standardize, well, everything, there were also

proposals for going to a duodecimal (base-12) system, because of its many factors.

The only reason base-ten is popular is because humans have ten fingers, and that’s all

there is to it.

As an example, let’s look at the binary (base-2) system. This system is kinda special in

that it is the simplest base-N system, using only two numbers 0 and 1. It is also perfect

for clear-cut choices: on/off, black/white, high/low. This makes it ideal for computer-

systems and since we’re programmers here, you’d better know something about

binary.

As said, you only have two symbols (BInary digiTs, or bits) here: 0 and 1. In the

decimal system, you have ten symbols before you have to add a new numeral to the

string: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. But in a binary system you’ll already need a second

numeral for two: 0, 1, 10 (with two represented by ‘10’). This means that you get large

strings fairly quickly. For example, let’s look the number 1025 again. To write this

down in binary we have to find the multipliers for the powers of two that will add up

to 1025. First, of course, we need the powers of two themselves. The first 11 are:

exponent binary decimal

Tonc - GBA Programming in rot13

640 / 757

0 1 1

1 10 2

2 100 4

3 1000 8

4 1,0000 16

5 10,0000 32

6 100,0000 64

7 1000,0000 128

8 1,0000,0000 256

9 10,0000,0000 512

10 100,0000,0000 1024

Table A.1: powers of two

As you can see, the length of binary numbers rises really quickly. With longer numbers

it’s o�en difficult to see the actual size of the critter, so I comma-separated them into

numeral groups of 4. If you’re serious about programming, you need to know the

powers of two, preferably up to 16. The nice thing about binary is that you won’t have

to worry much about the multiplication factors of the powers, as the only possibilities

are 0 and 1. This makes decimal↔binary conversions relatively easy. For 1025, it is:

1025ten = 1024 + 1

= 210 + 20

= 100,0000,0001bin

An interesting and completely fortuitous factoid about binary is that 210=1024 is

almost 103=1000. Because of this, you will o�en find powers of 1024 indicated by

metric prefixes: kilo-, mega-, giga- etc. The correspondence isn’t perfect, of course,

but it is a good approximate. It also gives salesmen a good swindling angle: since in

the computer world powers of 2 reign supreme, one Megabyte (MB) is 1.05 bytes, but

with some justification you could also use the traditional 1M = one million in memory

Tonc - GBA Programming in rot13

641 / 757

sizes, and thus make it seem that your product has 5% more memory. You will also

see both notations used randomly in Windows programs, and it’s almost impossible

to see whether or not that file that Explorer says is 1.4MB will fit on your floppy disk or

not.

For this reason, in 1999, the IEC began to recommend a separate set of binary prefixed

units based on powers of 1024. These include kibibyte (KiB) for 1024 bytes, mebibyte

(MiB) for 1048576 bytes, and gibibyte (GiB) for 1073741824 bytes.

base-16, hexadecimal

In itself, binary isn’t so difficult, it’s just that the numbers are so large! The solution for

this given above was using commas to divide them into groups of four. There is a

better solution, namely hexadecimal.

Hexadecimal is the name for the base-16 system, also known as hex. That an

abbreviation exists should tell you something about its prevalence. As you should be

able to guess by now, there are 16 symbols in hex. This presents a small problem

because we only have 10 symbols associated with numbers. Rather than invent new

symbols, the first letters of the alphabet are used, so the sequence becomes: 0, 1, 2, 3,

4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Hex is more concise than binary. In fact, since 16 is 24, you

can exactly fit four bits into one hex digit, so hex is exactly 4 times as short as binary.

This is also why I used groups of four earlier on. If you know the powers of 2, then you

automatically know the powers of 16 too, but rather than decompose numbers into

powers of 16, it’s o�en easier to go to binary first, make groups and convert those to

hex.

1025ten = 100,0000,0001bin

= 401bin·16
2 + 1·160

= 401hex

A hexadecimal digit is o�en called a nybble or a nibble, which fits in nicely with the bit

and the byte. Speaking of bytes, bytes are conventionally made up of 8 bits, and

Tonc - GBA Programming in rot13

642 / 757

Table A.2: counting to

twenty in decimal, binary,

hex and octal. Note the

alternating sequences in

the binary column.

dec bin hex o

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 a

11 1011 b

12 1100 c

13 1101 d

14 1110 e

15 1111 f

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

hence 2 nybbles. So you can conveniently write down bytes

and multiple byte types in nybbles. My personal preference

in dealing with hex numbers in to always use an even

number of nybbles, to correspond with the whole bytes, but

that’s just me. Hexadecimal is so engrained in the computer

world that it not only has an abbreviation, but also a number

of shorthand notations indicating numbers are indeed hex: C

uses the prefix 0x , in assembly you might find \$, and in

normal text the affix h is sometimes used.

Depending on how low-level you do your programming, you

will see any of the three systems mentioned above. Aside

from decimal, binary and hexadecimal, you might also

encounter octal (C prefix 0) from time to time. Now, even if

you know never intend to use octal, you might use it

accidentally. If you would like to align your columns of

numbers by padding them with zeros, you are actually

converting them to octal! Yet one more of those fiendish little

bugs that will have you tearing your hair out.

Using the positional system

Using a base-N positional system has a number of

advantages over the other number systems. For starters,

numbers don’t get nearly as long as the carving system; and

you don’t have to invent new symbols for higher numbers,

like in the Roman system. It’s also easier to compare two

numbers using either the lengths of the strings or just the

first number. There’s also a tie with probability theory: each

individual digit has N possibilities, so a number-string with length m has Nm

possibilities.

Tonc - GBA Programming in rot13

643 / 757

Where it really comes into its own is arithmetic. The positions in a number-string are

equivalent, so the steps for adding ‘3+4’ are the same for ‘30+40’. This will allow you to

break up large calculations into smaller, easier ones. If you can do calculations for

single-symbol numbers, you can do them all. What’s more, the steps themselves are

the same, regardless of which base you use. I won’t show you how to do addition in

binary or hex, as that’s rather trivial, but I will demonstrate multiplication. Here’s an

example of calculating ‘123 × 456’, in decimal and hexadecimal. I’ve also given the

multiplication tables for convenience.

Table A.3a: decimal multiplication table

x 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 4 6 8 10 12 14 16 18 20

3 3 6 9 12 15 18 21 24 27 30

4 4 8 12 16 20 24 28 32 36 40

5 5 10 15 20 25 30 35 40 45 50

6 6 12 18 24 30 36 42 48 54 60

7 7 14 21 28 35 42 49 56 63 70

8 8 16 24 32 40 48 56 64 72 80

9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

Table A.3b: hex multiplication table

x 1 2 3 4 5 6 7 8 9 A B C

1 1 2 3 4 5 6 7 8 9 A B C

2 2 4 6 8 A C E 10 12 14 16 18

3 3 6 9 C F 12 15 18 1B 1E 21 24

4 4 8 C 10 14 18 1C 20 24 28 2C 30

5 5 A F 14 19 1E 23 28 2D 32 37 3C

6 6 C 12 18 1E 24 2A 30 36 3C 42 48

7 7 E 15 1C 23 2A 31 38 3F 46 4D 54

Tonc - GBA Programming in rot13

644 / 757

8 8 10 18 20 28 30 38 40 48 50 58 60

9 9 12 1B 24 2D 36 3F 48 51 5A 63 6C

A A 14 1E 28 32 3C 46 50 5A 64 6E 78

B B 16 21 2C 37 42 4D 58 63 6E 79 84

C C 18 24 30 3C 48 54 60 6C 78 84 90

D D 1A 27 34 41 4E 5B 68 75 82 8F 9C

E E 1C 2A 38 46 54 62 70 7E 8C 9A A8

F F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4

10 10 20 30 40 50 60 70 80 90 A0 B0 C0

123 × 456, base ten

× 100 20 3 sum

400 40000 8000 1200 49200

50 5000 1000 150 6150

6 600 120 18 738

Result 56088

123 × 456, base 16

× 100 20 3

400 40000 8000 C0

50 5000 A00 F0

6 600 c0 12

Result

In both cases, I followed exactly the same procedure: break up the big numbers into

powers of N, lookup the individual multiplications in the tables and stick the right

number of zeros behind them, and then add them all up. You can check with a

calculator to see that these numbers are correct. Hexadecimal arithmetic isn’t any

harder than decimal; it just seems harder because they haven’t drilled it into your

brain at a young age.

I should point out that 4EDC2sixteen is actually 323010ten, and not 56088ten. And it

shouldn’t be, because the second multiplication was all in hex: 123sixteen × 456sixteen,

which actually corresponds to 291ten × 1110ten. This is why implicit conventions can

cause trouble: in different conventions, the same number-string can mean completely

different things. Please keep that in mind. (Incidentally, facts like this also disprove

that mental virus known as numerology. Of course, it doesn’t in the eyes of its

Tonc - GBA Programming in rot13

645 / 757

adherents, because that’s one of the characteristics of belief systems: belief actually

grows as evidence mounts against them, instead of diminishing it.)

Look, it floats!

Something that is only possible in a positional system is the use of a floating point.

Each numeral in a number-string represents a multiplier for a power of N, but why use

only positive powers? Negative powers of x are successive multiplications of 1/x:

x−n = (1/x)n. For example, π can be broken down like this:

exp 3 2 1 0 -1 -2 -3 -4 ...

pow 1000 100 10 1 1/10
1/100

1/1000
1/10000 ...

π 0 0 0 3 1 4 1 6 ...

You can’t simply use a number-string for this; you need to know where the negative

powers start. This is done with a period: π≈3.1416. At least, the English community

uses the period; over here in the Netherlands, people use a comma. That’s yet

another one of those convention mismatches, one that can seriously mess up your

spreadsheets.

Since each base-N system is equivalent, you can do this just as well in binary. π in

binary is:

exp 3 2 1 0 -1 -2 -3 -4 ...

pow 8 4 2 1 1/2
1/4

1/8
1/16 ...

π 0 0 1 1 0 0 1 0 ...

So π in binary is 11.0010two. Well, yes and no. Unfortunately, 11.0010two is actually

3.1250, not 3.1416. The problem here is that with 4 bits you can only get a precision to

the closest 1/16 = 0.0625. For 4 decimals of accuracy you’d need about 12 bits

(11.001001000100 ≈ 3.1416). You could also use hex instead of binary, in which case

the number is 3.243Fsixteen.

Tonc - GBA Programming in rot13

646 / 757

Conversion between bases

You might wonder how I got these conversions. It’s actually not that hard: all you have

to do is divide by the base number and strip off the remainders until you have nothing

le�; the string of the remainders is the converted number. Converting decimal 1110 to

hex, for example, would go like this:

num / 16 %16

1110 69 6

69 4 5

4 0 4

result: 456h

This strategy will also work for floating point numbers, but it may be smart to break

the number up in an integer and fractional part first. And remember that dividing by a

fraction is the same as multiplying by its reciprocal. Grab your calculator and try it.

There are actually a number of different ways you can convert between bases. The

one given using divisions is the easiest one to program, but probably also the slowest.

This is especially true for the GBA, which has no hardware division. You can read

about another strategy in “Binary to Decimal Conversion in Limited Precision” by

Douglas W. Jones.

Scientific notation

Another thing that a positional system is useful for is what is known as the scientific

notation of numbers. This will help you get rid of all the excess zeros that plague big

and large numbers, as well as indicate the number of significant figures. For example,

if you look in science books, you might read that the mass of the Earth is

5,974,200,000,000,000,000,000,000 kg. There are two things wrong with this number.

First, the value itself is incorrect: it isn’t 59742 followed by 20 zeros kilograms, right

down to the last digit: that kind of accuracy just isn’t possible in physics (with the

possible exception of Quantum Mechanics, where theory can be accurate to up to a

Tonc - GBA Programming in rot13

647 / 757

https://homepage.divms.uiowa.edu/~jones/bcd/decimal.html
https://homepage.divms.uiowa.edu/~jones/bcd/decimal.html

staggering 14 decimals. That’s right, that ‘fuzzy’ stuff actually has the highest degree

of accuracy of all fields of science). When it comes to planetary masses, the first 3 to 5

numbers may be accurate, the rest is usually junk. The second problem is more

obvious: the number is just too damn long to write!

The scientific notation solves both problems. Multiplying with a power of 10

effectively moves the floating point around and thus can rid you of the zeros. The

mass of the Earth can then be written concisely as 5.9742·1024, that is, 5.9742 times 10

to the power 24. You can also come across the even shorter notation of 5.9742e+24,

where the “·10^” is replaced by an ‘e’ for exponent. Don’t misread it as a hexadecimal

number. And yes, I am aware that this is a shorthand notation of a shorthand

notation. What can I say, math people are lazy bastards. Additionally, this number

also indicates that you have 5 significant digits, and any calculation you do a�erwards

needs to respect that.

Of course, this notation will work for any base number, just remember that conversion

between bases require the whole number.

It ain’t as hard as you think

The concepts laid out in this section may seem difficult, but I assure you they are

actually quite easy to understand. All of this stuff is taught in elementary or high

school; the only thing is that they only use the decimal system there. Like I said, the

workings of the positional system is equivalent for all base numbers, the only

difference is that you’ve had lots and lots of practice with the decimal system, and

hardly any with the others. If you had memorised the multiplication tables in hex

instead of in decimal, you’d have found the latter awkward to use.

Tonc - GBA Programming in rot13

648 / 757

Of bits and bytes

Any self-respecting programmer knows that the workings of a computer are all about

little switches that can be on or off. This means that computers are more suited to a

binary (or maybe hex) representation than a decimal one. Each switch is called a bit;

computer memory is basically a sea of millions upon millions of bits. To make things a

little more manageable, bits are o�en grouped into bytes. 1 byte = 8 bits is the

standard nowadays, but some older systems had 6-, 7-, or 9-bit bytes.

Since everything is just 1s and 0s, computers are the best example on the meaning of

symbols: it’s all about interpretation here. The bits can be used to mean anything:

besides switches and numbers you can interpret them as letters, colors, sound, you

name it. In this section, I will explain a few ways that you can interpret bits. I will o�en

use a mixture of binary and hex, switching between them for convenience.

Integer number representations

An obvious use of bits would be numbers, especially integers. With 8 bits, you have

28=256 different numbers running from 0 to 1111,1111two (FFh in hex and 255

decimal). That’s not much, so there are also groupings of 16 bits (10000h or 65536

numbers) and 32 bits (10000:0000h or 4,294,967,296 numbers). In the late 2000s

decade, PCs made the transition to 64 bits CPUs; I’m not even going to write down

how much that is. The C types for these are short (16 bits), int or long (32 bits),

and long long (64 bits). The size of an int or long is actually system dependent,

but on a GBA, both are 32 bits.

Negative numbers

That you have n bits to represent a number does not necessarily mean that you have

to use them for the range [0, 2n−1], that is, positive integers. What about negative

numbers? Well, there are a number of ways you can represent negative numbers. A

very simple way could be to use one of the bits as a sign bit: 0 for positive numbers

Tonc - GBA Programming in rot13

649 / 757

and 1 for negative numbers. For example, binary 1000,0001 could be ‘−1’. Some

systems use this, but the GBA doesn’t, because there’s a smarter way.

Let’s bring out our odometers again. In an three-digit odometer, you could go from 0

to 999. Forget what a three-digit odometer says about the quality of the car, just focus

on the numbers. At 999, every digit will roll over and you’ll be back at 0 again. You

could also argue that the number before 0 is 999. In other words, ‘999’ would be the

representation of −1. You could split the full one thousand range into one half for the

first positive five hundred (0 to 499), and the other for the first negative five hundred

(−500 to −1), as counting backward from 0, using the roll-over. This type of numbering

is called be ten’s complement. The table below shows how this works for 3 digits.

Number -500 -499 -498 ... -2 -1 0 1 ... 49

Representation 500 501 502 ... 998 999 0 1 ... 49

Table A.4: ten's complement for 3 digits

That’s the practice, now the theory behind it. Negative numbers are deeply tied to

subtraction; you could almost consider it part of their definition. Basically, for every

number x, the following should be true:

(A.2) 0 = *x* + (−*x*)

This could be considered zeros’ complement: the number (−x) is the number you need

to add to x to get 0. In ten’s complement, they need to add up to 10 or a power of 10.

In our odometer, 1000 will have the same representation as 0, and counting back from

one thousand will be the same as counting back from zero. However, you must know

the number of digits beforehand; otherwise it won’t work. The actual representation

of -x using m digits, can be derived as follows:

(A.3)

0 = 𝑥 + (− 𝑥)
≅ ≅

10𝑚 = 𝑥 + (− 𝑥)
(10𝑚 − 1) − 𝑥 + 1 = −𝑥

Tonc - GBA Programming in rot13

650 / 757

Don’t panic, these equations aren’t as nasty as they seem. Remember that for m

digits, the highest number is 10m−1. If m = 3, then that’d be 999 in decimal, 111 in

binary or FFF in hex. This will allow you to do the subtraction by x without borrowing.

There’s more to 10’s complement then a way to express negative numbers; it’ll also

turn subtraction into a form of addition: subtraction by y is equivalent to addition by

its 10’s complement. That feature was part of the system from the start, and the other

schemes of negative number representations don’t have that property. Checking this

is le� as an exercise for the reader.

The binary version of 10’s complement is two’s complement. Finding the two’s

complement of a number is actually easier than in other cases: the subtraction of

10m−1 by x is just the inversion of all the bits of x. Take 76, for example:

255: 1111 1111

76: 0100 1100 −

179: 1011 0011

The 8bit −76 would be 179+1=180 (10110100two) and you will indeed see that 180+76

= 256 = 28, exactly as it should be.

Signed is not unsigned

I’ve already mentioned this before, but it’s important enough to state it again: when

using 10’s complement, you must know the number of digits ahead of time, otherwise

you won’t know what to subtract x from. Most of the time you can remain blissfully

ignorant of this fact, but there are a few instances where it really does matter. In C or

assembly programming, you have two types of integer numbers: signed and

unsigned, and only the signed types are in two’s complement. The difference

manifests itself in the interpretation of the most significant bit: in unsigned numbers,

it’s just another bit. But in signed numbers, it acts as a sign-bit, and as such it needs to

be preserved in certain operations as type-casting or shi�ing. For example, an 8-bit

Tonc - GBA Programming in rot13

651 / 757

FFsixteen is a signed ‘−1’ or an unsigned ‘255’. When converting to 16 bits, the former

should become FFFFsixteen, while the latter would remain 00FFsixteen. If you ever see

stuff go completely bonkers when numbers become negative, this might be why.

Here are a few guidelines for choosing signed or unsigned types. Intrinsically signed

types are numbers that have a physical counterpart: position, velocity, that kind of

stuff. A key feature of these is that you’re supposed to do arithmetic on them.

Variables that act as switches are usually unsigned, the bitflags for enabling features

on a GBA are primary examples. These usually use logical operations like masking and

inverting (see the section on bit operations). Then there are quantities and counters.

These can be either signed or unsigned, but consider starting with signed, then switch

to unsigned if you really have to. Again, these are just recommendations, not

commandments that will land you in eternal damnation if you break them.

Unsigned and signed types can behave differently under type casting,

comparison and bit-operations. A byte x containing FFh could mean a signed −1

or an unsigned 255. In that case:

FFh signed unsigned

comparison x<0 true false

conversion to 16 bit FFFFh (-1) 00FFh (255)

shi� right by 1 FFh (-1) 7Fh (127)

Characters

No, I’m not talking about GBA-tiles, but the letter variety (this possible confusion is

why I’m not fond of the name ‘character’ for tiles). For everyday purposes you would

need 2×26 letters, 10 numerals, a bunch of punctuation signs and maybe a few extra

things on the side: that’s about 70 characters at least, so you’d need 7 bits to indicate

them all (6 would only allow 26=64 characters). Better make it 8 bits for possible

future expansion, and because it’s a nice round number. In binary that is. That’s part

of the reason why the byte is a handy grouping: one character per byte.

Tonc - GBA Programming in rot13

652 / 757

ASCII

Knowing which characters you need is only part of the story: you also need to assign

them to certain numbers. The order of any alphabet is, again, just a convention (well,

there are orders that are more logical than others, see Tolkien’s Tengwar, “The Lord of

the Rings”, Appendix E, but the Latin alphabet is completely random). One possible

arrangement is to take a normal keyboard and work your way through the keys.

Fortunately, this isn’t the standard. The common code for character assignments is

ASCII: American Standard Code for Information Interchange.

The lower 128 characters of ASCII are given below. The first 32 are control codes. Only

a few of these are still of any importance: 08h (backspace, \b), 09h (tab, \t), 0Ah

(Line Feed, \n) and 0Dh (Carriage Return, \r). If you have ever downloaded text files

from Unix/Linux servers, you might have noticed that all the line breaks have been

removed: this is because CP/M, MS-DOS, and Windows use CRLF (\r\n) as the line

break, while Unix environments just use the line feed.

The real characters start at 20h, the space character. Note how the numeric,

uppercase and lowercase characters are located sequentially and in a logical fashion.

Numbers start at 30h, uppercase at 41h, lowercase at 61h. The alphabetical order of

the letters makes for easy alphabetizing, although I should point out that the 32

difference between uppercase and lowercase may cause problems.

The ASCII set also has an upper 128 characters, but these can be different for different

language settings. Normally, these will include accented characters that are frequent

in non-English languages. In a DOS environment, they also contained a number of

purely graphical characters for borders and the like. ASCII isn’t the only character set

available. Chinese and Japanese languages usually use the 16bit Unicode, as the 8bit

ASCII simply isn’t sufficient for thousands of characters. ASCII is basically a subset of

Unicode.

The C type for the character is called char. A char is actually a signed 8bit integer. I

mention this because I distinctly remember being sent on a long bughunt long ago

Tonc - GBA Programming in rot13

653 / 757

because of this little fact. To be perfectly honest, I think that the default signing of the

char-type is actually platform dependent, so consider yourself warned.

dec hex Char

0 00h NUL

1 01h

2 02h

3 03h

4 04h

5 05h

6 06h ACK

7 07h BELL

8 08h BS

9 09h HT

10 0Ah LF

11 0Bh

12 0Ch FF

13 0Dh CR

14 0Eh

15 0Fh

16 10h

17 11h

18 12h

19 13h

20 14h

21 15h

22 16h

23 17h

dec hex Char

32 20h sp

33 21h !

