-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
59 lines (51 loc) · 1.29 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
from PIL import Image
import numpy as np
import cv2
def calculate_psnr(original, contrast):
mse = np.mean((original - contrast) ** 2)
if mse == 0:
return 100
max_value = 255.0
return 20 * math.log10(max_value / math.sqrt(mse))
def bayer_reverse(img):
height,width,c = img.shape;
tmp = np.zeros([height,width]);
for i in range( height ):
for j in range( width ):
if i % 2 == 0 :
if j % 2 == 0:
tmp[i][j] = img[i][j][0];#R
else:
tmp[i][j] = img[i][j][1];#G
else :
if j % 2 == 0:
tmp[i][j] = img[i][j][1];#G
else:
tmp[i][j] = img[i][j][2];#B
return tmp;
dataset_path = 'koda/kodim02.png'
img = Image.open(dataset_path)
# img.show()
img = np.array(img)
original = img
print(img.shape)
b = img[:,:,0]
g = img[:,:,1]
r = img[:,:,2]
print(b.shape)
cv2.imshow("Blue",b)
cv2.imshow("Green",g)
cv2.imshow("Red",r)
print(img[130,101,0])
print(img[130,101,1])
print(img[130,101,2])
print(img[257,91,0])
print(img[257,91,1])
print(img[257,91,2])
tmp = np.zeros([img.shape[0], img.shape[1]])
tmp = bayer_reverse(original)
print(tmp[257,91])
print(tmp.shape)
cv2.imshow('new_image',tmp)
cv2.waitKey(0)