34 22h "

35 23h #

36 24h $

37 25h %

38 26h &

39 27h '

40 28h (

41 29h)

42 2Ah *

43 2Bh +

44 2Ch ,

45 2Dh -

46 2Eh .

47 2Fh /

48 30h 0

49 31h 1

50 32h 2

51 33h 3

52 34h 4

53 35h 5

54 36h 6

55 37h 7

dec hex Char

64 40h @

65 41h A

66 42h B

67 43h C

68 44h D

69 45h E

70 46h F

71 47h G

72 48h H

73 49h I

74 4Ah J

75 4Bh K

76 4Ch L

77 4Dh M

78 4Eh N

79 4Fh O

80 50h P

81 51h Q

82 52h R

83 53h S

84 54h T

85 55h U

86 56h V

87 57h W

dec

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Tonc - GBA Programming in rot13

654 / 757

24 18h

25 19h

26 1Ah ^Z

27 1Bh ESC

28 1Ch

29 1Dh �
30 1Eh

31 1Fh

56 38h 8

57 39h 9

58 3Ah :

59 3Bh ;

60 3Ch <

61 3Dh =

62 3Eh >

63 3Fh ?

88 58h X

89 59h Y

90 5Ah Z

91 5Bh [

92 5Ch \

93 5Dh]

94 5Eh ^

95 5Fh _

120

121

122

123

124

125

126

127

Table A.5: ASCII 0-127

IEEE(k)! Floating points

The last of the most common types is the floating point. Having, say, 32bits for a

number is nice and all, but it still means you are limited to around 4 billion characters.

This may seem like a big number, but we’ve already seen numbers that are much

bigger. The floating-point types provide a solution, using the scientific notation in

binary. I already described floating point numbers (even in binary), as well as the

scientific notation, so I won’t repeat how they work.

Describing floating-point numbers on a computer is done according to the IEEE/ANSI

standard (Institute of Electrical and Electronic Engineers / American National

Standards Institute). The floating-point format consists of 3 parts, a sign bit s, an

exponent e and a fractional part f. The following table and equation is the formatting

and meaning of a normal, 32bit float

IEEE format for 32bit float

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F E D C B A 9 8 7 6
s e f

bits name description

00-

16

f Fractional part (23 bits)

Tonc - GBA Programming in rot13

655 / 757

17-

1E

e Exponent (8 bits)

1F s Sign bit.

(A.4) 𝑥 = (− 1)𝑠 ⋅ 1.𝑓 ⋅ 2𝑒 − 127

Note that unlike signed integers, there is a real sign bit this time. Furthermore, the

number always starts with 1, and the fractional part f really is the fractional part of the

number. This makes sense, because sense, since if it weren’t, you can always move

the point around until you get a single 1 before the point. The exponent is subtracted

by 127 to allow for negative powers (similar, but not exactly like you’d get in a 2s’

complement number). Two examples:

x s e f

1.0 0 01111111 000 0000 0000 0000 0000 0000

−1.0 1 01111111 000 0000 0000 0000 0000 0000

Eq 4 will hold for the usual causes, but there are a few exceptions to this rule.

If e = f = 0, then x = 0. Note that the sign-bit can still be set to indicate a le�-limit

to zero.

If e = 0 and f ≠ 0, then the number is too small to be normalized, x = (−1)s × 0.f ×

2−127

If e = 255 and f = 0, then the x = +∞ or x= −∞

If e = 255 and f ≠ 0, then x = NaN, or Not a Number. √−1 would be NaN, for

example.

The 32bit float has a 23bit fractional part, meaning 24 bits of precision. Each 10 bits

mean roughly one decimal, so that 24 bits give around 7 decimals of precision, which

may or may not be enough for your purposes. If you need more, there are also the 8

byte double and and 10 byte long double types, which have more exponent and

fractional bits.

Tonc - GBA Programming in rot13

656 / 757

As you can probably tell, the floating-point format isn’t nearly as easy to understand

as an integer. Both arithmetic and int-float conversion is tricky. This isn’t just for us

humans, but computers can have a hard time with them too. PCs usually have a

separate floating-point unit (FPU) for just these numbers. The GBA, however, does

not. As such, the use of floating-point numbers is strongly discouraged on this system.

So does that mean that, if we want to use fractions and decimals and such, we’re

screwed? No, the solution to this particular problem is called fixed-point math, and I’ll

explain that here.

AAaagghhh! The endians are coming!

There is one convention I have completely overlooked throughout this chapter:

endianness. This is about the reading order numbers, bits and bytes. I have always

just assumed that in a number, the le�most digit is the most significant number, that

is, the highest power of N. So 1025 is read as one thousand twenty-five. That’s big-

endian, so named because the big-end (the highest power) goes first. There is also

little-endian, in which the little-end (lowest power) goes first. In that case, 1025 would

be read as five thousand two hundred and one. Once again, it’s a trivial convention,

but it matters greatly which one you use. Both have their merits: speech is usually big-

endian and our number system reflects that (except in a few countries which place the

ones before the tens (five and twenty), which can be quite confusing). Arithmetic,

however, usually starts at the little-end, as do URLs.

Computer endianness plays a part in two areas: bit-order in a byte and byte-order in a

multi-byte type such as an int. Since the byte is usually the smallest chunk you can

handle, the bit-order is usually of little concern. As a simple example, look at the int

0x11223344. This will be stored differently on different systems, see the table below.

Try to think of what would happen if you save this in a file and then transfer that to a

computer with a different endian-scheme.

memory 00 01 02 03

big 11 22 33 44

little 44 33 22 11

Tonc - GBA Programming in rot13

657 / 757

Table A.6: storing 0x11223344

So what should we use then? Well, that’s just it: there is no real answer. A benefit of

big-endian is that if we see a memory dump, the numbers will be in the human

reading-order. On the little-endian side, lower powers are in lower memory, which

makes more sense mathematically. Additionally, when you have a 16bit integer x =

0x0012, when you cast its address to a 8bit pointer, the value will be preserved which,

personally, I think is a good thing.

There is actually one place where you can see the bits-in-byte order: bitmaps. In

particular, bitmaps with a bit depth less than 8. A byte in a 4bpp bitmap will represent

two pixels. In a BMP, the high-nybbles are the even pixels and low-nybbles the odd

ones. GBA graphics work exactly the other way around. One could say that BMP bits

are big-endian and GBA bits are little-endian (bytes, however, are little-endian on both

PCs and GBA). Another endianness-related thing about bitmaps is the color order,

RGB (red-green-blue), or BGR (blue-green-red). There are so many pitfalls here that I

don’t even want to get into this.

Interestingly, there’s one other field where endianness mucks things up: dates. In

Europe we use a little-endian scheme: day-month-year. China, Japan, and the ISO

8601 standard use big-endian dates: year-month-day. And then there’s the American

English scheme, which just had to make things difficult for themselves by using a

month-day-year scheme. This could be called middle endian, I suppose.

In the end it’s not a matter of which is ‘better’, but rather of which system you’re

working on. PCs and the GBA are little-endian; I hear that PowerPC Macs and a lot of

other RISC chips are big-endian (but I may be wrong here). Don’t get dragged into any

holy wars over this, just be aware that the different schemes exist and be careful when

porting code.

 u8 *pc;
 short i= 0x0012;
 pc= (u8*)&i;
 // little endian: *pc = 0x12, fine
 // big endian: *pc = 0x00, whups

Tonc - GBA Programming in rot13

658 / 757

https://www.rfc-editor.org/ien/ien137.txt

Bit operations

As the name implies, bit operations (bit-ops) work at the individual bit level and are

therefore the lowest operations you can think of. Most Real World applications have

little need for bit-fiddling and therefore use bit-ops sparingly, if at all. A good number

of programming languages don’t even have them. Assembly and C (and Java) belong

to the ones that do, but if you look at course books, bit operations are usually moved

to the back pages (yes, I am aware that I’m doing this too, but remember that Tonc

isn’t meant as a general programming tutorial; you should know this stuff already.

Most of it, anyway). As GBA programming is done very close to the hardware, with

effects taking place depending on whether individual bits are set (1) or clear (0), a

good understanding of bit operations is essential!

The basic list of bit-ops is: OR, AND, NOT, XOR, shi� le�/right, rotate le�/right. That’s 8

operations, though someone proficient with Occam’s Razor could cut this list down to

5, perhaps even four items. Of these, only OR, AND and XOR are ‘true’ bit operations:

they can be used to change the value of a single bit. The rest change all the bits of a

variable.

True bitwise bit operations

There are 3 bitwise operators: OR ((inclusive or, symbol ‘&’), AND (symbol ‘|’) and XOR

(exclusive or, symbol ‘^’)). These are binary operators, as in ‘taking two arguments as

their inputs’. They’re called bitwise operators because that the nth bit of the result is

only affected by the nth bits of the operands. AND and OR work pretty much as their

logical counterparts (&& and ||). In c=a&b, a bit in c will be 1 only if that bit is 1 in

both a and b. For OR, the a-bit or b-bit (or both) must be 1 . XOR doesn’t have a logical

counterpart, but it is more closely linked to the Real Word definition of ‘or’: XOR is 1 if

either the a-bit or the b-bit is 1 (but not both).

There is a fourth operation that is o�en included in this group, namely NOT (ones’

complement, symbol ‘’). NOT is a unary operator, and inverts all bits of the operand,

which is basically XORring with −1 (which is all 1 s in binary). The bitwise NOT is

Tonc - GBA Programming in rot13

659 / 757

similar to the logical not (‘!’). There is an important difference between the logical

operations (‘&&’, ‘||’ and ‘!’) and their bitwise counterparts (‘&’, ‘|’ , ‘’), try not to

confuse them.

What these four operations do is usually written down in truth tables, which list all

possible input combinations and their results. Note that the truth tables look at each

bit individually, not the variable as a whole, even though the operators themselves

always act on variables. Table 8 shows examples of these operators on bytes 0Fh and

35h.

a b a&b a|b a^b

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

a ~a

0 1

1 0

Table A.7: bit operations

Table A.8a: bit-ops examples

AND

0Fh 00001111

35h 00110101 &

05h 00000101

OR

0Fh 00001111

35h 00110101 |

3Fh 00111111

XOR

0Fh 00001111

35h 00110101

3Ah 00111010

I hope you’ve noticed that some of the bits were colored. Yes, there was a point to

this. Knowing what the bit-ops do is one thing; knowing how to use them is another. A

bit is a binary switch, and there are four things you can do to a switch: leave it alone,

flip it, turn it on, and turn it off. In other words, you can:

keep the current state,

toggle it (0→1, 1→0),

set it (x→1), and

clear it (x→0)

Tonc - GBA Programming in rot13

660 / 757

If you look at the truth tables and the examples, you may already see how this can

work. OR, AND, XOR are binary operators, and you can think of the two operands as a

source variable s and a mask variable m which tells you which of the bits are affected.

In table 8a I used s=35h and m=0Fh; the mask consists of the set bits (in blue), the red

bits were the ones that were affected. If you examine the table, you’ll see that an OR

sets bits, a XOR toggles it and an AND keeps bits (i.e., clears the unmasked bits). To

clear the masked bits, you’d need to invert the mask first, so that would be an s AND

NOT m operation. Note that the first three are commutative (s OP m = m OP s), but

the last one isn’t. This masking interpretation of the bit operations is very useful, since

you’ll o�en be using them to change the bits of certain registers in just this way, using

C’s assignment operators like ‘|=’.

AND (keep bits)

s & m

35h 00110101

0Fh 00001111 &

05h 00000101

OR (set bits)

s | m

35h 00110101

0Fh 00001111 |

3Fh 00111111

XOR (flip bits)

s ^ m

35h 00110101

0Fh 00001111

3Ah 00111010

Table A.8b: bit-ops examples encore, using source s=35h and

Non-bitwise bit operations

And then there are the shi� and rotate operations. In contrast to the earlier

operations, these act on a variable as a whole. Each variable is a string of bits and

with the shi� and rotate operations you can move the bits around. Both have le� and

right variants and are binary operations, the first operand is the source number, and

the second is the amount of bits to move. I’ll refer to shi� le�/right as SHL and SHR

and rotate le�/right as ROL and ROR for now. These sound like assembly instructions,

but they’re not. At least, not ARM assembly. Shi� le�/right have C operators ‘<<’ and

‘>>’, but there are no C operators for a bit-rotate, although you can construct the effect

using shi�s. As said, shi� and rotate move bits around a variable, in pretty much the

way you’d expect:

Tonc - GBA Programming in rot13

661 / 757

name symbol example result

shi� le� SL, << 00110101 << 2 11010100 , D4h

shi� right SR, >> 00110101 >> 2 00001101 , 0Dh

rotate le� ROL 00110101 ROL 3 10101001 , A9h

rotate right ROR 00110101 ROR 3 10100110 , A6h

Table A.9: shi� / rotate operations on byte 35h (00110101)

Shi�ing has two uses. First of all, you can easily find the n bit, or the nth power of 2 by

using 1<< n. Speaking of powers, shi�ing basically comes down to adding zeros or

removing bits, which is essentially multiplying or dividing by 10. Binary 10, that is. So

you could use shi�ing to quickly multiply or divide by 2. The latter is especially useful,

since division if very, very costly on a GBA, while shi�ing is a one-cycle operation. I

can’t really thing of a use for rotation right now but I’m sure they’re there.

OK, that’s what they do in theory. In practice, however, there’s a lot more to it. One

thing that is immediately obvious is that the size of the variable is important. A rotate

on an 8bit variable will be very different then a rotate on a 16bit one. There is also the

possibility of including the carry bit in the rotation, but that doesn’t really matter for

the moment because bit rotation is purely an assembly matter, and that’s beyond the

scope of this page.

What does matter is a few nasty things about shi�ing. Shi�-le� isn’t much of a

problem, unless you shi� by more than the amount of bits of the variable. Shi�-right,

however, has one particular nasty issue for negative numbers. For example, an 8bit −2

is represented in twos’ complement by FEh . If you shi�-right by one, you’d get 7Fh ,

which is 128, and not −2/2 = −1. The problem here is that the first bit acts as a sign bit,

and should have special significance. When shi�ing- right, the sign-bit needs to be

preserved and extended to the other bits, this will ensure that the result is both

negative and represents a division by a power of two. There are actually two right-

shi� instructions, the arithmetic and the logical shi� right (ASR and LSR); the former

extends the sign bit, the latter doesn’t. In C, the signing of the variable type

determines which of these instructions is used.

Tonc - GBA Programming in rot13

662 / 757

Take the interesting case of the 8bits 80h, which is both the unsigned 128 as the

signed −128. A right-shi� by 3 should result in 16 and −16, respectively. This would be

10h for the unsigned and F0h for the signed case, and lo and behold, that is exactly

what you’d get by sign-bit extension or not.

type char unsigned signed

1000 0000 128 −128

80h>>3 0001 0000 1111 0000

 16 −16

Table A.10: signed and unsigned 80h>>3

I know this seems like such a small and trivial issue, and indeed, it usually is. But

when it isn’t, you could be looking at a long bughunt. This isn’t limited to just shi�ing,

by the way, all bit operations can suffer from this problem.

Arithmetic with bit operations

The shi� operators can be used to divide and multiply by powers of two. The other

bit-ops also have arithmetic interpretations.

For example, a modulo of a power of two basically cuts away the upper bits, which

can be done with an AND operation: x%2n = x AND 2n−1. For example, x%8 = x&7.

An OR operation can be used as an addition, but only if the affected bits were 0 to start

with. F0h | 01h = F1h, which is the same as F0h+01h. However, F0h | 11h = F1h too, but

F0h+11h is actually 101h. Be careful with this one, and make note of it when you see it

in other people’s code.

Thanks to two’s’’s complement, we can use XOR as a subtraction: (2n−1)−x =

(2n−1) XOR x. This can be used to reverse the traversal order of loops, for example,

which can be useful when you want collision detection with flipped tiles. Yes, it’s a bit

of a hack, but so what?

Tonc - GBA Programming in rot13

663 / 757

OR and XOR are only very rarely used in their arithmetic form, but the shi�s and AND

can be seen with some regularity. This is especially true on a system with no hardware

division (like the GBA), in which case division and modulo are expensive operations.

That is why powers of two are preferred for sizes and such, the faster bit operations

can then be used instead. Fortunately, the compiler is smart enough to optimize, say,

division by 8 to a right-shi� by 3, so you don’t have to write down the bit-op version

yourself if you don’t want to. Mind you, this will only work if a) the second operand is

a constant and b) that constant is a power of two.

bit-op arithmetic function example

SHL x<<n = x * 2n x<<3 = x * 8

SHR x>>n = x / 2n x>>3 = x / 8

AND x&(2n−1) = x % 2n x&7 = x % 8

Table A.11 Arithmetic bit-ops summary

And now for my final trick of the day, let’s take a closer look at the most basic of

arithmetic operations, addition. The addition of 2 bits to be precise, and the

truthtable of that can be found in table 12 below. If you’ve paid attention so far (well

done! I didn’t think anyone would make it this far �P), there should be something

familiar about the two columns that make up the result. The right column is just

a XOR b and the le� column is a AND b. This means that you can create a 1-bit adder

with just an AND and a XOR port, electric components that can be found in any Radio

Shack, or its local equivalent. String 8 of these together for an 8-bit adder, and you’ll

have yourself the foundation of an 8bit computer, cool huh?

int ii, mask;

for(ii=0; ii<8; ii++)
{
 // array direction based on mask
 // mask=0 -> 0,1,2,3,4,5,6,7
 // mask=7 -> 7,6,5,4,3,2,1,0
 ... array[ii^mask] ...
}

Tonc - GBA Programming in rot13

664 / 757

a b a+b

0 0 00

0 1 01

1 0 01

1 1 10

Table A.12: 1−bit

adder

Beware of bit operations

There are two things you should always remember when you’re using bit operations.

I’ve already mentioned the first, that they can mess with the sign of the variables. This

is only relevant for signed integers, though.

The second problem is concerns the level of precedence of the bit operations. Except

for NOT (~), the precedence is very low; lower than addition, for example, and even

lower than conditional operators in some cases. Your C manual should have a

precedence list, so I’ll refer you to that for details. In the mean time, be prepared to

drown your code in parentheses over this.

Tonc - GBA Programming in rot13

665 / 757

B. Fixed-Point Numbers and LUTs

What are fixed-point numbers

Fixed-point math

Faking division (optional)

Look-up Tables

What are fixed-point numbers

Roughly put, there are two types of numbers: integers and floating-points. For most

serious math you would get nowhere with integers because, by definition, they don’t

allow fractions. So for 3D games you’d use floating-point math. Back in the old days,

before the arrival of specialized floating-point hardware, that stuff was very slow! Or

at least slower than integer arithmetic. Fortunately, there is a way of faking numbers

with decimal points with integers. This is known as fixed-point math.

General fixed-point numbers

Here’s an example. Say you have $10.78 (ten dollars and seventy-eight cents) in

wallet. If you want to write this amount as an integer you have a problem, because

you’d either have to leave off the fractional part ($10) or round it to $11. However, you

could also write it down not in dollars, but in cents. That way you’d write 1078, which

is an integer, problem solved.

That’s the way fixed-point math works. Instead of counting units, you count fractions.

In the previous example, you count in cents, or hundredths. Fixed-points have a in

integer part (the “10”), and a fractional part (“78”). Since we have 2 digits for the

fractional part, we call this a fixed-point number in an x.2 format.

Tonc - GBA Programming in rot13

666 / 757

Note that PCs have floating-point units (FPU) since the mid-1990s. This makes

floating-point arithmetic just as fast as integer arithmetic (sometimes even faster) so

using fixed-point math is not really worth the trouble except, perhaps, in rasterization,

since the conversion from float s to int s is still slow. However, the GBA doesn’t do

floating-point stuff well, so it’s fixed math all the way.

GBA fixed-point usage

Because computers use the binary system, using decimals would be silly as a basis for

fixed-points would be silly. Fortunately, you can do fixed-point math in any base,

including binary. The basic format is i.f, where i is number of integer bits, and f the

number of fractional bits. O�en, only the fractional is important to know, so you’ll

also come across just the indication ‘.f’.

The GBA uses fixed-point math in a number of cases. The affine parameters, for

example, are all .8 fixed-point numbers (“fixeds”, for short). Effectively, this means

you’re counting in 1/28 = 1/256ths, giving you a 0.004 accuracy. So when you write 256

to a register like REG_BG2PA, this is actually interpreted as 256/256=1.00.

REG_BG2PA=512 would be 2.00, 640 is 2.50, et cetera. Of course, it is a little hard to see

in the decimal system, but grab a calculator and you’ll see that it’s true. For this

reason, it is o�en more convenient to write them down as hex numbers:

256=0x100→1.00, 512=0x200→2.00, 640=0x280→2.50 (remember that 8 is 16/2, or one

half).

The affine registers aren’t the only places fixed-points are used, though that’s where

they are the most recognizable. The blend weights are essentially fixed-point

// .8 fixed point examples : counting in fractions of 256

int a= 256; // 256/256 = 1.00
int a= 1 << 8; // Ditto
int a= 0x100; // Ditto

int b= 0x200; // 0x200/256 = 512/256 = 2.00
int c= 0x080; // 0x080/256 = 128/256 = 0.50
int d= 0x280; // 0x280/256 = 640/256 = 2.50

Tonc - GBA Programming in rot13

667 / 757

numbers as well, only they are 1.4 fixeds, not .8 fixeds. This is an important point,

actually: the position you set the fixed-point to is arbitrary, and you can even switch

the position as you go along. Now, the numbers themselves won’t tell you where the

point is, so it is important to either remember it yourself or better yet, write it down in

the comments. Trust me, you do not want to guess at the fixed-point position in the

middle of a lengthy algorithm.

COMMENT YOUR FIXED-POINT POSITION

When you use fixed-point variables, try to indicate the fixed-point format for

them, especially when you need them for longer calculations, where the point

may shi� position depending on the operations you use.

Fixed-point and signs

Fixed-point numbers are supposed to be a poor man’s replacement for floating-point

numbers, which would include negative numbers as well. This means that they’re

supposed to be signed. Or at least, usually. For example, the affine registers use

signed 8.8 fixeds, but the blend weights are unsigned 1.4 fixeds. You may think it

hardly matters, but signs can really mess things up if you’re not careful. Say you’re

using fixed-points for positions and velocities. Even if your positions are always

positive, the velocities won’t be, so signed numbers would be more appropriate.

Furthermore, if your fixed-point numbers are halfwords, say 8.8 fixeds, a signed ‘−1’

will be used as 0xFFFFFFFF , i.e. a proper ‘−1’, but an unsigned ‘−1’ is 0x0000FFFF ,

which is actually a positive number. You won’t be the first person to trip over this, nor

would be the last. So signed fixeds, please.

Another point of notice is the way signed fixeds are o�en indicated. You may see

things of the form ‘1.n.f’. This is meant to indicate one sign bit, n integer bits and f

fractional bits. Technically speaking, this is false. Fixed-point numbers are just plain

integers, just interpreted as fractions. That means they follow two’s complement and

that, while a set top bit does indicate a negative number, it isn’t the sign bit. As I

Tonc - GBA Programming in rot13

668 / 757

mentioned, ‘−1’ in two’s complement is 0xFFFFFFFF , not 0x80000001 as is the case

with sign and magnitude. You might not think much of this distinction and that it’s

obvious that it’s still two’s complement, but considering that floating-point formats

do have a separate sign bit, I’d say it’s worth remembering.

SIGNED FIXED FORMAT NOTATION

Signed fixed-point formats are sometimes indicated as ‘1.n.f’. From that, you

might think they have a separate sign bit like floating-point formats, but this is

not correct. They’re still regular integers, using two’s complement for negative

numbers.

Fixed-point math

Knowing what fixed-point numbers are is one thing, you still have to use them

somehow. Three things concern us here.

Converting between regular integers or floats and fixed-point numbers.

Arithmetical operations.

Overflow.

None of these items are difficult to understand, but each does have its awkward

issues. In fact, overflow is merely an issue, not really an item. This section will focus

on 24.8 signed fixeds, for which I will use a “FIXED” typedef’ed int. Although it only

uses this fixed-point format, the topics covered here can easily be applied to other

formats as well.

Converting to and from fixed-points

I’m not really sure is “conversion” is even the right word here. The only difference

between fixed-point numbers and normal ones is a scaling factor M. All that’s

Tonc - GBA Programming in rot13

669 / 757

necessary to go from a FIXED to an int or float is account for that scale by either

multiplication or division. Yes, it really is that simple. As we’re using power-of-two’s

for the scales, the integer↔FIXED conversion can even be done with shi�s. You can

add the shi�s in the code yourself, but the compiler is smart enough to convert

power-of-two multiplications and divisions to shi�s itself.

Rounding off and negative number inconsistencies

The conversions are almost as simple as described above. The two places where

things may be problematic are round-off inconsistencies and negative fractions. Note

that I said they may be problematic; it depends on what you had in mind. I am not

going to explain all the ins and out here, because they generally won’t be much of a

problem, but you need to be aware of them.

typedef s32 FIXED; //! 32bit FIXED in 24.8 format

// For other fixed formats, change FIX_SHIFT and the rest goes with it.

//! Convert an integer to fixed-point
INLINE FIXED int2fx(int d)
{ return d<<FIX_SHIFT; }

//! Convert a float to fixed-point
INLINE FIXED float2fx(float f)
{ return (FIXED)(f*FIX_SCALEF); }

//! Convert a fixed point value to an unsigned integer.
INLINE u32 fx2uint(FIXED fx)
{ return fx>>FIX_SHIFT; }

//! Get the unsigned fractional part of a fixed point value (orly?).
INLINE u32 fx2ufrac(FIXED fx)
{ return fx&FIX_MASK; }

//! Convert a FIXED point value to an signed integer.
INLINE int fx2int(FIXED fx)
{ return fx/FIX_SCALE; }

//! Convert a fixed point value to floating point.
INLINE float fx2float(FIXED fx)
{ return fx/FIX_SCALEF; }

Tonc - GBA Programming in rot13

670 / 757

If you’re not new to programming, you will undoubtedly be aware of the problem of

round-off from floats to ints: a simple cast conversion truncates a number, it does not

really round it off. For example, ‘(int)1.7’ gives 1 as a result, not 2. The earlier macros

have the same problem (if you can call it that). Float-to-int rounding is done by adding

one half (0.5) to the float before rounding, which we can also apply to fixed-point

conversion. In this case, of course, the value of one half depends on the number of

fixed-point bits. For example, .8 fixeds, ½ is 0x80=128 (256/2), for .16 fixeds it is

0x8000=32768. Add this before shi�ing down and it’ll be rounded off properly. There

are actually multiple ways of rounding off, which you can read about in “An

Introduction to Fixed Point Math” by Brian Hook.

And then there are negative numbers. Frankly, division on negative integers is always

a bitch. The basic problem here is that they are always rounded towards zero: both

+3/4 and −3/4 give 0. In some ways this makes sense, but in one way it doesn’t: it

breaks up the sequence of outputs around zero. This is annoying on its own, but

what’s worse is that right-shi�ing doesn’t follow this behaviour; it always shi�s

towards negative infinity. In other words, for negative integer division, the division

and right-shi� operators are not the same. Which method you choose is a design

consideration on your part. Personally, I’m inclined to go with shi�s because they give

a more consistent result.

x -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

x/4 -2 -1 -1 -1 -1 0 0 0 0 0 0 0 1

x>>2 -2 -2 -2 -2 -1 -1 -1 -1 0 0 0 0 1

Table B.1: Division and right-shi�s around zero.

The negative division nasty is even worse when you try to deal with the fractional

part. Masking with AND effectively destroys the sign of a number. For example, a 8.8

−2¼ is −0x0240 = 0xFDC0. Mask that with 0xFF and you’ll get 0xC0 = ¾, a positive

number, and the wrong fraction as well. On the other hand 0xFDC0>>8 is −3, for better

or for worse, and −3 + ¾ is indeed −2¼, so in that sense it does work out. The question

whether or not it works for you is something you’ll have to decide on your own. If you

want to display the fixed numbers somehow (as, say -2.40 in this case), you’ll have to

Tonc - GBA Programming in rot13

671 / 757

https://web.archive.org/web/20060204155500/http://www.bookofhook.com/Article/GameDevelopment/AnIntroductiontoFixedPoin.html
https://web.archive.org/web/20060204155500/http://www.bookofhook.com/Article/GameDevelopment/AnIntroductiontoFixedPoin.html

be a little more creative than just shi�s and masks. Right now, I’m not even touching

that one.

CONVERTING NEGATIVE FIXED-POINT NUMBERS

The conversion from negative fixed-point numbers to integers is a particularly

messy affair, complicated by the fact that there are multiple, equally valid

solutions. Which one you should choose is up to you. If you can, avoid the

possibility; the fixed→int conversion is usually reserved for the final stages of

arithmetic and if you can somehow ensure that those numbers will be positive,

do so.

Arithmetical operations

Fixed-point numbers are still integers, so they share their arithmetic operations.

However, some caution needs to be taken to keep the fixed point in its proper

position at times. The process is the same as arithmetic on decimals. For example,

0.01+0.02 = 0.03 ; what you will usually do for this sum is remove the decimal point,

leaving 1 and 2, adding those to give 3, and putting the decimal point back. That’s

essentially how fixed-points work as well. But when adding, say, 0.1 and 0.02, the

fixed decimals aren’t 1 and 2, but 10 and 2. The key here is that for addition (and

subtraction) the point should be in the same place.

A similar thing happens for multiplication and division. Take the multiplication

0.2×0.3. 2×3 equals 6, then put the point back which gives 0.6, right? Well, if you did

your homework in pre-school you’ll know that the result should actually be 0.06. Not

only do the decimals multiply, the scales multiply as well.

Both of these items apply to fixed-point arithmetic as well. If you always use the same

fixed point, addition and subtractions will pose no problem. For multiplication and

division, you’ll need to account for extra scaling factor as well. A fixed-fixed multiply

required a division by the scale a�erwards, whereas a fixed-fixed division needs a

scale multiply before the division. In both cases, the reason of the place of the scale

Tonc - GBA Programming in rot13

672 / 757

correction is to keep the highest accuracy. Equations 1 and 2 show this in a more

mathematical form. The fixed-point numbers are always given by a constant times the

fixed scale M. Addition and subtraction maintain the scale, multiplication and division

don’t, so you’ll have to remove or add a scaling factor, respectively.

(B.1)
𝑓𝑎 = 𝑎 ⋅𝑀
𝑓𝑏 = 𝑏 ⋅𝑀

(B.2)

𝑓𝑐 = 𝑓𝑎 + 𝑓𝑏 = (𝑎 + 𝑏) ⋅𝑀
𝑓𝑑 = 𝑓𝑎 − 𝑓𝑏 = (𝑎 − 𝑏) ⋅𝑀
𝑓𝑒 = 𝑓𝑎 ⋅𝑓𝑏 = (𝑎 ⋅ 𝑏) ⋅𝑀2

𝑓𝑓 = 𝑓𝑎 / 𝑓𝑏 = 𝑎 / 𝑏

Over- and underflow

This is actually a subset of the scaling problems of multiplication and division.

Overflow is when the result of your operation is higher that the about of bits you have

to store it. This is a potential problem for any integer multiplication, but in fixed-point

math it will occur much more o�en because not only are fixed-point numbers scaled

upward, multiplying fixeds scales it up twice. A .8 fixed multiplication has its ‘one’ at

216, which is already out of range for halfwords.

//! Add two fixed point values
INLINE FIXED fxadd(FIXED fa, FIXED fb)
{ return fa + fb; }

//! Subtract two fixed point values
INLINE FIXED fxsub(FIXED fa, FIXED fb)
{ return fa - fb; }

//! Multiply two fixed point values
INLINE FIXED fxmul(FIXED fa, FIXED fb)
{ return (fa*fb)>>FIX_SHIFT; }

//! Divide two fixed point values.
INLINE FIXED fxdiv(FIXED fa, FIXED fb)
{ return ((fa)*FIX_SCALE)/(fb); }

Tonc - GBA Programming in rot13

673 / 757

One way of covering for the extra scale is not to correct a�er the multiplication, but

before it; though you will lose some accuracy in the process. A good compromise

would be to right-shi� both operands by half the full shi�.

Fixed divisions have a similar problem called underflow. As a simple example of this,

consider what happens in integers division a/b if b>a. That’s right: the result would be

zero, even though a fraction would be what you would like. To remedy this behaviour,

the numerator is scaled up by M first (which may or may not lead to an overflow

problem �P).

As you can see, the principles of fixed-point math aren’t that difficult or magical. But

you do have to keep your head: a missed or misplaced shi� and the whole thing

crumbles. If you’re working on a new algorithm, consider doing it with floats first

(preferably on a PC), and convert to fixed-point only when you’re sure the algorithm

itself works.

Faking division (optional)

MATH HEAVY AND OPTIONAL

This section is about a sometimes useful optimization technique. It not only

introduces the technique, but also derives its use and safety limits. As such,

there is some nasty math along the way. Chances are you’re perfectly safe

without detailed knowledge of this section, but it can help you get rid of some

slow divisions if the need is there.

You may have heard of the phrase “division by a constant is multiplication by its

reciprocal”. This technique can be used to get rid of division and replace it with a

much faster multiplication. For example x/3 = x·(1/3) = x·0.333333. At first glance, this

doesn’t seem to help your case: the integer form of 1/y is always zero by definition;

Tonc - GBA Programming in rot13

674 / 757

the alternative to this is floating-point, which isn’t so hot either, and you still need a

division to get even there! This is all true, but the important thing is that these

problems can be avoided. The integer/floating-point problem can be solved by using

fixed-point instead. As for the division, remember that we’re talking about division by

a constant, and arithmetic on constants is done at compile-time, not runtime. So

problems solved, right? Uhm, yeah. Sure. The superficial problems are solved, but

now the two age-old problems of overflow and round-off rear their ugly heads again.

Below is the code for the evaluation of “x/12”. The ARM-compiled code creates a .33

fixed-point for 1/12, then uses a 64bit multiplication for the division. On the other

hand, the Thumb version doesn’t (and indeed can’t) do this and uses the standard,

slow division routine. If you want to get rid of this time consuming division, you will

have to take care of it yourself. for the record, yes I know that even if you know ARM

assembly, why it does what it does may be hard to follow. That’s what this section is

for.

Tonc - GBA Programming in rot13

675 / 757

The remainder of this section is on recognizing and dealing with these problems, as

well as deriving some guidelines for safe use of this technique. But first, we need

some definitions.

Integer division; positive integers p, q, r

(B.3) 𝑟 = ⌊𝑝 / 𝑞⌋ ⟺ 𝑝 = 𝑟 ⋅ 𝑞 + 𝑝 % 𝑞

Approximation; positive integers x, y, a, m, n and real error term δ

(B.4) 𝑦 = ⌊𝑥 / 𝑎⌋ = ⌊(𝑥 ⋅𝑚) / 𝑛⌋ + 𝛿

@ Calculating y= x/12

@ === Thumb version ===
 ldr r0, .L0 @ load numerator
 ldr r0, [r0]
 mov r1, #12 @ set denominator
 bl __divsi3 @ call the division routine
 ldr r1, .L0+4
 str r0, [r1]
.L0:
 .align 2
 .word x
 .word y

@ === ARM version ===
 ldr r1, .L1 @ Load M=2^33/12
 ldr r3, .L1+4
 ldr r3, [r3] @ Load x
 smull r2, r0, r1, r3 @ r0,r2= x*M (64bit)
 mov r3, r3, asr #31 @ s = x>=0 ? 0 : -1 (for sign
correction)
 rsb r3, r3, r0, asr #1 @ y= (x*M)/2 - s = x/12
 ldr r1, .L1+8
 str r3, [r1] @ store y
.L1:
 .align 2
 .word 715827883 @ 0x2AAAAAAB (≈ 2^33/12)
 .word x
 .word y

Tonc - GBA Programming in rot13

676 / 757

I’m using the floor (⌊p/q⌋) to indicate integer division, which is basically the rounded

down version of real division. As usual, modulo is the remainder and calculated

usually calculated with p − r·q. The key to the approximation of 1/a is in terms m and

n. In our case n will be a power of two n=2F so that we can use shi�s, but it need not

be. δ is an error term that is inherent in any approximation. Note that I’m only using

positive integers here; for negative numbers you need to add one to the result if you

want to mimic a ‘true’ division. (Or, subtract the sign bit, which work just as well as

you can see in the ARM assembly shown above.)

FAKING NEGATIVE DIVISIONS AND ROUNDING

This section is about positive numbers. If you want the standard integer-

division result (round toward zero), you will have to add one if the numerator is

negative. This can be done quickly by subtracting the sign-bit.

If you want to round to minus infinity you’ll have to do something else. But I’m

not quite sure what, to be honest.

Theory

There are two things we need to have for success. First, a way of finding m. Second, a

way of determining when the approximation will fail. The latter can be derived from

eq B.4. The error in the approximation is given by ⌊ε/n⌋, so as long as this is zero

you’re safe.

(B.5)
𝑥 ⋅𝑚 − 𝑛 ⋅⌊𝑥 / 𝐴⌋ = 𝜀

Fail if: 𝜀 ≥ 𝑛

As for finding m. Recall that ⌊1/A⌋ = ⌊(n·A)/n⌋, so that it’d appear that using

m = ⌊n/A⌋ would be a good value. However, it’s not.

// pseudo-code for division by constant M
int x, y;
y= fake_div(x, M); // shift-like div
y -= y>>31; // convert to /-like division

Tonc - GBA Programming in rot13

677 / 757

This is probably a good time for a little example. Consider the case of A = 3, just like at

the start. We’ll use .8 fixed numbers here, in other words k = 8 and n=256. Our trial m is

then m = ⌊n/A⌋ = 85 = 0x55, with 1 as the remainder.

An alternative way of looking at it is to go to hexadecimal floating point and taking the

first F bits. This is not as hard as you might think. The way you find a floating-point

number of a fraction is to multiply by the base, write down the integral part, multiply

the remainder by the base, write down the integral part and so forth. The table below

has the hex version of 1/7 (I’m not using 1/3 because that’s rather monotonous). As

you can see 1/7 in hex is 0.249249…h. Do this for one third and you’ll find 0.5555…h.

x x·B x·⌊B/7⌋ x·B%7

1 16 2 2

2 32 4 4

4 64 9 1

1 16 2 2

2 32 4 4

Table B.2: Floating-point

representation of 1/7 in

base B=16

So 1/3 in hex is zero, followed by a string of fives, or just m=0x55 in truncated .8 fixed-

point notation. Now look what happens when you do the multiplication by reciprocal

thing. I’m using hex floats here, and y=⌊(x·m)/n⌋, as per eq B.4. The result you actually

get is just the integer part, ignore the (hexi)decimals

x 0 1 2 3 4 5 6 7

y=

(x·m)>>F
0.00h 0.55h 0.AAh 0.FFh 1.54h 1.A9h 1.FEh 2.53

true x/3 0 0 0 1 1 1 2 2

Table B.3: x/3, using m= ⌊256/3⌋ = 0x55. Bad at 3, 6, …

Tonc - GBA Programming in rot13

678 / 757

As you can see, problems arise almost immediately! You can’t even get up to x=A

without running into trouble. This is not a matter of accuracy: you can use a .128 fixed-

point numbers and it’ll still be off. This is purely a result of round-off error, and it’d

happen with floats just as well. When you use reciprocal division, m should be

rounded up, not down. You can use the alignment trick here: add A−1, then divide.

Now m=0x56, and you’ll be safe. At least, for a while.

(B.6) 𝑚 = ⌊(𝑛 + 𝐴 − 1) / 𝐴⌋

x 0 1 2 3 4 5 6 7

y=

(x·m)>>F
0.00h 0.56h 0.ACh 1.02h 1.58h 1.AEh 2.04h 2.5A

true x/3 0 0 0 1 1 1 2 2

Table B.4: x/3, using m= ⌊(256+2)/3⌋ = 0x56. Still good at 3, 6, …

Yes, you’re safe. But for how long? Eventually, you’ll reach a value of x where there will

be trouble. This time around, it does concern the accuracy. Fortunately, you can

derive safety limits for x and n that spell out when things can go badly. It is possible

that the true range is a little bit better due to the way the error condition of eq B.5

jumps around, but better safe than sorry. The derivations start at eq B.5 and make use

of eq B.3 and a trick concerning modulo, namely that p%q ∈ [0, q⟩.

(B.7)

𝑥 ⋅𝑚 − 𝑛⌊𝑥 / 𝐴⌋ < 𝑛

𝑥 ⋅𝑚 ⋅𝑎 − 𝑛⌊𝑥 / 𝐴⌋𝐴 < 𝑛 ⋅𝐴 [insert ⌊𝑥 / 𝐴⌋𝐴 = 𝑥 − 𝑥 %𝐴]
𝑥 ⋅𝑚 ⋅𝐴 − 𝑛 ⋅𝑥 + 𝑛(𝑥 %𝐴) < 𝑛 ⋅𝐴 [insert max (𝑥 %𝐴) = 𝐴 − 1]
𝑥(𝑚 ⋅𝐴 − 𝑛) + 𝑛(𝐴 − 1) < 𝑛 ⋅𝐴

𝑥(𝑚 ⋅𝐴 − 𝑛) < 𝑛

From this result, we can easily calculate the maximum valid x for given A and n:

(B.8) x < n / (m·A − n)

The lower-limit for n follows from the fact that, by (6), max(m·A) = n+A−1, so that:

Tonc - GBA Programming in rot13

679 / 757

(B.9) n > x(A−1)

And that’s basically it. There’s a little more to it, of course. As you’ll be multiplying, the

product m·A must fit inside a variable. The practical limit of numbers will therefore be

around 16 bits. You can sometimes ease this limitation a little bit by shi�ing out the

lower zero-bits of A. For example, for A=10=5·2, you can right-shi� x once before doing

the whole calculation. Even 360 is 45·8, and you can save three bits this way. Also,

note that even if you surpass the limits, there’s a good chance that the thing is still

correct or only off by a small amount (check eq B.5). You should be able to find the

true answer relatively quickly then.

ARM ‘INT/CONST INT’ DIVISION IS ALWAYS SAFE

We can now see why GCC can always safely optimize 32bit divisions. The

maxima of 32bit x and A are, of course, 232. The safety limit for this is 264−232,

which will always fit in the 64bit result of smull .

Of course, you don’t want to have to type in these things all the time. So here are two

macros that can do the work for you. They look horrible, but the preprocessor and

compiler know how to handle them. I’d advise against converting these to inline

functions, because for some reason there is a good chance you will lose any

advantages the code is supposed to bring.

// Division by reciprocal multiplication
// a, and fp _must_ be constants

//! Get the reciprocal of \a a with \a fp fractional bits
#define FX_RECIPROCAL(a, fp) (((1<<(fp))+(a)-1)/(a))

//! Division of x/a by reciprocal multiplication
#define FX_RECIMUL(x, a, fp) (((x)*((1<<(fp))+(a)-1)/(a))>>(fp))

Tonc - GBA Programming in rot13

680 / 757

Summary

Never forget that this is something of a hack and only works when A is constant. The

whole point was to have the division at compile time rather than runtime, and that is

only possible if A is constant. One nice thing about constants is that they’re known

beforehand, by definition. Negative values and powers of two may be resolved at

compile-time too if desired.

The reciprocal multiplier m is not merely ⌊n/A⌋, for reasons of round-off error. Always

round up. In other words:

m = ⌊(n+A−1) / A⌋

Then there’s the matter of failed divisions, i.e. where the approximation differs from

the ‘true’ ⌊x/A⌋. The exact condition doesn’t really matter, but it is useful to know the

safe ranges of x, and conversely what n you need for a given x-range. Again, because

the important terms are constant they can be figured out in advance. Note that the

relations given below represent A limit, not the limit. The actual numbers for failure

may be a bit looser, but depend on the circumstances and as such, relations for those

would be more complex.

x < n / (m·a − n)

n > x(A−1)

Lastly, if you have absolutely no idea what this whole section was about, I’d advise

against using this strategy. It is a partially safe optimisation technique for division and

while it can be a good deal faster that the normal division, it might not be worth it in

non-critical areas. Just, use your judgement.

Tonc - GBA Programming in rot13

681 / 757

ALTENATIVE METHOD

There is an alternative method for reciprocal multiplication: instead of

rounding n/A up, you can also add 1 to x for

y = ⌊x / A⌋ ≈ (x+1) × ⌊N / A / N⌋

This will also get rid of the problems described by table B.3. The safety

conditions are almost the same as before, but there is some difference for

division of negative x. If you really must know, details are available on request.

Look-up Tables

A look-up table (or LUT) is, well, it’s a table that you use to look stuff up. That was

rather obvious, wasn’t it? The important point is that you can do it really quickly. As a

simple example, what is 25, and what is 35? Real Programmers (should) know the

answer to the first one instantly, but the other might take a little longer to find. Why?

Because any self-respecting programmer knows the powers of 2 by heart, up to 210 at

least. The powers of 2 crop up so o�en in programming that you’ve got the answers

memorized – you see as much as see the question “25”, you don’t calculate the

answer via repeated multiplication, your mind simply looks it up in its memory and

you give the answer instantly, almost without thinking. The same goes for (decimal)

multiplication tables: 7×8? 56, just like that. But move to, say, powers of 3 or

hexadecimal multiplications and the process fails and you have to do it the hard and

long way. What I’m trying to say here is that things can go a lot faster when you can

simply look them up, rather than having to do the proper calculations.

The concept of look-up tables works for computers as well, otherwise I wouldn’t have

brought it up. In this case, the look-up table is simply an array that you stuff with

whatever you think you might need to look up.

Tonc - GBA Programming in rot13

682 / 757

Example: sine/cosine LUTs

Classic examples are trigonometry LUTs. Sines and cosines are expensive operations,

especially on the GBA, so it would be best to make a table of them so you only have to

spend a memory access instead of going through two (expensive) type conversions,

floating-point function. A simple way to do this is to create two FIXED arrays of, say,

360 elements each (one for every degree) and fill it at the start of your game.

However, this particular method is deeply flawed. Yes, it works, yes, it’s easy, but

there is definitely room for improvement. To start with an issue that would be

immediately visible if you were to use this function, it actually takes a few seconds to

complete. Yes, that’s how slow the standard trig routines are. This is a fairly mild issue

as you only have to call it once, but still. Additionally, because the arrays are not

constant, they are put in IWRAM. That’s 10% of IWRAM basically wasted on something

that is never actually changed except during initialization. There are a number of ways

of improving on these two points like using the sine-cosine symmetries to cut down

on calculation time and having the tables overlap, but why calculate them inside the

game at all? It is just as easy to precalculate the tables on a PC, then export that data

to arrays: then they will be constant (i.e., not hogging IWRAM), and the GBA won’t

have to spend a cycle on their initialization.

#define PI 3.14159265
#define DEGREES 360 // Full circle

FIXED sin_lut[DEGREES], cos_lut[DEGREES];

// A really simple (and slow and wasteful) LUT builder
void sincos_init()
{
 const double conv= 2*PI/DEGREES;
 for(int ii=0; ii<DEGREES; ii++)
 {
 sin_lut[ii]= (FIXED)(sin(conv*ii)*FIX_SCALEF);
 cos_lut[ii]= (FIXED)(cos(conv*ii)*FIX_SCALEF);
 }
}

Tonc - GBA Programming in rot13

683 / 757

A second improvement would be to use a higher fixed-point fraction. The range of

sine and cosine is [−1, +1]. This means that by using 8.8 fixeds for the LUT, I am

actually wasting 6 bits that I could have used for a higher accuracy. So what I’m going

to do is use 4.12 fixed-point. Yes, you could go up to .14 fixeds, but 12 is a nicer

number.

And for the final improvement, I’m not going to use 360 units for a circle, but a power

of two; 512 in this case. This has two benefits:

For wrapping (α<0 or α>2π), I can use a bitmask instead of if-statements or

gasp modulo.

Since the cosine is just shi�ed sine, and because of point one, I now only need

one table for both waves, and can use an offset angle and wrap-by-masking to

get one wave from the other.

Both these points can make life a lot easier.

For the record, it is perfectly alright to this. The forms of sine and cosine stem from

travelling along the circumference of the unit circle; the number of divisions along

that path is arbitrary. The number 360 has historical significance, but that’s it. Let’s

face it, you wouldn’t be able to tell how much a degree is anyway, the thing that

matters is circle divisions. 360° is a full circle, 90° is a quarter circle, et cetera. Now it’s

512 for a full circle, 128 (512/4) for a quarter, and so on. A quick and dirty sin LUT

generator might look something like this. Summing up:

Precalculate the LUT outside the GBA, and link it in like a normal const array.

Use 4.12 fixeds instead of 4.8.

Divide the LUT into a power-of-two (like 512), instead of 360.

Tonc - GBA Programming in rot13

684 / 757

It creates a file sinlut.c which contains a 512 halfword array called sin_lut . Note that

while I’m creating a C file here, you could just as well create a table in an assembly file,

or even just as a binary file that you then somehow link to the project. Actually finding

the sine and cosine values goes through the lu_sin() and lu_cos() functions.

// Example sine LUT generator
#include <stdio.h>
#include <math.h>

#define M_PI 3.1415926535f
#define SIN_SIZE 512
#define SIN_FP 12

int main()
{
 int ii;
 FILE *fp= fopen("sinlut.c", "w");
 unsigned short hw;

 fprintf(fp, "//\n// Sine LUT; %d entries, %d fixeds\n//\n\n",
 SIN_SIZE, SIN_FP);
 fprintf(fp, "const short sin_lut[%d]=\n{", SIN_SIZE);
 for(ii=0; ii<SIN_SIZE; ii++)
 {
 hw= (unsigned short)(sin(ii*2*M_PI/SIN_SIZE)*(1<<SIN_FP));
 if(ii%8 == 0)
 fputs("\n\t", fp);
 fprintf(fp, "0x%04X, ", hw);
 }
 fputs("\n};\n", fp);

 fclose(fp);
 return 0;
}

Tonc - GBA Programming in rot13

685 / 757

Presenting excellut

I haven’t actually used the generator shown above for the LUTs in libtonc. Rather, I’ve

used my own excellut. This is not a program, but an Excel file. Yes, I did say Excel. The

thing about using a spreadsheet program for building LUTs is that you can make any

kind of mathematical table with it, test whether it has the desired accuracy and plot it

and everything. Then a�er you’re satisfied, you can then just export part of the

spreadsheet in the manner of your choice. How’s that for flexibility?

Accuracy and resolution

These are the two main things to consider when creating your LUT. Accuracy concerns

the number of significant bits of each entry; resolution is how far apart each entry is in

the argument space. Bigger is better in both cases, but there is a space trade-off, of

course. A compromise is necessary, and once again, it depends very much on what

you intend to do with it.

For accuracy, you need to think of the range of the function. As said, the sine range is

[−1, +1] and using 8.8 fixeds would waste 6 bits that could have been used for more

significant bits.. For a division LUT like the one I’m using for the first mode 7 chapter, I

need 1/1 up to 1/160, which would not work well with .8 fixeds, so I’m using .16 fixeds

there, which may still not be enough, but more might give overflow problems.

// Sine/cosine lookups.
// NOTE: theta's range is [0, 0xFFFF] for [0,2π⟩, just like the
// BIOS functions

//! Look-up a sine value
INLINE s32 lu_sin(u32 theta)
{ return sin_lut[(theta>>7)&0x1FF]; }

//! Look-up a cosine value
INLINE s32 lu_cos(u32 theta)
{ return sin_lut[((theta>>7)+128)&0x1FF]; }

Tonc - GBA Programming in rot13

686 / 757

http://www.coranac.com/projects/#excellut

The second issue, resolution, is tied to how many entries you have. Even if you have

all the accuracy in the world, it wouldn’t do you much good if they’re spread out too

thin. It’s similar to screen resolutions: even with 32bit color, things will look mighty

hideous if you only have a 17 inch monitor with a 320×240 resolution. On the other

hand, an overly high resolution doesn’t help you if the accuracy isn’t there to support

it. Most LUT-worthy functions will be smooth curves and for any given accuracy, you

will reach a point where increasing resolution will only add identical values to the

LUT, which would be a waste of space. And remember, if you really need to you can

always do an interpolation if necessary.

The first few values of my 512, 8.8 fixeds sine-lut, for example, read “0x0000, 0x0003,

0x0006, 0x0009” That is where the derivative is maximal, so these are the largest

differences between neighbours you will find. If I were to increase the resolution

fourfold, the differences would be in the final bit; going any further would be useless

unless I increased the accuracy as well.

So it’s actually a three-way compromise. There needs to be a balance between

accuracy and resolution (the derivative of the function would be helpful to find this),

and pitted against those two is the amount of ROM space you want to allot to the LUT.

Again, the only person who can judge on the right balance is you.

Linear interpolation of LUTs

Look-up tables are essentially a collection of points sampled from a function. This is

fine if you always access the arrays at those points, but what if you want to retrieve

value between points? An example of this would be a fixed-point angle, like theta of

the (co)sine inline functions. Usually, the lower bits of a fixed-point number are just

cut off and the point before it is used. While fast, this does have some loss of accuracy

as its result.

A more accurate solution would be to use the surrounding points and interpolate to

the desired point. The easiest of these is linear interpolation (or lerp). Say you have a

point xa and xb, with function values ya and yb, respectively. This can be used to

define a line. The function value of point x can then be interpolated by:

Tonc - GBA Programming in rot13

687 / 757

Fig B.1: approximating a sine by direct

look-up or linear interpolation.

(B.10) y =
yb − ya

xb − xa

(x − xa) + ya

Fig B.1 gives an example of the difference that

linear interpolation can make. Here I have a sine

function sampled at 16 points and at .12f

precision. The blue line represents the actual

sine function. The magenta like is the direct

look-up using the preceding point, and the lerp

is given by the yellow line. Note that the blue

and yellow lines are almost the same, but the magenta line can be a good deal off.

Consider x = 4.5, given in red. The LUT value is off by 8.5%, but the lerp value by only

0.5%: that’s 16 times better! True, this is an exaggerated case, but lerping can make a

huge difference.

So how do we implement this? Well, essentially by using eq B.10. The division in it

may look nasty, but remember that the difference between successive points is

always 1 – or a power-of-two for fixed point numbers. An efficient implementation

would be:

//! Linear interpolator for 32bit LUTs.
/*! A LUT is essentially the discrete form of a function, f(\i x).
* You can get values for non-integer \i x via (linear)
* interpolation between f(x) and f(x+1).
* \param lut The LUT to interpolate from.
* \param x Fixed point number to interpolate at.
* \param shift Number of fixed-point bits of \a x.
*/
INLINE int lu_lerp32(const s32 lut[], int x, const int shift)
{
 int xa, ya, yb;
 xa=x>>shift;
 ya= lut[xa]; yb= lut[xa+1];
 return ya + ((yb-ya)*(x-(xa<<shift))>>shift);
}

Tonc - GBA Programming in rot13

688 / 757

That’s the version for 32-bit LUTs, there is also a 16-bit version called lu_lerp16() ,

which has the same body, but a different declaration. In C++, this would make a nice

template function.

These functions work for every kind of LUT, expect for a little snag at the upper

boundary. Say you have a LUT of N entries. The functions use x+1, which is likely not

to exist for the final interval between N−1 and N. This could seriously throw the

interpolation off at that point. Rather than covering that as a special case, add an

extra point to the LUT. The sinlut actually has 513 points, and not 512. (Actually, it

has 514 points to keep things word-aligned, but that’s beside the point.)

LERPING AT THE UPPER BOUNDARY

Linear interpolation needs the sampling point above and below x, which can

cause problems at the upper boundary. Add an extra sampling point there to

“finish the fence’, as it were.

The direct look-up is also known as 0-order interpolation; linear interpolation is first

order. Higher orders also exists but require more surrounding points and more and

complexer calculations. Only attempt those if you really, really have to.

Non mathematical LUTs

While the most obvious use of lookup tables is for precalculated mathematical

functions, LUTs aren’t restricted to mathematics. In my text systems, for example, I’m

using a look-up table for the character→tile-index conversion. This offers me a greater

range in the distribution of tiles that otherwise would be possible. The default font

uses ASCII characters 32-127, and the tiles for these are usually in tiles 0 through 95.

But if for some reason I would only need the number tiles, I could set-up the character

LUT for only numbers, and the text system would take it from there. the rest of the

tiles would then be free for other purposes.

Tonc - GBA Programming in rot13

689 / 757

Another use would be flag lookup. The libraries that come with Visual C++ use LUTs

for the character type routines, isalpha() , isnum() and the like. There is a table

with bitflags and when you use the routines, they just grab the appropriate element

and do some bit testing. You can find something similar in game programming too,

like a table with bitflags for the tile types: background, walkable, trap, etc. Instead of

massive switch-blocks, you might only have to do an array-lookup, which is a lot

faster.

Tonc - GBA Programming in rot13

690 / 757

C. Vectors and Matrices

Vectors

Vector operations

Matrices

Matrix operations

Spaces, bases, coordinate transformations

Vectors

Before I go into what a vector is, I’ll first tell you what it isn’t. Generally, you divided

physical quantities into scalars and vectors. A scalar gives the magnitude of a

quantity. It’s a single number, like the ones you use every day. Mass, energy and

volume are examples of scalars. A vector is something with both a magnitude and

direction, and is usually represented by multiple numbers: one for every dimension.

Position, momentum and force are prime examples. Also, note that velocity is a

vector, while speed is not. 50 kph is not a vector. 50 kph down Highway 60 is. The

notation of a vector is as a bold character, usually lowercase, and either as a set of

numbers enclosed by parentheses, u = (1, 4, 9), or as an M×1 column. And yes, I do

mean a column, not a row; we’ll see why when we get to matrices.

(C.1) u ≡ [
𝑢1
:

𝑢𝑚
] ≡ (𝑢1 , … , 𝑢𝑚) ≢ [𝑢1 … 𝑢𝑚]

If you have a coordinate system, vectors are usually used to represent a spatial point

in that system, with vectors’ elements as the coordinates. However, there is a crucial

difference between points and vectors. Points are always related to an origin, while

vectors can are independent of any origin. Fig C.1 on the right illustrates this. You

have points P and Q, and vectors u, v, w. Vectors u and v are equal (they have equal

Tonc - GBA Programming in rot13

691 / 757

Fig C.1: the

difference between

vectors and points.

Fig C.2: vector addition

and scalar-vector

multiplication.

lengths and directions). However, while u and the point it points

to (P) have the same coordinates, this isn’t true for v and Q. In

fact, Q = u + w. And, to be even more precise, Q = *O* + u + w,

which explicitly states the origin (O) in the equation.

Vector operations

Vector operations are similar to scalar operations, but the multi-dimensionality does

add some complications, especially in the case of multiplications. Note that there are

no less than three ways of vector-multiplication, so pay attention. On the right you

can see examples of vector addition and scalar-vector multiplication. u= (8, 3), v=

(-4 ,4). With the definitions of the operations given below, you should be able to find

the other vectors.

Vector-vector addition and subtraction

When it comes to addition and subtraction, both operands

must be M-dimensional vectors. The result is another vector,

also M-dimensional, which elements are the sum or

difference of the operands’ elements: with w = u + v we have

wi = ui + vi.

(C.2) w = u + v ≡ [
𝑢1 + 𝑣1

:
𝑢𝑚 + 𝑣𝑚

]

Scalar-vector multiplication

This is the first of the vector multiplications. If you have a scalar a and a vector u, the

elements of resultant vector a�er scalar-vector multiplication are the original

elements, each multiplied with the scalar. So if v = c u, then vi= c*ui. Note that u and v

Tonc - GBA Programming in rot13

692 / 757

Fig C.3: dot

product.

lie on the same line – only the length is different. Also, note that subtraction can also

be written as w = u − v = u + (−1)*v.

(C.3) v = 𝑐u ≡ [
𝑐 ⋅𝑢1

:
𝑐 ⋅𝑢𝑚

]

The dot-product (aka scalar product)

The second vector-multiplication is the dot-product, which has two vectors as input,

but a scalar as its output. The notation for this is c = u · v, where u and v are vectors

and c is the resultant scalar. Note the operator is in the form of a dot, which gives this

type of multiplication its name. To do the dot-product, multiply the elements of both

vectors piecewise and add them all together. In other words:

(C.4) 𝑐 = u ⋅ v = ∑ 𝑢𝑖 ⋅ 𝑣𝑖 = 𝑢1 ⋅ 𝑣1 + … + 𝑢𝑚 ⋅ 𝑣𝑚

Now, this may seem like a silly operation to have, but it’s actually very useful. For one

thing, the length of the vector is calculated via a dot-product with itself. But you can

also find the projection of one vector onto another with the dot-product, which is

invaluable when you try to decompose vectors in terms of other vectors or determine

the base-vectors of an M-dimensional space (do what to the whaaat?!? Don’t worry,

I’ll explain later). One of the most common uses of the dot-product is finding the

angle between two vectors. If you have vectors u and v, |u| and |v| their lengths and α

the angle between the two, the cosine can be found via

(C.5) cos (𝛼) = u⋅v
|u| |v|

Why does this work? Well, you can prove it in a number of ways, but

here’s is the most elegant (thanks Ash for reminding me).

Remember that the square of the length of a vector is given by the

dot-product with itself. This means that |v−u|2 = |v|2 + |u|2 − 2·u·v. From the cosine rule

Tonc - GBA Programming in rot13

693 / 757

Fig C.4: cross product.

for the triangle in fig C.3, we also have |v−u|2 = |v|2 + |u|2 − 2·|v|·|u| cos(α). Combined,

these relations immediately result in eq C.5. And people say math is hard.

By the way, not only can you find the angle with this, but it also provides a very simply

way to see if something’s behind you or not. If u is the looking-direction and v the

vector to an object, u · v is negative if the angle is more than 90°. It’s also useful for

field-of-view checking, and to see if vectors are perpendicular, as u · v = 0. You also

find the dot-product by the truck-load in physics when yo do things like force

decomposition, and path-integrals over force to find the potential energy. Basically,

every time you find a cosine in an equation in physics, it’s probably the result of a dot-

product.

The cross-product (aka vector-product)

The cross product is a special kind of product that only works in 3D space. The cross-

product takes two vectors u and v and gives the vector perpendicular to both, w, as a

result. The length of w is the area spanned by the two operand vectors. The notation

for it is this: w = u × v, which is why it’s called the cross-product. The elements of w

are wi= εijk·uj· vk, where εijk is the Levi-Cevita symbol (+1 for even permutations of

i,j,k, −1 for odd permutations, and 0 if any of the indices are equal). Since you’ve

probably never even seen this thing (for your sanity, keep it that way), it’s written

down in full in eq C.4.

(C.6) w = u × v ≡ [
𝑢𝑦 𝑣𝑧 − 𝑢𝑧 𝑣𝑦
𝑢𝑧 𝑣𝑥 − 𝑢𝑥 𝑣𝑧
𝑢𝑥 𝑣𝑦 − 𝑢𝑦 𝑣𝑥

]

In fig C.4 you can see a picture of what the cross-product

does; it’s a 3D picture, so you have to use your imagination

a bit. Vectors u and v define a parallelogram (in yellow). The cross-product vector w is

perpendicular to both of these, a fact that follows from u·w and v·w. The length of w

is the area of this parallelogram, A and if you remember your area-calculations, you’ll

realize that

Tonc - GBA Programming in rot13

694 / 757

(C.7) 𝐴 = | u × v | = |u| ⋅ |v| ⋅ sin (𝛼)

meaning that you can find the sine of the angle between two vectors with the cross-

product. Note that the cross-product is that it is anti-commutative! That means that u

× v = −v × u. Notice the minus sign? This actually brings up a good point: the plane

defined by u and v, the normal vector to this plane is pointing up; but how do you

determine what ‘up’ is? What I usually do is take a normal 3D coord-system (like the

one in the lower-right part of fig C.4), put the x-axis on u, rotate till the y-axis is along v

(or closest to it), and then w will be along the z-axis. Eq C.6 has all of this sorted out

already. I do need a right-handed system for this, though, a le�-handed one messes

up my mind so bad.

Now, when the vectors are parallel, u × v = 0, which means that w is the null-vector 0.

It also means that if u is your view direction, the object with vector v is dead-center in

your sights. However, if u is the velocity of a rocket and v is the relative vector to you,

prepare to respawn. Basically, whereas the dot-product tells you whether an object is

in front or behind (along the tangent), the cross-product gives you the offset from

center (the normal). Very useful if you ever want to implement something like red

shells (and by that I mean the original SMK red shells, not the wussy instant-homing

shells in the later Mario Karts, booo!!). The cross-product also appears abundantly in

physics in things like angular momentum (L = r × p) and magnetic induction.

That was the 3D case, but the cross-product is also useful for 2D. Everything works

exactly the same, except that you only need the z-component of w.

The norm (or length)

I’ve used this already a couple of times but never actually defined what the length of a

vector is. The norm of vector u is defined as the square root of the dot-product with

itself, see eq C.8. The age-old Pythagorean Theorem is just the special case for 2D.

The length or norm of a vector is a useful thing to have around. Actually, you o�en

start with the length and use the sine and cosine to decompose the vector in x and y

components. A good example of this is the speed. One other thing where the length

Tonc - GBA Programming in rot13

695 / 757

plays a role is in the creation of unit-vectors, which have length 1. Many calculations

require the length in some way, but if that’s one, you won’t have to worry about that

anymore. To create a normal vector, simply define it by its length: û = u / |u|.

(C.8) |u | = √(u ⋅ u) = (∑ 𝑢𝑖
2)

1
2

Algebraic properties of vectors

What follows is a list of algebraic properties of vectors. Most will seem obvious, but

you need to see them at least once. Take directly from my linear algebra textbook: let

u, v, w be M-dimensional vectors and c and d scalars, then:

u + v = v + u Commutativity

(u + v) + w = u + (v + w) Associativity

u + 0 = 0 + u = u

u + (−u) = −u + u = 0 where −u denotes (−1)u

c·(u + v) = c·u + c·v Distributivity

(c + d)·u = c·u d·u Distributivity

c·(d·u) = (c·d)·u Associativity

1·u = u

And on the products:

u · (v + w) = (u + v) · w

u · (c·v) = (c·u) · v = c·(u · v)

u × v = −(u × v) Anti-commutativity

u × (v + w) = u × v + u × w

(u + v) × w = u × w + v × w

u × (c·v) = c·u × v = (c·u) × v

Tonc - GBA Programming in rot13

696 / 757

u · (u × v) = 0

u · (v × w) = (u × v) · w
Triple scalar product, gives the volume of

parallelepiped defined by u, v, w.

u × (v × w) = u(v · w) − w(u · v) Triple vector product

Matrices

In a nutshell, a matrix is a 2-dimensional grid of numbers. They were initially used as

shorthand to solve a system of linear equations. For example, the system using

variables x, y, z:

(C.9a)

𝑥 − 2𝑦 + 𝑧 = 0
2𝑦 − 8𝑧 = 8

−4𝑥 + 5𝑦 + 9𝑧 = −9

can be written down more succinctly using matrices as:

(C.9b) [
1 −2 1
0 2 −8

−4 5 9
] or (C.9c) [

1 −2 1 0
0 2 −8 8

−4 5 9 −9
]

Eq C.9b is called the coefficient matrix, in which only the coefficients of the variables

are written down. The augmented matrix (eq C.9c) also contains the right-hand side

of the system of equations. Note that the variables themselves are nowhere in sight,

which is more or less the point. Mathematicians are the laziest persons in the world,

and if there’s a shorthand to be exploited, they will use it. If there isn’t, they’ll make

one up.

Anyway, a matrix can be divided into rows, which run horizontally, or columns, which

run vertically. A matrix is indicated by its size: an M×N matrix has M rows and N

columns. Note that the number of rows comes first; this in contrast to image sizes,

Tonc - GBA Programming in rot13

697 / 757

where width is usually given first. Yeah I know, that sucks, but there’s not a lot I can do

about that. The coefficient matrix of eq C.9b is a 3x3 matrix, and the augmented

matrix of eq C.9c is 3x4. The whole matrix itself is usually indicated by a bold, capital;

the columns of a matrix are simply vectors (which were M×1 columns, remember?)

and will be denoted as such, with a single index for the column-number; the elements

of the matrix will be indicated by a lowercase (italic) letter with a double index.

(C.10) A = [a1 … a𝑛] ≡ [
a11 … a1𝑛
⋮ ⋮

a𝑚1 … a𝑚𝑛
]

Most computer languages also have the concept of matrices, only they don’t always

agree in how the things are ordered. Indexing in Visual Basic and C, for example, is

row-based, just like eq C.10 is. Fortran, on the other hand, is vector-based, so the

indices need to be reversed. Thanks to the C’s pointer-type, you can also access a

matrix as an array.

Let’s return to (eq C.9) for a while, if we use x = (x, y, z), b= (0, 8, −9), and A for the

coefficient matrix, we can rewrite (eq C.9a) to

(C.9d) 𝑎1 ⋅𝑥 + 𝑎2 ⋅ 𝑦 + 𝑎3 ⋅ 𝑧 = b = A ⋅ x

I’ve used the column-vector notation on the le� of b, and the full matrix notation on

the right. You will do well to remember this form of equation, as we’ll see it later on as

well. And yes, that’s a matrix-multiplication on the right-hand side there. Although I

haven’t given a proper definition of it yet, this should give you some hints.

mat(i, j) // VB matrix

mat[i][j] // C matrix
mat[i+N*j] // C matrix, in array form

mat(j, i) // Fortran matrix

Tonc - GBA Programming in rot13

698 / 757

Matrix operations

Transpose

To transpose a matrix is to mirror is across the diagonal. It’s a handy thing to have

around at times. The notation for the transpose is a superscript uppercase ‘T’, for

example, B = AT. If A is an M×N matrix, its transpose B will be N×M, with the elements

bij = aji. Like I said, mirror it across the diagonal. The diagonal itself will, of course, be

unaltered.

Matrix addition

Matrix addition is much like vector addition, but in 2 dimensions. If A, B, C are all M×N

matrices and C = A + B, then the elements of C are cij = aij + bij. Subtraction is no

different, of course.

Matrix multiplication

Aahhh, and now things are getting interesting. There are a number of rules to matrix

multiplication, which makes it quite tricky. For our multiplication, we will use C = A ·

B. The thing is that the number of columns of the first operand (A) must equal the

number of rows of the second (B). So if A is a p×q matrix, B should be a q×r matrix. The

size of C will then be p×r. Now, the elements of C are given by

(C.11) 𝑐𝑖𝑗 ≡ ∑
𝑘

𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

In other words, you take row i of A, column j of B and take their dot-product. k in eq

C.11 is the summation-index for this dot-product. This is also the reason why the

columns of A and the rows of B must be of equal size; if not you’ll have a loose end at

either vector. Another way of looking at it is this: The whole of A forms the coefficient

matrix of a linear system, similar to that of eq C.9b. The columns of B are all vectors of

variables which, when processed by the linear system, gives the columns of C:

Tonc - GBA Programming in rot13

699 / 757

(C.12) C = A ⋅B ≡ A[b1 … b𝑟] ≡ [A ⋅ b1 … A ⋅ b𝑟]

The value of this way of looking at it will become clear when I discuss coordinate

transformations. Also, like I said, for matrix-multiplication you take the dot-product of

a row of A and a column of B. Since a vector is basically an M×1 matrix, the normal

dot-product is actually a special case of the matrix-multiplication. The only thing is

that you have to take the transposed of the first vector:

(C.13) 𝑐 = u ⋅ v = [u]𝑇 ⋅ [v]

There’s a wealth of other things you can do with matrix-multiplication, but I’ll leave it

with the following two notes. First, the operation is not commutative! What that

means is that A · B ≠ B · A. you may have guessed that from the row-column

requirement, but even if those do match up it is still not commutative. My affine sprite

demo kind of shows this: a rotation-then-scale does not give the same results as

scale-then-rotate (which is probably what you wanted). Only in very special cases is A

· B equal to B · A.

The other note is that matrix multiplication is expensive. You have to do a dot-product

(q multiplications) for each element of C, which leads to p*q*r multiplications. That’s

an O(3) operation, the nastiest ones around. OK, so for 2x2 matrices it doesn’t amount

to much, but when you deal with 27x18 matrices (like I do for work), this becomes a

problem. Fortunately there are ways of cutting down on the number of calculations,

but that’s beyond the scope of this tutorial.

Determinant

The determinant is a scalar that you get when you combine the elements of a square

matrix (of size N×N) a certain way. I’ve looked everywhere for a nice, clear-cut

definition of the determinant, but with very little luck. It seems it has a number of

uses, but it is most o�en used as a simple check to see if a equations of a system (or a

set of vectors) is linearly independent, and thus if the coefficient matrix is invertible.

Tonc - GBA Programming in rot13

700 / 757

The mathematical definition of the determinant of N×N matrix A is a recurrence

equation and looks like this.

(C.14) det A = | A | = ∑
𝑗

(− 1)1 + 𝑗 𝑎1𝑗 det 𝐴1𝑗

I could explain this in more detail, but there’s actually little point in doing that. I’ll just

give the formulae for the 2x2 and 3x3 case. Actually, I’ve already done so: in the cross

product. If you have matrix A = [a1 a2 a3], then |A| = a1 · (a2 × a3). For a 2×2 matrix, B =

[b1 b2] it’s b11·b22 − b12·b21, which in fact also uses the cross product. This is not a

mere coincidence. Part of what the determinant is used for is determining whether a

matrix can be inverted. Basically, if |A| = 0, then there is no inverse matrix. Now,

remember that the cross-product gives is involved in the calculation of the area

between vectors. This can only be 0 if the vectors are colinear. And linear

independence is one of the key requirements of having an inverse matrix. Also, notice

the notation for the determinant: det A = |A|. Looks a bit like the norm of a vector,

doesn’t it? Well, the related cross-product is related to the area spanned between

vectors, so I guess it makes sense then.

Matrix inversion

Going back to eq C.9 (yet again), we have a system of equations with variables x= (x, y,

z) and matrix A such that A · x = b. We’ll that’s nice and all, but most of the times it’s x

that’s unknown, not b. What we need isn’t the way from x to b (which is A), but its

inverse. What we need is x = A−1 · b. A−1 is the notation for the inverse of a matrix. The

basic definition of it is A · A−1 = I, where I is the identity matrix, which has 1s on its

diagonal and 0s everywhere else. There are a number of ways of calculating an

inverse. There’s trial-and-error, of course (don’t even think about it!), but also the way

one usually solves linear systems: through row reduction. Since I haven’t mentioned

how to do that, I’ll resort to just giving a formula for one, namely the 2x2 case:

(C.15) A = [𝑎 𝑏
𝑐 𝑑

] A−1 ≡ 1
𝑎𝑑 − 𝑏𝑐

[𝑑 −𝑏
−𝑐 𝑎

]

Tonc - GBA Programming in rot13

701 / 757

This is the simplest case of an inverse. And, yup, that’s a determinant as the

denominator. You can see what happens if that thing’s zero. Now, some other things

you need to know about matrix inverses. Only square matrices have a chance of being

invertible. You can use the determinant to see if it’s actually possible. Furthermore,

the inverse of the inverse is the original matrix again. There’s more, of course (oh

gawd is there more), but this will have to do for now.

Algebraic properties of matrices

A and B are M×N matrices; C is N×P; D and E are N×N. ei are the column vectors of E. c

is a scalar.

A + B = B + A

c·(A + B) = cB + cA

A·I = I·A = A

A·C = C·A only if M=P, and then only under very special conditions

If E·F = I, then E−1 = F and F−1 = E

(AT)T = A

(A·C)T = CT · AT

(A·C)−1 = C−1 · A−1

If ai · aj = δij, then A−1 = AT (in other words, if the vectors are unit vectors and

mutually perpendicular, the inverse is the transposed.)

Spaces, bases, coordinate transformations

The collection of all possible vectors is called a vector space. The number of

dimensions is given by the amount of numbers of the vectors (or was it the other way

around?). A 2D space has vectors with 2 elements, 3D vectors have 3, etc. Now,

Tonc - GBA Programming in rot13

702 / 757

usually, the elements of a vector tell you where in the space you are, but there’s more

to it than that. For a fully defined position you need

a base

an origin

coordinates

The vectors you’re used to cover the coordinates part, but without the other two

coordinates mean nothing, they’re just numbers. A set of coordinates like (2, 1) means

as little as, say, a speed of 1. You need a frame of reference for them to mean

anything. For physical quantities, that means units (like km/h or miles/h or m/s, see

what a difference that makes for speed?); for spaces, that means a base and an origin.

Coordinate systems

Fig C.5a: a standard coordinate

system S. Point P is given by

coordinates (3, 2).

Fig C.5b, a sheared coordinate

system S'. Point P is given by

coordinates (1, 2).

Fig C.5a shows the 2D Cartesian coordinates system you’re probably familiar with. You

have an horizontal x-axis (i = (1, 0)) and a vertical y-axis (j = (0, 1)). And I have a point

P in it. If you follow the gridlines, you’ll see that x=3 and y=2, so P= (3, 2), right? Well,

yes. And no. In my opinion, mostly no.

The thing is that a point in space has no real coordinates, it’s just there. The

coordinates depend on your frame of reference, which is basically arbitrary. To

illustrate this, take a look at fig C.5b; In this picture I have a coordinate system S’,

which still has a horizontal x-axis (u = (1, 0)), but the y-axis (v = (1, 1)) is sheared 45°.

Tonc - GBA Programming in rot13

703 / 757

And in this system, point P is given by coordinates (1, 2), and not (3, 2). If you use the

coordinates of one system directly into another system, bad things happen.

Two questions now emerge: why would anyone use a different set of coordinates, and

how do we convert between two systems. I’ll cover the latter in the rest of this article.

As for the former, while a Cartesian system is highly useful, there are many instances

where real (or virtual) world calculations are complicated immensely when you stick

to it. For one thing, describing planetary orbits or things involving magnetism

considerably easier in spherical or cylindrical coordinates. For another, in texture

mapping, you have a texture with texels which need to be applied to surfaces that in

nearly all cases do not align nicely with your world coordinates. The affine

transformations are perfect examples of this. So, yeah, using non-Cartesian

coordinates are very useful indeed.

Building a coordinate base

Stating that there are other coordinate systems besides the Cartesian one is nice and

all, but how does one really use them? Well, very easily, actually. Consider what you

are really doing when you’re using coordinates in a Cartesian system. Look at fig C.5a

again. Suppose you’re given a coordinate set, like (x, y)= (3, 2). To find its location, you

move 3 along the x-axis, 2 along the y-axis, and you have your point P. Now, in system

S’ (fig C.5b) we have (x’, y’) = (1, 2), but the procedure we used in S doesn’t work here

since we don’t have an y-axis. However, we do have vectors u and v. Now if you move

1 along u and 2 along v, we’re at point P again. Turning back to system S again, the x

and y axes are really vectors i and j, respectively, so we’ve been using the same

procedure in both systems a�er all. Basically, what we do is:

(C.16a) 𝑃 = i ⋅𝑥 + j ⋅ 𝑦

(C.16b) 𝑃 = u ⋅𝑥′ + v ⋅ 𝑦′

Now, if you’ve paid attention, you should recognize the structure of these equations.

Yes, we’ve seen them before, in eq C.9d. If we rewrite our vectors and coordinates, to

matrices and vectors, we get

Tonc - GBA Programming in rot13

704 / 757

M = [i j] = [1 0
0 1], x = [𝑥

𝑦]; M′ = [u v] = [1 1
0 1], x′ = [𝑥′

𝑦′]

(C.16c) 𝑃 = M ⋅ x = M′ ⋅ x′

Vectors x and x’ contain the coordinates, just like they always have. What’s new is that

we have now defined the coordinate system in the form matrices M and M’. The

vectors that the matrices are made of are the base vectors of the coordinate system.

Of course, since the base vectors of system S are the standard unit vectors, the matrix

that they form is the identity matrix M == I, which can be safely omitted (and usually

is), but don’t forget it’s there behind the curtains. Actually, there’s one more thing

that’s usually implicitly added to the equation, namely the origin O. The standard

origin is the null vector, but it need not be.

Eq C.17 is the full equation for the definition of a point. O is the origin of the

coordinate system, M defines the base vectors, x is a coordinate set in that base,

starting at the origin. Note that each of these is completely arbitrary; the M and x in

the preceding discussion are just examples of these.

(C.17) 𝑃 = 𝑂 + M ⋅ x

Last notes

It really is best to think of points in terms of eq C.17 (that is, an origin, a base matrix,

and a coordinate vector), rather than merely a set of coordinates. You’ll find that this

technique can be applied to an awful lot of problems and having a general description

for them simplifies solving those problems. For example, rotating and scaling of

sprites and backgrounds is nothing more than a change of coordinate systems.

There’s no magic involved in pa-pd, they’re just the matrix that defines the

screen→texture space transformation.

Be very careful that you understand what does what when dealing with coordinate

system changes. When transforming between two systems, it is very easy to write

Tonc - GBA Programming in rot13

705 / 757

down the exact inverse of what you meant to do. For example, given the systems S

and S’ of the previous paragraph, we see that x = M · x’, that is M transforms from S’ to

S. But the base vectors of M are inside system S, so you may be tempted to think it

transforms from S to S’. Which it doesn’t. A similar thing goes on with the P matrix that

the GBA uses. The base vectors of this matrix lie inside texture space (see fig 5 in the

affine page), meaning that the transformation it does goes from screen to texture

space and not the other way around.

The base matrix need not be square; you can use any M×N matrix. This corresponds to

a conversion from N dimensions to M dimensions. For example, if M=3 and N=2 (i.e.,

two 3D vectors), you would have a flat plane inside a 3D world. If N>M, you’d have a

projection.

Tonc - GBA Programming in rot13

706 / 757

D. More on makefiles and compiler

options

Introduction

My standard makefile

Common compiler flags

THIS CHAPTER MAY BE OUTDATED

This part may need an overhaul and some of the suggested tools or practices

may be deprecated.

Introduction

Although I gave a quick introduction to makefiles and compiler flags in the setup

section, a more complex look into these items may prove useful as well. So I’ll present

and explain the makefiles that Tonc uses in more detail, as well as some other little

things about makefiles and compiler/linker options. I hope that this will give you

enough ammo to understand the makefiles that are out there and allow you to figure

out the more complicated aspects of the make process yourself. This page is hardly a

substitute for the full documentation on the maketool make, the assembler as,

compiler gcc and the linker ld, but it’ll have to do for now. You can get the full

documentation on these tools at GNU Manuals Online. You may also be interested in

MrMrIce’s make tutorial, which can be found in gbadev.org’s documentation section.

By the way, I’m no expert at this stuff. I know a few tricks about makefiles and

compiler options but that’s it. If you have suggestions on improving my makefiles, do

tell.

Tonc - GBA Programming in rot13

707 / 757

https://www.gnu.org/manual/manual.html
http://www.gbadev.org/

My standard makefile

UPDATE NOTE

As of 20060428, I’m using a different style of makefiles, which means that this

section is now largely out-of-date. I’ll update when it reaches the top of my

priority stack (which may be a while).

What follows is the makefile for my int_demo demo. This is a moderately complex

makefile, using the assembler, implicit rules and pattern substitution. The things

you’ll see here should be sufficient for most everyday makefiles. Two notes before we

begin: this is a makefile for devkitARM. Instructions for getting it to work on DKA are

indicated by comments.

Tonc - GBA Programming in rot13

708 / 757

#
int_demo.mak
#
makefile for a simple interrupt demo

--- Project details ---
PROJ := int_demo
EXT := gba
UDIR := ../toncllib

SFILES := $(UDIR)/single_ints.s
CFILES := int_demo.c gba_pic.c \
 $(UDIR)/core.c $(UDIR)/interrupt.c $(UDIR)/keypad.c $(UDIR)/vid.c

SOBJS := $(SFILES:.s=.o)
COBJS := $(CFILES:.c=.o)
OBJS := $(SOBJS) $(COBJS)

#--- Tool settings ---
CROSS := arm-none-eabi- # use arm-agb-elf- for DKA
AS := $(CROSS)as
CC := $(CROSS)gcc
LD := $(CROSS)gcc
OBJCOPY := $(CROSS)objcopy

MODEL := -mthumb-interwork -mthumb
SPECS := -specs=gba.specs

ASFLAGS := -mthumb-interwork
CFLAGS := -I./ -I$(UDIR) $(MODEL) -O2 -Wall
LDFLAGS := $(SPECS) $(MODEL)

#--- Build steps ---
build : $(PROJ).$(EXT)

$(PROJ).$(EXT) : $(PROJ).elf
 @$(OBJCOPY) -v -O binary $< $@
 -@gbafix $@

$(PROJ).elf : $(OBJS)
 @$(LD) $^ $(LDFLAGS) -o $@

#COBJS compiled automatically via implicit rules
#$(COBJS) : %.o : %.c
$(CC) -c $< $(CFLAGS) -o $@

$(SOBJS) : %.o : %.s
 $(AS) $(ASFLAGS) $< -o $@

Tonc - GBA Programming in rot13

709 / 757

As you can see, I’ve divided the file into four sections: project details, tool settings,

building and clean. I’ll go through these in order of appearance.

1: Project details

These are all just variable definitions. Variables can be defined in two ways (see make

manual, 7.2: “The Two Flavors of Variables”):

The first flavour (=) is a recursively expanded variable; the second (:=) is a simply

expanded variable. In either case, whenever you now write $(XX) the make tool will

substitute it by yy . And yes, the parentheses are mandatory. The difference between

the two can be made clear by looking what happens if you do this.

--- Clean ---
.PHONY : clean
clean :
 @rm -fv $(COBJS) $(SOBJS)
 @rm -fv $(PROJ).$(EXT)
 @rm -fv $(PROJ).elf

PROJ := int_demo
EXT := gba
UDIR := ../tonclibs

SFILES := $(UDIR)/single_ints.s
CFILES := int_demo.c gba_pic.c \
 $(UDIR)/core.c $(UDIR)/interrupt.c $(UDIR)/keypad.c $(UDIR)/vid.c

SOBJS := $(SFILES:.s=.o)
COBJS := $(CFILES:.c=.o)
OBJS := $(SOBJS) $(COBJS)

XX = yy
AA := bb

XX = $(XX) -c
AA := $(AA) -c

Tonc - GBA Programming in rot13

710 / 757

You would like this to behave as the C operator += , but in the first case the expansion

is done recursively, meaning that you get an endless loop. The second version does

what you expect to happen. Simply expanded variables make things more

predictable, which is a good thing. See the make manual for more details on this. Oh,

in case you were wondering, the assignment operator is available for makefiles as

well.

In this case I’ve defined variables for the project’s name (int_demo), the extension

(gba) and the directory where I keep all my utility routines (../libtonc). It’s a good

practice to do this, because you can modify and use it to suit another project without

too much trouble.

The second part defines the source files (not the object files, but the actual C and

assembly files) of the project. Note the use of $(UDIR) in many of the names. Note

also that the definition of CFILES is split over two lines using a backslash (\). When

you do this, though, make absolutely sure it’s the last character on the line. If you put,

say, a space behind it, you’ll regret it. Some editors have an option with which you can

show non-printable characters; try it if you suspect these kinds of errors (will work for

the tab requirement as well).

And the third part is where it gets interesting. The form

is called substitution reference, one of the many forms of pattern substitution. In this

case it looks at variable var and if it finds the string a at the end of a word, it’ll be

replaced by string b. I’ve used this to turn the lists of .s and .c files into lists of object

files. GNU Make is full of string-transformation commands such as this. Look at

libtonc.mak for some others.

$(var:a=b)

Tonc - GBA Programming in rot13

711 / 757

2: Tools settings

More variables. First, I list the tools I use for assembling (arm-none-eabi-as),

compiling (arm-none-eabi-gcc) and linking (arm-none-eabi-gcc). Note that I’m

using the same program for compiling and linking. You can also use the command

that does the actual linking (arm-none-eabi-ld), but if you do that you have to tell it

what standard libraries to use and where to find them. gcc does that for us, which

saves us a lot of hassle. To indicate it really is a different step conceptually, I’m using a

different variable name for the link-step. Now, in principle the variable names are

yours to choose, you can call them HUEY, LOUIS and DEWEY for all I care, but AS, CC

and LD are conventional, so you’d do the world a favour by sticking to that. And

there’s actually a second reason why using these names are preferred, which I’ll go

into later. Additionally, using a separate variable for the command prefix (the CROSS

variable) makes switching to another devkit easier. Abstraction is your friend.

The rest are lists of assembler, compiler and linker flags. I want to tell you what these

do later, since it has nothing to do with the make-process in itself. It’s standard

practice to do something like this, though. Again, by using variables for this stuff

(especially with these precise names) rather than adding them to the actual build

commands, makes it easier to switch to something that requires other flags.

Abstraction is a very good friend.

CROSS := arm-none-eabi- # use arm-agb-elf- for DKA
AS := $(CROSS)as
CC := $(CROSS)gcc
LD := $(CROSS)gcc
OBJCOPY := $(CROSS)objcopy

MODEL := -mthumb-interwork -mthumb
SPECS := -specs=gba.specs

ASFLAGS := -mthumb-interwork
CFLAGS := -I./ -I$(UDIR) $(MODEL) -O2 -Wall
LDFLAGS := $(SPECS) $(MODEL)

Tonc - GBA Programming in rot13

712 / 757

3: The build commands

And now for the real work. The actual build process is composed of a number of rules.

If you’ve forgotten what a rule looks like, here it is again:

One thing to remember here is that the command must be preceded by a TAB, not

spaces! Anyway, the commands will run only when the target is out of date. This is

true when the target doesn’t exist or is older than the prerequisites. By default, the

first rule in the makefile starts the build-chain, but you can start at another rule in the

command line (or the Project Settings). Let’s trace through the rules one by one.

It starts at the build rule, which has one prerequisite, int_demo.gba . This has a rule

too, and one that requires int_demo.elf , which in turn requires the object list .

The objects list is composed of two parts, COBJS and SOBJS . The percentage signs

(‘%’) in their rules make them pattern rules. Taking SOBJS as an example, the rule

says that for every file in the list that ends in ‘.o’, the prerequisite is its ‘.s’ counterpart.

Here ends the build chain, as the sources have prerequisites. Now the commands

come into play, in an stack-unwind manner.

build : $(PROJ).$(EXT)

$(PROJ).$(EXT) : $(PROJ).elf
 @$(OBJCOPY) -v -O binary $< $@
 -@gbafix $@

$(PROJ).elf : $(OBJS)
 @$(LD) $^ $(LDFLAGS) -o $@

#COBJS compiled automatically via implicit rules
#$(COBJS) : %.o : %.c
$(CC) $(CFLAGS) -c $< -o $@

$(SOBJS) : %.o : %.s
 $(AS) $(ASFLAGS) $< -o $@

target : prerequisite
 command

Tonc - GBA Programming in rot13

713 / 757

In almost all the commands, you’ll see unknown things with dollar signs: $^ , $< and

$@ . These are automatic variables. These refer to the full prerequisite, a single item

in the prerequisite and the target, respectively. Other things to not about some

commands are the hyphen (‘-’) and the at sign (‘@’) in front of them. The ‘@’

suppresses echoing that line. The hyphen lets make ignore errors. I’m using it in the

gbafix command to keep the makefile running, even if you don’t have the tool.

An observant reader may have noticed that the lines for compiling the C files have

been commented out. So how can the files be compiled without a rule? Via implicit

rules. For a good number of suffices GNUmake knows how to build them. For

example, if you need an object file foo.o and foo.c is nearby, it’ll use the rule

There’s an implicit rule for assembly files too, only it uses AS and ASFLAGS , which is

why I used those names. You can find a full list of implicit rules and the variables they

use in the make manual.

4: cleaning up

This rule is separate from the others and is used to remove the output and

intermediaries of the project (but not the utility objects, because they may be used in

another project as well). It’s really simple: rm is the command for removing stuff, the

flags tells it to keep going even if the file doesn’t exist (-f) and to display what it’s

doing (-v). And that’s it. Well, almost. There’s one more thing, namely the .PHONY

directive. Remember that I said that the commands are only run when the target

doesn’t exist or is older that its prerequisites. Since the target (clean) doesn’t exist, it’s

always out of date and the commands always run. But what happens if there is a file

$(CC) $(CPPFLAGS) $(CFLAGS) -c $< -o $@

--- Clean ---
.PHONY : clean
clean :
 @rm -fv $(COBJS)
 @rm -fv $(PROJ).$(EXT)
 @rm -fv $(PROJ).elf

Tonc - GBA Programming in rot13

714 / 757

called clean? Because there are no prerequisites the commands will never run. The

.PHONY directive is used to indicate that the target is a target in name only and that

the commands should always be executed.

There’s a lot more fun to be had with makefiles. You can use makefiles that run other

makefiles (which is actually how tonc.mak is set up) or include them in other

makefiles. This last one can make your life a lot easier. For example, by proper use of

variables, steps 3 and 4 will rarely change between projects. This means that you

could put them into a master makefile and include them in all your project-makefiles,

in which you will only have to write down the things that are really specific to the

current project (for an example of this, see HAM). Abstraction wants to have your

babies.

With the pattern substitution and wildcard rules you can practically make makefiles

that write themselves! (see the devkitARM sample code). The full extent of makefile

capabilities it beyond the scope of this tutorial, but trust me, there’s a lot more cool

stuff here.

Common compiler flags

Knowing how to write a working makefile is only part of the problem of getting the

GNU tools to work. What’s even more important is knowing what options you can use

with the assembler, compiler and linker. In an IDE, you can enable these by selecting

them in check- and list-boxes and such. No such luck for command line tools, though,

here you have to set all the options by including certain flags. The key is knowing

which flags to use. I’m not going to list each and every one of these since there are

literally hundreds of flags. But I am going to list the ones you’re most likely to see in

GBA programming.

-c : (gcc) Compile to object file, but do not link.

-E : (gcc) Stop a�er the preprocessor stage.

Tonc - GBA Programming in rot13

715 / 757

http://www.ngine.de/
https://www.devkitpro.org/

-g : (as, gcc) Generates debug-information for the gdb debugger. Haven’t used

myself this yet.

-Idir : (gcc) Add the directory dir to the list of directories to be searched for

header files. (That’s a capital ‘i’, by the way)

-llibrary : (gcc, ld) Search the library named library or liblibrary.a when

linking. Important libraries are libm (math library), libgcc, libc and libstdc++; the

last three are linked automatically when you use gcc as a linker, rather than

calling ld directly. And that’s a lowercase ‘L’, by the way. “lI1”, “oO0”, I do so

hate the Latin alphabet sometimes.

-Ldir : (gcc, ld) Add directory dir to the list of directories to be searched for code

libraries.

-M : (gcc) The family of -M flags generate dependency information for header

files. Normally when you create rules, you only mention the source files, which

are recompiled when they’ve been modified. But when you modify the headers

that that file includes, the file itself is still considered up-to-date. You can either

create a rule for the headers yourself or let make do it for you with these flags.

Unfortunately, I haven’t been able to make them work for me yet.

-Map mapfile : (ld) Creates a map-file, which indicates where the linker puts

your functions and global variables. Since it is a pure linker option, you need to

use -Wl,-Map,filename when linking with gcc.

-marm, -mthumb, -mthumb-interwork : (as, gcc, ld) Indicates the CPU model to

write object files for (ARM or Thumb). The default is ARM. With -mthumb-

interwork you allow mixing between ARM and Thumb code, which you’ll want

to allow for even when you’re not actually using it. This flags it actually required

under devkitARM.

-nostartfiles : (gcc, ld) Do not use the standard system start-up files when

linking. If you want to link a custom crt0.o you want this so bad. (Whether you

want a custom crt0.o is another matter, though.)

-o file : (as, gcc, ld) Place output in file file.

-Onum : (gcc) Enables optimisation level num , where num is usually g , 1 , s , 2 ,

or 3 . If you want to use inline functions, you need at least one level of

Tonc - GBA Programming in rot13

716 / 757

optimisation. See the gcc manual for details.

-S : (gcc) compile, but not assemble. This gives you an assembly file of the C file

you just compiled. Very useful for finding out how ARM assembly works, you

should do this at least once.

-specs=specfile : (gcc) use specfile to determine what switches need to be

passed to gcc’s subprocesses (as , cc1 , cc1plus , ld) instead of the default

specs. (gcc.info, line 5556. Fer IPU’s sake, people, don’t you guys read manuals?

It’s only 26k lines you know).

-T scriptfile : (ld) Use scriptfile as the linker script. (Like Jeff Frohwein’s

lnkscript.)

-Wall : (as, gcc) Enable common warnings. Options of the form -Wfoo are used

for all kinds of warnings actually.

-Wl,opts : (gcc) passes options to the linker; opts is a comma-separated list.

Tonc - GBA Programming in rot13

717 / 757

E. Make via editors

Introduction

Make via ConTEXT

Make via Programmer’s Notepad 2

Make via MS Visual C++ 6

THIS CHAPTER MAY BE OUTDATED

This part may need an overhaul and some of the suggested tools or practices

may be deprecated.

Introduction

As good as makefiles are, they’re still command-line driven processes, with all the

problems attached to it. If you’re in a Unix/Linux environment those problems are

usually fairly small, but on a pure Windows system we have to work in a DOS-like

Windows command prompt, which has a number of very ghastly flaws that can make

your life miserable: not only is wringing through the directory structure not much fun,

the non-intuitive way to copy/paste text and the inability to arrow through your

commands to fix a typo are somewhat annoying too. Another thing that will wear your

patience very quickly is not being able to scroll through the list of compilation errors

that speeds across your itty-bitty Windows command prompt like a thundering herd

of rabid elephants in a China shop. And you know it’d all be okay if you could just find

the one at the start of the list and fix that. Now, you can get around the gross

inadequacies of a Windows command prompt by using an MSYS-box instead. You’d

still need to learn how to use the Bash shell to make the most of it, though. And you’d

still have the extra window for the command line box.

Tonc - GBA Programming in rot13

718 / 757

Fortunately, there are ways to avoid any kind of command line box altogether. Unless

you’re using something as dreadful as the standard Windows Notepad, there is a good

chance you can run make or any other tool directly from your code editor. In this case,

I’d like to take a look at three of them

ConTEXT

Programmer’s Notepad. Yes, the one that comes with devkitARM.

Microso� Visual C++

ConTEXT and PN are basically advanced forms of text editors, of which there are quite

a few. Most of these will allow tabbed files, search&replace, customizable syntax

highlighting, macros and shell commands. If you’re still using Windows Notepad for,

well, anything really, you owe it to yourself to download one of the more advanced

text editors and use that as a replacement. The glorified edit-box known as Notepad

should not be allowed anywhere near any kind of plain text file unless there is no way

around it. Every one of the programmers’ editors you can google up is likely to be

superior to Notepad in every single way, and some of them even allow you to replace

the actual notepad.exe. While this has become harder since Windows XP Service Pack

2 because system file protection keeps resurrecting it, in my opinion it’s well worth

the effort to shoot it down permanently.

Ahem, sorry about that. Sometimes I get a little carried away when I remember how

much the standard Windows tools suck at times. Anyway, onto the show. In the

remaining part of this chapter, I’ll show how you can get ConTEXT and PN to run make

for the currently open makefile. The last section of this chapter will cover setting up

MSVC for the job. If you’re not interested in any of this, feel free to skip to the next

chapter at any time.

Make via ConTEXT

ConTEXT is a lightweight free text editor that I use for most of plain text editing. It can

do all the things that programmer’s editors are supposed to do, it has a Notepad

Tonc - GBA Programming in rot13

719 / 757

https://archive.org/details/tucows_349269_ConTEXT
http://www.pnotepad.org/
https://archive.org/details/tucows_349269_ConTEXT

replacer and a tool that allows me to export code to an html format, which has been

very useful indeed for writing tonc. It does have one or two minor flaws, but none that

I particularly mind.

The shell commands manager can be found under Options->Environment Options…-

>Execute Keys (fig E.1), and works on an extension basis. In my case, that means .mak.

ConTEXT allows 4 commands per extension, and I’m using F9 to make the ‘build’

target and F10 for a clean operation.

F9 : make build

Execute: make.exe (add full path if necessary)

Parameters: -f %f build

Capture output: yes

F10 : make clean

Execute: make.exe

Parameters: -f %f clean

Capture output: yes

Be sure that the devkitARM and msys bin directories are in the system path, or context

won’t be able to find make.exe or the compiler tools.

Tonc - GBA Programming in rot13

720 / 757

Fig E.1: ConTEXT shell commands.

Make via Programmer’s Notepad 2

I never really knew about PN until it started coming with devkitARM, but it looks really

good. I haven’t used it that much myself, but only because I am still content with

context. That said, PN is probably the better editor, and as it may come with the

toolchain, chances are you’ll have it already.

Tonc - GBA Programming in rot13

721 / 757

For all its benefits, I should say this though: by default, it seems to ignore the desktop

color scheme. This may not sound like a big deal, but because the background color

defaulted to a hard white, I literally couldn’t even look at the thing for more than a

minute. When I first tried to fix this in the options, it seemed that you could only

change this on a type-by-type basis instead of globally. Took me a while to figure out

I’d been looking in the wrong place �P all along. Look under Tools->Options->Styles,

not under Tools->Options->Schemes.

To add commands for makefiles, go to Tools->Options->Tools (fig E.2), and select the

‘Make’. Then add 2 commands for ‘make build’ and ‘make clean’

F9 : make build

Name: mk build

Command: E:\dev\devkitPro\msys\bin\make.exe

Folder: %d (the makefile’s directory)

Parameters: -f %f build

Shortcut: F9

F10 : make clean

Name: mk clean

Command: E:\dev\devkitPro\msys\bin\make.exe

Folder: %d (the makefile’s directory)

Parameters: -f %f clean

Shortcut: F10

The name and shortcut can be different, of course; the rest should be as above. It is

possible that you have to make sure the .mak extension is tied to the ‘Make’ scheme.

Tonc - GBA Programming in rot13

722 / 757

Fig E.2: Programmer’s Notepad shell commands.

By adding make commands to your editor, you should be able to run the makefile of

every tonc demo. If you encounter problems, you probably forgot to set a path

somewhere.

Make via MS Visual C++ 6

I’m sure a lot of you will have gotten your hands on some version of Visual Studio one

way or the other, officially, via school or … other methods. MSVC actually works with

its own kind of makefiles and maketool called NMAKE, but we’re going to ignore that

one and use GNU’s make instead. The instructions in this section work for versions 5

Tonc - GBA Programming in rot13

723 / 757

and 6, but I’m not sure about later versions. From what I hear, they changed a lot in

those so if you have one of those you might have to do some digging of your own. I

know that there are also add-ons that can create GBA projects via wizards, but again

you’ll have to find them yourself.

VC and makefile projects

Phase 1: setting the path

The first thing you need to do, if you haven’t done so already, is setting the path so

that Visual C can find the tools. Open the [Tools/Options] dialog and go to the

[Directories] tab, then select the [Executable files] list from the [Show Directories for]

box (see fig E.3 below). Now you need to add the bin directories of MSYS and dkARM.

You can also set these directories to autoexec.bat as well. The devkitARM directory

can also be set inside the makefiles themselves, but since I use 4 different computers

to write Tonc, I prefer not to do this.

Fig E.3: adding the the dkARM paths to the executable list.

Tonc - GBA Programming in rot13

724 / 757

Phase 2: Creating a makefile project

The second step is creating a project/workspace that uses custom makefiles. This is

called, what else, a makefile project. Go to the [Projects] tab of the [File/New] dialog

(shown in fig E.4 below), select Makefile, give it a name and press OK. Mind you, this

does not create the makefile, only the project! Also, the project’s name I use here is

‘tonc’, change this to the name of your own project.

Fig E.4: creating a makefile project.

Phase 3: Profit!^H^H^H^Hject settings!

A�er you click OK, you will be asked to go to the Project Settings. Do so and you’ll see

the dialog from fig 6. The first thing you will find is the [Build command line] edit box.

Right now, this reads something like

Tonc - GBA Programming in rot13

725 / 757

Change it to

Why? Because we won’t be using the standard VC make (NMAKE), but the GNU make

(make). Why? Because it’s free, platform-independent and usually comes with the

devkit, making your project more portable, is more powerful and better documented

as well. Why? Because … just because, OK? This is the command that is executed

when you press Rebuild (F7). The -f flag says which makefile to use. Inside a makefile

you can have multiple sub-projects; in this case the one called build is the active one.

The other settings aren’t important for our purposes so leave them as they are. Yes,

the output filename too; the makefile will take care of that. By the way, note that the

workspace in fig E.5 shows three projects: tonc and libtonc for actual tonc stuff, and a

vault project. A standard practice of mine to have one vault project where I can store

source-files I don’t want compiled but do want to have available for reference (such as

templates and examples). All my workspaces have one and I can highly recommend

them.

NMAKE /f tonc.mak

make -f tonc.mak build

Tonc - GBA Programming in rot13

726 / 757

Fig E.5: project settings.

CONVERTING GCC REPORTS TO MSVC REPORTS

When you build a normal MSVC project, it will report and errors and warnings

and double-clicking on these will bring to to the line that spawned it. This does

not work for devkitARM because GCC has a slightly different reporting format.

Because of the difference in line-number formatting, MSVC gets confused and

can’t find the line, or even the file. Fortunately, we can change this by piping

the output of make through sed, the bash-shell string editor that comes with

msys. To do this, change the build invocation to:

GCC error: {filename}:{line}: error: ...
foo.c:42: error: 'bar' undeclared (first use in this function)
MSVC error: {dir}\{filename}(line): error ...
dir\foo.c(42) : error C2065: 'bar' : undeclared identifier

Tonc - GBA Programming in rot13

727 / 757

The 2>&1 | feeds the standard output of make to the standard input of the

sed. The rest is a sed command that finds the parts before the first two colons,

and converts them to the parenthesized format the MSVC expects. Note that

tonc’s build line is slightly more complicated because of its directory structure

but the line above is what really matters.

Phase 3b: Build configurations

This one isn’t strictly necessary, but may be useful. In Visual C++ you can have

multiple build configurations, each with its own project settings. You’re probably

familiar with the Debug and Release Builds, but you can add your own as well with

the [Build/Configurations] dialog (shown in fig E.6). The tonc project has five

configurations, which all drive different targets in tonc.mak. Build builds the current

demo; Clean removes all intermediary and output files (.O, .ELF and.GBA). In order to

build/clean a specific demo you’d have to change the project settings or, preferably,

set the DEMO variable inside tonc.mak to the name of that demo. Build All and

Clean All run Build and Clean for all demos, respectively. The ‘Utils’

configuration creates the tonc library required for some of the later examples.

make -f tonc.mak build 2>&1 | sed -e 's|\(\w\+\):\([0-
9]\+\):|\1(\2):|'

Tonc - GBA Programming in rot13

728 / 757

Fig E.6: Build Configurations.

And that’s about it as far as Visual C++ is concerned. You still have to actually create

the referenced makefile (tonc.mak in this case). You know how to create a textfile,

don’t you? Another thing to remember about makefile projects is that all build

commands are inside the makefile; the files mentioned in the File Viewer are just for

show and are not compiled by themselves like ‘normal’ VC projects.

EASY SWITCHING BETWEEN DEVKITS IN TONC.MAK

Tonc’s makefiles are of such nature that each can stand on its own, but can also

be called from a central makefile tonc.mak, with the DEMO variable. I’ve also

put a CROSS (which houses the prefix) variable in there which overrides CROSS

of the individual makefiles. Changing it in tonc.mak effectively changes it

everywhere.

GETTING RID OF MSVC 6.0’S USELESS DIRECTORIES

It appears that Visual Studio 6 (and higher too?) has a very annoying habit of

creating all kinds of extra directories for each project added to a workspace and

for each project configuration. Directories that you probably never intend to

Tonc - GBA Programming in rot13

729 / 757

use, and certainly never asked for, and which clutter up your project. Removing

them from disk doesn’t solve the problem, because they’ll just reappear merely

by selecting the project/configuration.

grumble

Well, the good news is that for normal projects you can just remove them from

the project settings, then remove them from disk and everything will be clean

again. The bad news is that we’re not using normal projects but makefile

projects, which don’t have the settings-tab in question. So what you have to do

is go to the .DSP in a text editor, and remove everything resembling the

following lines

No, I don’t exactly know what I’m doing, but yes when you remove the

directories now they stay gone. In fact, I’m pretty sure a lot of lines can be

removed from the DSP, but as there is no manual for the commands in a project

file, I’m not taking any chances there.

Now, if anyone does have a reference guide for DSP files, or can tell me whether

this obnoxious behaviour is still present in later MSVC iterations, I’m all ears.

PROP BASE Output_Dir [DIR]
PROP BASE Intermediate_Dir [DIR]
PROP Output_Dir [DIR]
PROP Intermediate_Dir [DIR]

Tonc - GBA Programming in rot13

730 / 757

F. References and links

General sites

Documents

Tools

Books

General sites

Essentials

www.devkitpro.org. Home of devkitARM, the toolchain of choice for GBA

development. And NDS and more. Updated regularly and you can find a libgba

and sample code here too.

www.gbadev.org. GBA development hub. Tools, documents, tutorials can all be

found here. A visit to the forum is highly recommended if you’re just starting,

whether you have problems or not. If you do have a problem, chances are you’re

not the first and that it has been solved before here. Just remember the rules of

posting before you start a topic.

Nocash. Martin Korth’s site. You can find the immensely complete (though

Spartan) GBATEK reference document and the No$gba emulator, both of which

are insanely great.

vba.ngemu.com, The VisualBoy Advance emulator. Not as accurate as no$gba

when it comes to timings, but still very, very good, and has a more friendly

interface and all kinds of cool viewers for tiles, maps, IO registers and the like.

Alternative dev environments

www.ngine.de, Host of HAM. HAM is a full C developer environment for the GBA,

complete with IDE, palette and map editor and, of course, compiler. There is also

Tonc - GBA Programming in rot13

731 / 757

https://devkitpro.org/
http://www.gbadev.org/
http://forum.gbadev.org/
http://www.albinoblacksheep.com/flash/posting.php
http://www.albinoblacksheep.com/flash/posting.php
http://nocash.emubase.de/
https://problemkaputt.de/gbatek.htm
http://nocash.emubase.de/gba.htm
http://vba.ngemu.com/
http://www.ngine.de/

an extension library called HEL with extra (and optimized) code. Taking a look at

that would be a good idea.

DragonBasic. If you don’t like all the intricacies of C/asm, you might try this

BASIC-like environment. The project is a little, uhm, asleep right now, though.

Catapult. Don’t know too much about Catapult, but from what I’ve seen, it

seems to work a little bit like Gamemaker: you create images/sound and scripts

that Catapult ties together into a ROM image. Catapult comes complete with

graphic, map and sound editors, tutorials, samples, emulator and probably

more.

Personal sites

A few sites of (high-ranked) forum-dwellers. These guys have been around for a while

and you can learn a lot from playing their demos and browsing through their source

code.

darkfader.net. Darkfader’s site, with information, tools, demos, code not only for

GBA development, but many other systems as well.

deku.rydia.net. DekuTree64’s site has more than just the sound mixer; there’s

also some demos (with source) and tools like quither, a quantizer / ditherer for

16 color tiles.

Headspin had put together this overview of various items, incluning the different

compression routines and music players available.

www.thingker.com. Scott Lininger’s site with a number of demos, including

multiplayer code, which seems very hard to come by.

www.console-dev.de. Peter Schaut’s site, with VisualHam, the HAMlib IDE; HEL,

the HAM addon library; katie, a data-management tool and more.

www.pineight.com. Site of gbadev faq maintainer, tepples. There are a number

of interesting things here. Special mentions for Tetanus on Drugs, a zonked-out

version of tetris (can’t call it a clone as it is so much more), and GBFS, a file

system for the GBA.

Tonc - GBA Programming in rot13

732 / 757

http://www.console-dev.de/project/hel-library-for-gba/
https://web.archive.org/web/20071106103247/http://www.nocturnal-central.com/catapult.php
https://www.darkfader.net/main/
https://web.archive.org/web/20160203205842/http://deku.rydia.net/
https://web.archive.org/web/20220512153726/https://members.iinet.net.au/~freeaxs/gbacomp/
https://web.archive.org/web/20050205230410/http://www.thingker.com:80/gba/
http://www.console-dev.de/
http://www.pineight.com/

Documents

Tutorials

www.belogic.com. Pretty much the site on GBA sound programming. Has info on

all the registers, and a set of very complete demos.

If you’re looking for C/C++ tutorials, there seems to be some good stuff here

DekuTree’s sound mixing tutorial. Whereas Belogic shows the basics of sound

programming, this sight guides you through the steps of making a sound/music

mixer.

www.drunkencoders.com. This is the new home of the PERN project, the

original series of tutorials for gba development. PERN was set for a complete

renewal, but that seems to have been deprioritised in favor of the DS, which you

will also find a lot about there.

jake2431 has been gathering NDS / C / GBA tutorial links on the gbadev

forum:8353

Reference documents

The comp.lang.c FAQ. Pretty long, but very useful if you’re learning C as well as

GBA programming.

A document on C coding standards, one of many floating around. If you’ve

based your code on any of the non-tonc tutorials out there you need to read this.

The standard doesn’t have to be followed religiously, but adopting most of them

would be a good idea and would solve a lot of the bad habits the other sites

teach.

Mr Lee has a few things to say about optimization. These are simple optimization

that cost nothing or little in readability.

The gbadev forum FAQ. Essential reading, whether you’re new or not. Bookmark

it, make a local copy, print it out; I don’t care, but get FAQed.

The GBATEK. reference document. This is basically the GBA-coders’ bible (only

this one is a worthwhile read). The information density is very high and maybe a

Tonc - GBA Programming in rot13

733 / 757

http://www.belogic.com/
http://www.cprogramming.com/tutorial.html
https://stuij.github.io/deku-sound-tutorial/
http://www.drunkencoders.com/
https://gbadev.net/forum-archive/thread/18/8353.html
http://c-faq.com/
https://web.archive.org/web/20110624025547/http://www.jetcafe.org/~jim/c-style.html
https://web.archive.org/web/20170907095140/http://leto.net/docs/C-optimization.php
https://gbadev.net/forum-archive/thread/14/418.html
https://problemkaputt.de/gbatek.htm

little perplexing if you’re just starting, but when you get the hang of it, it’s pretty

much all you’ll require. Is also part of HAMLib’s documentation.

The CowBite Spec, a another reference document. At least partially based on

GBATEK. Not as rich, but probably more understandable.

www.gnu.org. GCC documentation in various formats. These sites have manuals

on the GCC toolchains and other things. Get the files for the assembler (AS),

compiler (GCC), linker (LD) and preferably the maketool (make) as well. The

preprocessor manual (cpp) may be useful as well.

ARM docs

Naturally, the ARM site itself also has useful documents. Note that most of these are

pdfs.

miscPDF 8031. The Arm Architecture Procedure Call Standard (AAPCS). Explains

how parameters are passed between functions. Required reading if you want to

do assembly.

PDF DAI0034A. Writing efficient C for ARM. Although it’s written with ARM’s own

compiler in mind, some tips will work for other toolchains as well.

PDF DDI0210B The big one: the complete technical reference manual for the

ARM7TDMI.

Instruction set reference sheets. ARM + Thumb combined.

Support faqs on alignment issues: faqdev 1228, faqdev 1469, and faqip 3661.

Tools

Source code tools

If you’re still using Notepad to write your GBA code, don’t. Do yourself a favor and just

… don’t, OK? Though I personally use Visual C for writing code, there are some other

very nice tools for the job, both in terms of general text editors as IDEs.

Tonc - GBA Programming in rot13

734 / 757

http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm
http://www.gnu.org/manual/manual.html#Development
https://github.com/ARM-software/abi-aa/releases/download/2023Q3/aapcs32.pdf
http://netwinder.osuosl.org/pub/netwinder/docs/arm/DAI0034vA.pdf
https://documentation-service.arm.com/static/5f4786a179ff4c392c0ff819?token=
https://documentation-service.arm.com/static/5ed66080ca06a95ce53f932d?token=
https://web.archive.org/web/20080331064522/http://www.arm.com/support/faqdev/1228.html
https://web.archive.org/web/20070202123419/http://www.arm.com/support/faqdev/1469.html
https://web.archive.org/web/20090117030418/http://www.arm.com/support/faqip/3661.html

ConTEXT. A while back there was a thread where someone asked for a

replacement editor for Notepad since, and I quote, “Notepad SUCKS!”. The name

ConTEXT popped up a couple of times, and I find it very nice indeed, and not just

for coding purposes. It allows for custom highlighters, integrated shell

commands (to run makefiles for example) and attachable help files

Programmer’s Notepad (PN). Good and versatile text editor. Comes with the

devkitPro installation.

Eclipse IDE. While I haven’t had time to work with it firsthand, a good number of

gbadev forum-dwellers swear by it. You can read how to set it up for GBA

development in forum:5271.

Dev-C++. Dev-C++ is another IDE that comes up o�en and maybe worth a look.

forum:1736 has info on how to set it up, but it’s an old thread so you may have to

do a little extra work.

Graphics tools

Just as Notepad sucks for coding (and anything apart from the simplest text editing),

MS-Paint is hell on Earth when it comes to the kind of graphics you need in GBA

games. What you need is a tool that allows full control over the bitmap’s palette, and

MS-Paint fails spectacularly in that respect. So, I might add, does Visual C’s native

bitmap editor. And even big and bulky photo-editing tools like PhotoShop and Paint

Shop Pro have difficulty here, or so I’m told. So here are some tools that do allow the

kind of control that you need. Whatever tool you plan on using: make sure it doesn’t

screw up the palette! Some editors are known to throw entries around.

gfx2gba. Command-line converter of graphics with interesting features such as

tile-stripping, palette merging and supports all bitdepths and BIOS compression

routines. Note that there are two converters named gfx2gba; you’ll want the one

my Markus. The HAM distribution includes this tool.

The GIMP. Very complete GNU-based bitmap/photo editor.

Tonc - GBA Programming in rot13

735 / 757

https://archive.org/details/tucows_349269_ConTEXT
http://www.pnotepad.org/
http://www.eclipse.org/
https://gbadev.net/forum-archive/thread/14/5271.html
http://www.bloodshed.net/
https://gbadev.net/forum-archive/thread/7/1736.html
http://www.ohnehirn.de/tools/
http://www.gimp.com/

Graphics Gale is a very complete graphics editor. It has all the tools you would

expect a bitmap editor to have, a proper palette editor and an animation tool.

Usenti. This is my own bitmap editor. It may not be as advanced as Graphics

Gale, but that does make the interface a lot easier. Aside from that it has some

very interesting palette tweaking options like a palette swapper and sorter, and

can export to GBA formats in binary, ASM and C code.

Map Editors

While the maps that I’ve used in Tonc were created on the fly, for any serious work you

need a map editor. Here are a few.

MapEd, by Nessie. Allows multiple layers, collision tiles and custom exporters.

Yum.

Mappy. This is a general purpose map editor which can be used for a lot of

different types of maps

Mirach. This is my own map editor, but lack of time means that I haven’t been

able to get all the tools that I wanted in yet :(.

Misc tools

excellut. One thing you do not want in GBA programming is to call mathematical

functions. You want look-up tables to get the proper values. Excellut sets up MS

Excel to enable you to create any kind of LUT you can think of within seconds

(well, OK, minutes). If you haven’t created a LUT builder of your own (and maybe

even if you have)it’s definitely worth a look.

Books

Douglas Adams, “The Hitchhiker’s Guide to the Galaxy”. OK, so this isn’t exactly a

reference, but recommended nonetheless. If only to know the significance of the

number 42 and the origin of the Babel Fish.

Tonc - GBA Programming in rot13

736 / 757

https://graphicsgale.com/us/
http://www.coranac.com/projects/#usenti
http://nessie.gbadev.org/
http://www.tilemap.co.uk/mappy.php
http://www.coranac.com/projects/#mirach
http://www.coranac.com/projects/#excellut

Edward Angel, “Interactive Computer Graphics with Open GL”. Though this is a

book on 3D, Lots of the linear algebra can be applied to 2D as well. Relevant

chapters are 4 (matrix transformations) and 5 (perspective (Mode 7 anyone?)).

Make sure you have the 3rd edition, there are too many embarassing errors in

the second.

George B. Arfken & Hans J. Weber, “Mathematical Methods for Physicists” If

physics were an RPG, this would be the Monster’s Manual. Chapters 1-3 deal with

vectors and matrices in great detail.

André LaMothe, “Black Art of 3D Game Programming”. For the DOS-era, so may

be hard to find. Deals with 3D programming under heavy hardware constraints

(just like the GBA). Very nice.

André LaMothe “Tricks of the Windows Game Programming Gurus”. Another

1000+ page tome by Mr LaMothe; one of many), an excellent guide to game

programming in general, and to DirectX in particular.

David C. Lay, “Linear Algebra and its Applications”. Nearly everything on my

matrix page comes out of this book.

O’Reilly pocket references for “CSS” and “HTML” by Eric Meyer and Jennifer

Niederst, respectively. Absolute lifesavers for something like this site.

Steve Oualline, “How Not to Program in C++”. The cover features a computer

sticking its tongue out at you; the first sentence of the introduction is “Pain is a

wonderful learning tool”. You just know this is gonna be good. This book gives

you 111 broken code problems to solve, ranging from obvious to cra�ed by the

Dark Lord himself. If you can’t recognize yourself in at least half of these

problems, you haven’t been coding in C for very long.

Tonc - GBA Programming in rot13

737 / 757

G. Change Log

Dec 27, 2023 - Initial content port and mdbook setup

This pre-release includes all the contents from the TONC tutorial ported faithfully to

the markdown format, rendered by mdbook. Some features are implemented with

additional mdbook preprocessors.

The “Install” chapter also received a complete overhaul and the new version is

included in this release. The original port of this part is anyway available in commit

7a3ac73.

The porting was curated by @exelotl @avivace @LunarLambda @pinobatch @mtthgn

@copyrat90 @gwilymk .

Mar 2013 (1.4.1)

Maintaince update. also includes things from the errata page

 Changed from arm-eabi to arm-none-eabi .

 Little html fixes here and there. Thank Glod for directory search-and-replace

tools.

 all code : since GCC 4.7 broke my assembly functions, I’ve recompiled all

code with the latest devkitArm (currently 40) for asm compatilibity. The

examples and libtonc should all work again. I still have to adjust the text to

match though.

asm.htm : fixed non-matching variable names in data sections’s code snippet.

Thanks, Gdogg

gfx.htm : removed a lost semicolon in the blending demo.

hardware.htm : IO-ram upper limit was given as 0401:03FF , which should be

0400:03FF . Thanks, G M.

code: Fixed links to grit for m7_demo , m7_ex , tte_demo .

Tonc - GBA Programming in rot13

738 / 757

https://github.com/gbadev-org/tonc/commit/7a3ac731efe03af6f7debbcc7dce3b222cd23b65
http://www.coranac.com/documents/tonc-errata/

objaff.htm 11.5: fixed spurious sina and cosa calculations in

obj_rotscale_ex() and oac_rotscale() . Thanks, dasi.

GNU assembler manual has moved to

http://sourceware.org/binutils/docs/as/index.html (thanks, Joseph).

Code snippet at §23.2.1:Basic operations. “x68 asm” should, of course, be “x86

asm” (thanks, Wladimir).

Some of the memory map entries in §1.3 were … imprecise (thanks Pius).

Oct 2008 (1.4)

… Or maybe not. Silly little errors.

 text: the se_index_fast() function in regbg:map-layout was wrong; the

second condition should have used ` (bgcnt&BG_REG_64x64) ==

BG_REG_64x64 ’. Fixed.

 text: the ldm example in asm:memory did not list the right values for ldmda

and ldmdb . Fixed.

 code: removed void* arithmetic in tonc_surface.h (hopefully) and fixed

berk.c from the timer demo so that it compiles now. Thanks for noticing,

elwing and Ealdor.

Fixed a few random typos here and there

May 2008 (1.4)

 text: Last batch of spelling/grammar fixes. Thanks guys. Especially Jake.

text: changed the stuff on #include for less hyperbole and more explanations.

I think that’ll be all then.

May 2008 (1.3)

 code: All demos that use text now use TTE to do it. Variable width text just

looks prettier than fixed width.

 code: Some of the advanced demos use grit to convert the graphics.

Tonc - GBA Programming in rot13

739 / 757

http://sourceware.org/binutils/docs/as/index.html

 text: added TTE chapter with information about creating (fast) text renderers

for every occasion.

 text: I’ve revamped the setup chapter. It now covers template makefiles and

some potential problems with the installation.

 text/code: the irq chapter and its demo uses the new master ISR.

 text: Fixed the brown text in the pdf. For anyone who has the same problem

with CutePDF, go to CutePDF printer->Properties->Paper/Quality-

>Advanced->Graphic->Image Color Management and make sure ICM Method is

not set to Host system . How silly of me not to look there first.

text: Finally removed the obsolete section for IRQ-handling with older devkits.

 libtonc: There is a new system for text called TTE. It’s pretty cool. Read more

about it in tte.htm.

 libtonc: New rendering functions. There are now ‘TSurface’ structs defining a

rendering surface and basic primitive renderers for different surface types.

Functionality includes: pixel, line rectangle renderers, a blitter and floodfill. Key

surface types: 16bpp bitmap, 8bpp bitmap and 4bpp tiles.

 libtonc: Color adjustment functions. Fading, blending, brightness and more.

 libtonc: Added tonccpy and toncset, memcpy and memset replacements that

actually work for VRAM as well.

 libtonc: Put libtonc documentation online:

http://www.coranac.com/man/tonclib/index.htm.

 libtonc: Added tonc_libgba.h , a header with most of the libgba constants

and functions names mapped to tonc equivalents.

 libtonc: Changed the master ISR to one that doesn’t automatically enable

interrupt nesting. It’s a bit of a downgrade, but it’s probably more appropriate.

This shouldn’t affect anyone that didn’t use nested interrupts. The old version is

still available, it’s just not the default.

Dec 2007 (1.3b)

 Upgraded the recommendations section with a longer list and examples. If

you’ve read other tutorials then please read this!

 More spelling and grammar fixes (thanks Patater)

Tonc - GBA Programming in rot13

740 / 757

http://www.coranac.com/2008/01/25/tonccpy/
http://www.coranac.com/man/tonclib/index.htm
http://patatersoft.info/

 Fix in the template makefile for c++. It’s -fno-exceptions , not -fno-

expections , you silly boy. (Thanks muff).

 All projects now default to cart-boot, not multiboot. This is partially because

multiboot doesn’t work in devkitPro r21 (at least, not directly), but also because

that’s how it’s normally done anyway.

Changed git to grit where appropriate. Also fixed the download links of

everything to point to the new site.

Feb 2007 (v1.3b)

As every programmer knows, you’re supposed to write down the changes you make

while making them. As every programmer also knows, this has a tendency to be

forgotten ^_^�� . I probably missed a few things here.

Text:

 There’s now a PDF version too, made by CutePDF. It’s a nice tool, but

apparently sometimes messes up pictures a little. Page-breaks also occur in

unfortunate places, but this is a browser problem. It’s supposed to be countered

by CSS’s page-break-inside , but I guess that’s not widely supported yet. If

anyone knows of a potential fix, let me know. Additionally, if anyone knows of a

html→PDF converter that keeps headers for the table of contents, I’d be very

interested in that. Mind you, it needs to be able to print a 1.4 MB file, and print it

correctly! Some PHP html2pdf tools don’t render correctly. Word/OpenOffice

are probably no good either, as they have a problem with floating divs and pre

tags. Also, Word nearly crashes on reading the file. Hehehehe.

 hardware: GBA pictures and capabillity description. Anyone have a GBA Micro

pic I can borrow?

 first: hardware pictures.

 bitmaps: new demo discussion for drawing primitives in modes 3/5. The page

flipping demo has been moved forward in the chapter, and the mode 3/4/5

demo moved back to a�er the data discussion.

Tonc - GBA Programming in rot13

741 / 757

 objbg: note and pic on reading tiles as bitmaps, as this this still happens to

some occasionally.

 regbg: pic to show what the offset registers really do.

 affine: added inverse 2x2 matrix equation.

 affbg: new structs for affine backgrounds, plus new typedefs and a very ni�y

method of initializing the affine parameters.

 mode7ex: across the board upgrades and new stuff. It now uses proper

graphics, making everything look a lot nicer. New background, new fade, sprite

rotation-animation and sorting and different methods of motion.

 asm: the proper form of the chapter is materializing. New structure of

sections, beginning with a one on general ASM. More examples and more ways

of doing the same thing for comparative purposes. Has a section on common

constructs now too.

 New subsection on linear interpolation of luts.

 Chapter indexing. All references are how of the form ‘ch.foo’.

 Some chapters have been renamed. tonctonc is now intro, toncmake is now

makefile. Also, luts has been merged into fixed, and the parts on makefiles and

editors in setup has been moved to a separate file called edmake. Might move

that into makefile too.

 All register and register-like tables now use alternating background colors for

easier reading.

 regobj: Different structure for obj_demo discussion.

 regbg: deleted BGINFO stuff, as it was never used much and impractical to

boot.

 regbg: New graphics besed on Super Metriod’s Brinstar instead of the original

Norfair. ’s prettier now. Also rearranged stuff.

 affine: updated ‘finishing up’ for new routines.

 dma: discussion of upgraded DMA demo

 interrupts: discussions of the new and (much) improved interrupt handler and

its demo.

 Inline functions for fixed-point functionality.

 Every chapter has been checked for spelling and grammar. Again. Sigh.

Tonc - GBA Programming in rot13

742 / 757

Code:

 libtonc: All new libtonc, with new file structure. All files are prefixed with tonc

so the don’t interfere with outside files. The types, memory map and register

#defines are centralized in types, memmap and memdef. The main file to include

is now tonc.h .

 libtonc: Doxygen comments all around. The resulting documentation can be

found in tonclib.chm .

 libtonc: a few of the new items. A brand new interrupt handler for nested,

prioritized interrupts. Mode 3/5 line drawers. A new .12f sine LUT with support

functions as well as lerping functions. All fixed-point macros are now inlines.

 libtonc: The BGINFO struct and functions are gone. Wasn’t worth much

anyway. Also removed are internal OAM shadows; it’s better that you can define

them when needed and can save IWRAM by potentially storing them in EWRAM.

All OAM functions now use general object pointers, rather than buffers.

 libtonc: yet another Great Renaming. Among other things: The leading

underscore for zero-#defines are gone. I thought it was a good way if guarding

against potential unsafe operations, but they just look too weird to use. And

there was much rejoicing. Some macros have lots their _ON prefix when it’s

obvious that that’s what they do. OAM structs are now OBJ_ATTR and

OBJ_AFFINE and supporting functions are now prefixed obj_ and obj_aff_ .

BGAFF_EX is now BG_AFFINE and used in most affine BG functions. A complete

list can be found in tonc_legacy.h , which you can #include to keep

compatibility with older code.

 projects: the structure of the projects hierarchy has been altered. The demos

have been categorized as basic, extended or advanced, which correspond with

the tonc-text parts. Basic demos are simpler, with simple makefiles. They are

completely self-sufficient, which should help learning the ropes. The extended

demos have more complete makefiles and make use of libtonc. The advanced

Tonc - GBA Programming in rot13

743 / 757

demos have devkitPro-like makefiles. As much as I’d like to, the actual DKP

templates don’t quite suit my purposes (sorry, Dave �P) so I rolled my own.

The advanced demos also make use of assembly files for data.

The project folders also contain .pnproj files, which can be opened and run

from Programmer’s Notepad.

 projects: New projects. m3_demo , for drawing in mode 3. There are also a

couple of new ones in the lab folder. They don’t have discussions yet, but

they’re worth checking out. bigmap should be of particular interest.

 projects: Update projects. All projects have been updated to the new libtonc.

The DMA, irq and mode 7 demos have had drastic changes in content. dma_demo

is now about using HDMA effects, in this case making a circular window.

irq_demo uses the new irq handler to uts fullests with nested interrupts and

changing irq priorities. As for mode7ex , well, you’d better just see for yourself.

Jul 23, 2006 (v1.2.4)

 Added a rather long chapter on ARM/Thumb assembly. This is still a dra�

version, though. Most of the content is there, but I still need to reshuffle sections

and spell/grammer check the whole thing.

And yet more spell fixes >_< .

Jun 3, 2006 (v1.2.3)

 Changed makefiles and build instructions to use devkitARM r19.

 All sections and subsections are now numbered, w00t!

 Added alignment attributes to most structs, as those are now pretty much

required if you want struct-copies to work properly. For more, see here

Tonc - GBA Programming in rot13

744 / 757

Apr 28, 2006 (v1.2.2)

 Finally realized what caused the 1 pixel offset I’ve been seeing in affine objects

sometimes (thanks NEiM0D). Updated affobj.htm and obj_aff for it.

 Moved the new off-center affine object stuff to its proper place.

 Some small sed usage to convert from GCC error-reports to Visual C++ format,

based on this.

 Now that my html auto-numbering system works (at least a first trial),

text.htm is now de-reffed. Yay.

Small changes to interrupts and gfx.

Added Javascript to make the id attributes visible. Will probably add more later.

Apr 28, 2006 (v1.2.1)

 Apparently no$gba doesn’t like it if you use section mirroring, like I did for

REG_INTMAIN and REG_IFBIOS. These now use the proper addresses.

 Spelling fixes in intro.htm. Thanks again, Mick.

 New makefiles for extended and advanced projects. It does mean that

makefile.htm is now pretty much behind the times.

 Updated setup.htm for devkitARM changes. Changed the figures a little too.

 New chapter called the lab, where I’ll place new stuff that’s almost, but not

quite, ready. Currently contains text for priorities and sprite sorting, and a

discussion on affine transformations around a non-center reference point. Both

come with new demos called prio_demo and oacombo .

 Added instructions on how to run makefiles via context or PN in setup.htm.

 Added gfx2gba and grit conversion instructions in a few places.

More notes in bitmaps.htm’s data section.

Probable upcoming changes

I intend to make a few changes in tonc’s code. First, I’ll try to decouple the code in the

basic demos from libtonc, which should make them easier to understand as you won’t

have to browse through all the other stuff. Second, this will allow me to rework and

Tonc - GBA Programming in rot13

745 / 757

http://www.devkitpro.org/devstudio.shtml

optimize libtonc, which is now hampered in some areas by me having to keep a

number of things simpler than I’d like to. Now, this is what I’d like to do; I can’t really

tell when (if) I will get round to it.

Also, I have half a mind of changing the current DMA demo to this one, which simply

looks a lot cooler, even though there’s is a lot more magic going on. Meh, we’ll see.

Mar 21, 2006 (v1.2)

More non-final updates. Quite a lot actually.

 More typos fixed.

 bg_init() never initialized the BGINFO position. Oops.

 Tossed chapter order around a bit. I’ve moved keys up to right a�er bitmaps,

which is a much better place for it anyway.

 Updated First Demo, Bitmap Modes, Regular sprites, Regular Backgrounds,

Affine Sprites, Affine Backgrounds, Graphic effects, and Timers with full or nearly

full code of their demos.

 First Demo now has two demos, one purely with hardcode numbers

(muwahaha!), and one according to more sound programming principles. Also

described these in much more detail.

 Added two demos to Regular Backgrounds, one of which introduces libtonc

and its text functions, which will come back a lot lateron. Speaking of which …

 Recoded bld_demo , m7_demo , mos_demo , obj_aff , and tmr_demo to use

libtonc’s text so that it’s clearer what you’re changing.

 Replaced copiers/fillers with libtonc’s memcpy16/32 and memset16/32 in most

demos a�er its introduction.

 Added field defines to a lot of register tables.

 Restructed part of keys.htm for better explanations of the various functions I

use.

 Added a nasty piece on division by reciprocal multiplication. Not for the

squeemish.

Added a simple template makefile and discussion for the second demo.

Tonc - GBA Programming in rot13

746 / 757

https://gbadev.net/forum-archive/thread/9/9023.html

 Added a subsection on tribool keystates. In fact, nearly all of the demos that

might benefit from these have been altered to use them. One line of code

instead of four lines, and faster to boot. Seems like a win to me.

 Added a subsection on the proper build procedure, which was still missing

from that whole section. This is pretty much required reading for anyone how

has been following non-tonc tutorials and adopted their coding standards.

Merged the fixed-point and LUT chapters, and rewrote most of both.

jake2431 has been gathering a lot of useful links in this thread: forum:8353. If

you’re new to C and/or GBA/NDS programming, I recommend you check it out.

Jan 27, 2006 (v1.1)

Heh, so that wasn’t not the final update a�er all �P .

Added a little note to setup on how to get rid of them useless directories that

MSVC 6.0 insists on creating all the time.

 Fixed devkitARM URL and revision. (don’t know why I bother with that,

though, as there will be a new version the second I post this. Gawddammit,

Dave, quit it! >_<)
 More code in the text. At least for the earlier pages.

Two new chapters: one on Text system fundamentals and producing beeps. The

latter isn’t quite finished yet, but should be enough to get you going. There are 5

new demos that go with these: 4 for text, one for sound.

 More name changes. This time in demo-names only, though, so don’t worry

there.

Added/moved a section on How to deal with data. This explains some of the

nastiness you may or may not encounter. But if you do, it’s nice to know why

they happen and how to fix it, no?

Jun 28, 2005 (v1.0)

Final update. Probably. Not because I’m done with this thing, but because there is so

much to change and to add that it’s easier to start from scratch again. When I started

tonc I still knew very little about GBA programming and tried to do the best I could as I

Tonc - GBA Programming in rot13

747 / 757

https://gbadev.net/forum-archive/thread/18/8353.html

went along. Now I’m a little older and wiser (well, older at any rate), know a lot more

about proper procedure, what’s useful to have and what isn’t and also where people

can get stuck on (thank you newbie forum dwellers for all your questions!) From the

ideas I’m having, tonc 2 will be a lot bigger, better, and have more explosions! Errr,

demos. Tonclib will get a major overhaul with new names and new, optimised

functions including text for all modes, memory routines and more. But it’ll take a

while to get there, so I thought I’d update the original one last time.

 Many, many spelling and grammar fixes. Too many in fact. C’mon people, tell

me about these things!

 DMA_SRC_RESET is 0x01800000 , not 0x00600000 . This is what made the

outcome of dma_demo so weird. Also fixed sbb_aff ’s black cross-hairs, which

had its x and y values swapped in OAM. Stupid attribute x,y order.

 Name changes. Lots of them. This partially falls under keeping to GBA

community standards (OBJ_ATTR , charblock, screenblock, swi naming) and

other classification issues (DCNT_x for REG_DISPCNT and such; prefix

underscore for bit-defines that are zero, trust me this is a good thing). I’ve taken

the liberty of creating a legacy.h that redefines all those old names into the

newer ones so that you won’t have to do all the renaming yourself if you don’t

want to. The older names are depreciated, though. This renaming is only part of

the full tonc2 renaming, but I can’t do functions yet because that would break

old code.

 Some small functionality changes. Most notably, key_poll() now already

inverts REG_KEYINPUT (formerly REG_P1). This is a good thing, because now the

synchronous functions will actually make more sense. Also, m4_plot()

(formerly _vid_plot8) really does plot per pixel, not per two.

 The memory routines memcpy16/32 and memset16/32 are optimised in

assembly, and probably the fastest you’ll come across. Rivals the speed of

CpuFastSet , but none of the alignment / size requirements.

 swi.s has calls for all BIOS routines. Some extras have been relocated to

swi_ex.s

Tonc - GBA Programming in rot13

748 / 757

Added x_BUILD macros for setting bit-flags in clusters. May be useful, maybe

not.

Added rectangle drawers for the bitmap modes. Fairly optimised.

 Fixed list-margins for Firefox. Or rather, fixed list-margins to what the standard

requires, but which MSIE doesn’t follow. (Now if I can only figure out what to do

about that <col> tag)

 Restyled the register tables.

 I finally realised how I could do matrices in pure html instead of images so

pretty much all equations are now html. I expect it’s quite close to MathML, but

since MSIE doesn’t support it natively and I don’t want to worry you with an

extra download (which may not even work on older versions), this’ll do for now.

(Now if you’ll excuse me, I going to lie down to get the feeling in my brain back)

 All sections, equations, tables etc now have id’s for linking too and (maybe)

automatic numbering if I figure out how.

 int_demo now uses a separate file for the direct isr and makes proper use of

sections and ARM/Thumb code. See the demo description for more.

That’s about it I think, but it should be enough. I hve bits and pieces of the tonc2 text,

examples and lib, though maybe not in their final forms. They are available, but only

on request. If anyone has suggestions or requests I’ll see what I can do. This also goes

for mistakes (the ones that the compiler/linker can’t catch) you’ve made that you

think others might make too. I know a good number of them already from the forum

(like that you should NOT use bytes or halfwords for local variables, since it can really

kill performance, int or u32 only, please!. Pretty please. With sugar on top. And

frosting and whipped-cream.) Don’t need to know every little thing though, especially

if it’s already covered by the well-done gbadev forum FAQ or already covered in here

somewhere.

If anyone knows how I can keep track of all the header/equation/figure numbering

automatically (without CSS2, which isn’t properly supported by MSIE �() that

would be very helpful. Actually, the numbering itself isn’t the problem, referencing

them is.

Tonc - GBA Programming in rot13

749 / 757

https://gbadev.net/forum-archive/thread/14/418.html

Also, I could use more real-life examples of tile-map/sprite collision detection and

response. I know the bounding box stuff and the basics of detection (even pixel-

perfect), but no matter what I do I seem to be getting stuck on some of the particulars

of diagonal movement and when things move at more than one pixel/frame. I’d very

much like to see how it’s done in real platform games for complex scenes that have

multiple sprite-sprite and sprite-background collisions, not just single sprite-bg.

Dec 5, 2004 (v0.99.6)

Added the numbers page about number systems, bits and bit operations. I should

warn you that it’s rather large. It’s been a while since I added something and I think I

got a little carried away :\ . I may break it up into smaller pieces later. Maybe.

DragonBASIC is in the process of being transferred to a new domain, so the old URL is

invalid now. At the moment you can still find the forums here, but the compiler itself

is still in limbo for the time being.

Aug 3, 2004 (v0.99.5)

 Made some minor corrections all round. The first mode7 demo and page now

use a different name for the camera position, so it won’t clash with v from

mode7d.

Added a rudimentary text demo in the form of txt_demo .

I think this will be the last update for a while, for a number of reasons. Firstly, I think I

have to actually use some of this stuff, to see what’s wrong with it. Secondly, I think I

may have to put in some more work into a converter and how to add pure binary files

to the demos in a friendly way. Thirdly, PERN’s back with a vengeance. As such, there

seems little point in developing Tonc any further right now, as it seems that the new

PERN is going to be very, very complete.

Tonc - GBA Programming in rot13

750 / 757

http://forums.zhilaware.starfusion.orgb/

Jul 16, 2004 (v0.99.5)

 Fixed aff_rotscale2 , which should not have shrunk the source-angle, but

rather a copy of it. Defined MAPBLOCK to contain 1024 (=32*32) tegels, not 512.

Was confused with tile-blocks.

 Made a lot of small changes to tiles/map functionality. All map/tile structures

are now simple typedefs so you can access their internals via a simple array-

access rather than (inline) functions. The inline functions themselves have been

removed.

Changed then BGINFO struct a bit, and added some map functions.

I’m sorry if any of these changes causes you any inconvenience, but I think it’s better

in the long run.

Jul 11, 2004 (v0.99.4)

Deprioritized MSVC makefile projects in setup.

Mopped up several minor and not so minor errors in mode7ex. Well, I did say

there’d be some I hadn’t discovered yet.

 Renamed the interrupt requests for registers REG_DISPSTAT from X_INT to

X_IRQ , which is more proper.

 Modified swi.htm to show how to use pure assembly for this purpose and

added a small section on the aapcs. Also renamed some of the affine structs and

functions; you have been warned.

And yet more typo fixes, where the h311 do they keep coming from? I swear if I

find one more “it’s”/“its” mixup I’m going to scream. [Later that day] Right,

that’s it: AAAAAAAARRRRHRHRHRRGGGHHHH!!!

 Fixed a number of rot-scale equations that had the rotation and scaling ops

wrong in the intermediate steps. Oops.

 Fixed a window control macros (forgot some shi�s). Should work properly

now. Should.

Added geom.h|.c to the library, as I intend to use points and rectangles more

o�en. Also added ABS , SGN and SWAP macros.

Tonc - GBA Programming in rot13

751 / 757

All multiboot demos (i.e., all of them) now have the extension mb.gba to

indicate them as such.

Renamed key_pressed() to key_hit() , which should cause less confusion

about what the function actually does (thank’s^H^Hs for the name Dark Angel

(see? The apostrophe occurs almost automatically �().

I’m working on a nice text system right now. If anyone has any requests I’ll see what I

can do.

June 27, 2004 (v0.99.3)

Ahhh, home at last, where I have a proper computer and Kink-FM blasting through my

stereo, excccellent! =)

 Added -Map and -Wl command-line options to the flags list.

 Moved the graphics data that is only used once into the demo-folder where

they are used; the gfx directory now only has shared graphics in it.

 Had to write swi.s again because the `utils clean’ command destroys all .s

files if there is a .c with the same title. Make sure that there is no swi.c in your

utils directory when copying the the new stuff.

 The mode7ex.htm page is finally complete. Yes I know it’s long and full of

nasty linear algebra; if you have trouble getting through it and/or have

suggestions on making it more readable, plz, do tell.

 The accompanying mode7d demo is just about where I wanted it.Sure there

are still some minor problems, but it should be enough to get you started.

June 21, 2004 (v0.99.2)

 I made a lot of changes to mode7d ; all the real mode 7 code is now in separate

files so using it in other projects is easier now. Though mode7ex.htm still needs a

lot of work, you can find most of the text in dra�-form in m7theory.zip. Yes, it’s a

Word document; yes, I know that sucks; yes, I will convert it to html when I the

text is stable and understandable (please tell me what I need to change in this

Tonc - GBA Programming in rot13

752 / 757

https://gbadev.net/files/m7theory.zip

respect); and yes, I will do this conversion manually, since Word should be

allowed to approach HTML to within 500 yards. Perhaps more.

 Made some minor fixes to the matrix page. Silly me, I got the cross-product

definition all wrong.

 Added info on REG_P1CNT to the keypad page. Yet another thing which only

this site covers �) .

Devving on a P2-300 with 24MB RAM: VBA runs at 50% (and 23% for mode7d) and

minimizing a window takes a few seconds. Man, this sucks.

June 11, 2004 (v0.99.1)

 Fixed the style sheets so that the background image, colors and borders, etc,

etc, appear as I had intented on Mozilla. Sorry about that, didn’t know the the

wrong comments would screw it up so much. Made a vallidation run and got rid

of all nonvalidities … except one: the <nobr> tags that I need to keep certain

things together.

 All BIOS calls are now inside swi.s , in assembly. Which is where they belongs,

really.

June 3, 2004 (v0.99)

 Found out about the wrapping artifact, and changed the sprite pages

accordingly. obj_aff now allows moving the sprite so you can see this artifact

for yourself.

 Finally got over my dislike of near-empty directories (the files get so lonely

that way) and put all the demo-code in separate directories. Now, if only I could

get over my ifphobia as well…

Added a section on vsyncing with interrupts in swi.htm and an accompanying

demo, swi_vsync . You need to see these.

Added int_enable_ex and int_disable_ex , which should make working with

interrupts easier. However, I am not 100% sure if I got all the registers and flags

right.

Tonc - GBA Programming in rot13

753 / 757

 C++ doesn’t like it when you try to use a struct-copy on a volatile variable, like

bga_update_ex does. Or did, I should say.

Learned some new CSS tricks and am busy updating and structuring the layout

of all pages. It’s mostly subtle stuff though, like standardizing the equation

layout and giving code and register listings a subtle border that makes it stand

out in printing. Non-subtle is that ever image should have a caption now.

 Resumed work on mode7ex.htm and its accompanying demo, mode7d .

Adding variable pitch turned out to be easier than I thought, w00t! It’s still a little

buggy, though.

With all these changes, it is adviced to save or remove older Tonc stuff when

upgrading to avoid double files and other inconsistencies.

May 24, 2004 (v0.98.5)

 devkitARM is now the primary devkit for Tonc. Makefiles and text are updated

to match the change.

 Using a separate interrupt file now instead of a custom crt0.S and got The

Point® of the critter in the process. The text is modified to reflect newer insights,

as is int_demo.c

Started work on a glossary.

Added instructions on how to run makefiles without Visual C++ in the the Tonc-

code readme. Silly that I never thought of that before.

 REG_IF is at 0400:0202 , not 0400:0200 , doh!

As you can see, I’m trying to use context-specific bullets for log entries. I still

need to figure out what images to use for what purpose, though.

Rewritten the build_all and clean_all targets in tonc.mak .They’re quite

nasty now, but act more correctly and allow me to switch to a “one demo, one

dir” structure if people finds having everything in the examples folder a bit

messy.

I am soooo tired right now so I wouldn’t be surprised if I messed up somewhere. I’ll

get it fixed when I’ve had a chance to sssslssszzzzzzz….

Tonc - GBA Programming in rot13

754 / 757

May 16, 2004 (v0.98)

 Lot’s of changes. First of all, I finally have a means to test on hardware,

Wheeeee!! However, it did point out that you can’t use the object tileblocks for

backgrounds a�er all :(. Added my early experiences with hardware tests on a

number of the pages.

 Including in the windowing section. It seems that you need to be really careful

with the vertical settings of windowing. Updated the windowing demo to not

use u16 arithmetic for the window size (which is given in bytes), and more

precise movement.

 Threw the DMA code around. I’m now using dma_memcpy() for general copies,

and renamed the old DMA_CPY() macro to DMA_TRANSFER , and rearranged the

order of arguments to match memcpy . Makes more sense that way.

 Also changed oi_set to oi_set_attr and oi_pos to oi_set_pos .

The Tonc Utils configuration now compiles the utility code into a library.

Required for mode7d .

Created a build_all rule in tonc.mak . Rebuilding everything by hand was

really getting on my nerves.

More random clean-ups. The images on the entrance page are now links as well.

Important notes are now in red boxes, for extra visibility. Added the demo-code

of bm_mode.c , to show the basic steps of loading a picture and using keys. I

should still post full code that earlier in the tutorials. Added an example of a

fixed point identity matrix on affine.htm to make sure people don’t try to use

floats.

 Fixed swi.htm. Again! I swear, if I find one more error here some somebody is

gonna get hurt. And it won’t be me. This time the range of arctan2 was wrong

(should be full circle). What makes this error even worse is that I should (and did)

know it’s supposed to be the full-circle all along; it is the raison d’être of arctan2

a�er all.

Matrix page is done.

Practically fell out of my chair laughing at villainsupply.com. Ouch.

Nearly drowned in my own drool a�er watching the Nintendo stuff at E3. Gargle.

Tonc - GBA Programming in rot13

755 / 757

http://www.villainsupply.com/

The picture used in key_demo had the palette-indices of KEY_START and

KEY_SELECT switched. I never really noticed because emulators don’t have real

start and select buttons. So once again, hardware testing saves the day.

Apr 29, 2004 (v0.97)

Added links to devkitARM as well as instructions on how to get it working. There

is a very real possibility that I’ll switch to this toolchain in the future.

Converted most of the macros to inline functions. Safer, easier to read and just

as fast. Yes, plz.

Some more diagrams about tile-counting and the affine transformations.

Still to do: finishing the matrix page (and perhaps the mode7ex page). And now

that I have my tile-map editor Mirach, I may be able to do something with that as

well. And I really, really need to get working on a text-system.

Apr 9, 2004 (v0.97)

The object affine functions have a background counterpart now, and mode7d is

coming along nicely.

Apr 4, 2004 (v0.96)

Renamed OAM structs and related items. Again. When is this gonna be final?!? Also,

thanks to Lupin’s problems with sprite-placement in 3D I finally got my matrix-

transform sense back. Now that I get it again, I hope to expand the mode7 section in

the near future. I already got a working example for 3d-sprite placement already in

the form of mode7d .

Mar 31, 2004 (v0.96)

Working on a vector/matrix page, some reshuffling of page-order and yet more

random little cleanups.

Tonc - GBA Programming in rot13

756 / 757

http://www.coranac.com/projects/#mirach

Mar 24, 2004 (v0.96)

Replaced the assembly listing in swi.htm with the proper Thumb listing. I’d forgotten I

wasn’t using ARM code anymore.

Mar 20, 2004 (v0.96)

And just when you think you’re finished you find another 2 things you can improve

upon. Argh. Anyway, I’ve changed the way sine and cosine are retrieved. They’re both

macros now, using one 512-entry long s16 sine-LUT. Also, I finally realized how to

XOR the vid_page directly for page-flipping. And, oh yeah, the compiler flag for

compile, but not assemble should be -S , not -s . Oops.

I think I finally know how I can modify my affine functions to apply to backgrounds

without having to use the OBJ_AFFINE structure, but it may be a while before I

actually do that.

Mar 17, 2004 (v0.95)

Added ArcTan2 function to swi_demo and fixed the errors that swi.htm still

contained. Argh, and I thought I’d been thorough in weeding out all inconsistencies

a�er the recent name and code modifications.

Mar 14, 2004 (v0.95)

First entry in the log. I’ve rewritten the parts about sprites and backgrounds, changed

glyphs to tiles and tiles to tegels (hope I got them all :]), updated all the code one

last time and written sections on how to set up DKA, MSVC and makefiles. I think

Tonc’s ready for use now, wheee!

Tonc - GBA Programming in rot13

757 / 757

	Foreword
	Introduction
	GBA Basics
	1. GBA Hardware
	2. Setting up a development environment
	3. My First GBA Demo
	4. Video Introduction
	5. The bitmap modes
	6. The GBA keypad
	7. Sprite and tiled background overview
	8. Regular sprites
	9. Regular tiled backgrounds
	GBA Extended
	10. The affine transformation matrix
	11. Affine sprites
	12. Affine tiled backgrounds
	13. Graphic effects
	14. Direct Memory Access
	15. Timers
	16. Hardware interrupts
	17. BIOS calls
	18. Beep! GBA sound introduction
	Advanced / Applications
	19. Text systems
	20. Mode 7
	21. More Mode7 tricks
	22. Tonc's Text Engine
	23. Whirlwind tour of ARM assembly
	24. The Lab
	Appendix A - Numbers, bits and bit operations
	Appendix B - Fixed-point math & LUTs
	Appendix C - Vector and matrix math
	Appendix D - More on makefiles and compiler options
	Appendix E - Make via editors
	Appendix F - References
	Appendix G - Change log

