-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbl_ff.py
309 lines (242 loc) · 11.1 KB
/
bl_ff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
"""BL_FF.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1wbZBKqLVFx90YBRrHEVOY7tYhy2ghwVY
"""
import os
import random
from tqdm import tqdm
import numpy as np
import torch, torchvision
import torch.nn as nn
import optim, analysis, sampling
import medmnist
from medmnist import INFO, Evaluator
from torchvision.models import ResNeXt101_64X4D_Weights
import torch.nn.functional as F
#import torch.optim as optim
from torch.utils.data import TensorDataset
from torchvision import datasets, transforms
from torch.utils.data.dataset import Dataset
from torch.utils.data import DataLoader, random_split
torch.backends.cudnn.benchmark=True
data_flag = 'bloodmnist'
download = True
info = INFO[data_flag]
task = info['task']
n_channels = info['n_channels']
n_classes = len(info['label'])
DataClass = getattr(medmnist, info['python_class'])
##### Hyperparameters for federated learning #########
batch_size = 64
num_channels = 3
data_dir = 'data/'
params = {'l2_norm_clip': 1,
'noise_multiplier' :1.1,
'minibatch_size': 256,
'microbatch_size': 1,
'lr':0.15,
'l2_penalty' : 0,
'delta' : 1e-5,
'device': torch.device("cuda" if torch.cuda.is_available() else "cpu"),
'local_epochs' : 3,
"total_clients": 3,
"num_sel":3,
"num_rounds": 50}
def load_datasets():
# Download and transform CIFAR-10 (train and test)
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean = (0.49139968, 0.48215827, 0.44653124), std = (0.24703233,
0.24348505, 0.26158768))])
# transform = transforms.Compose([
# transforms.Resize((224,224)),
# transforms.ToTensor(),
# transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
# train_dataset = datasets.OxfordIIITPet(root='/data', split = 'trainval', download=True, transform=transform)
# test_dataset = datasets.OxfordIIITPet(root='/data', split = 'test', download=True, transform=transform)
train_dataset = datasets.CIFAR10(data_dir, train=True, transform=transform, download=True)
test_dataset = datasets.CIFAR10(data_dir, train=False, transform=transform, download=True)
# train_dataset = datasets.SVHN(data_dir, split = 'train', transform=transform, download=True)
# test_dataset = datasets.SVHN(data_dir, split = 'test', transform=transform, download=True)
#train_dataset = DataClass(split='train', transform=transform, download=download)
#test_dataset = DataClass(split='test', transform=transform, download=download)
# Split training set into clients to simulate the individual dataset
#partition_size = len(train_dataset) // params['total_clients']
#lengths = [partition_size] * params['total_clients'] ## This line may need more explanation
train_datasets = random_split(train_dataset, [len(train_dataset)-2,2])
train_datasets = random_split(train_datasets[0], [int((len(train_dataset))/ params['total_clients']) for _ in range(params['total_clients'])])
#train_datasets = random_split(train_dataset, [int(train_dataset.data.shape[0] / params['total_clients']) for _ in range(params['total_clients'])])
return train_datasets, test_dataset
train_datasets, test_dataset = load_datasets()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class MNISTResNet(nn.Module):
def __init__(self, in_channels=1):
super(MNISTResNet, self).__init__()
# loading a pretrained model
#self.model = torchvision.models.resnet152(pretrained = True)
self.model = torchvision.models.resnext101_64x4d(weights = None)
#self.model = torchvision.models.resnext50_32x4d(pretrained = True)
# self.model = torchvision.models.resnet152(pretrained = True)
#self.model = torchvision.models.resnet50(pretrained = True)
#self.model = torchvision.models.resnet18(pretrained = True)
# changing the input color channels to 1 since original resnet has 3 channels for RGB
#self.model.conv1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False)
#change the output layer to 10 ckasses as the original resnet has 1000 classes
num_ftrs = self.model.fc.in_features
#self.model.fc = nn.Linear(num_ftrs, 10)
#self.model.fc = nn.Linear(num_ftrs, 37)
self.model.fc = nn.Linear(num_ftrs, 8)
# for name,param in self.model.named_parameters():
# if(name == 'fc.weight'):
# param.requires_grad =True
# elif(name =='fc.bias'):
# param.requires_grad = True
# else:
# param.requires_grad = False
def forward(self, t):
return self.model(t)
def client_update(client_model, train_dataset):
classifier = client_model
optimizer = optim.DPSGD(
l2_norm_clip=params['l2_norm_clip'],
noise_multiplier=params['noise_multiplier'],
minibatch_size=params['minibatch_size'],
microbatch_size=params['microbatch_size'],
params = filter(lambda p: p.requires_grad, classifier.parameters()),
lr=params['lr'],
weight_decay=params['l2_penalty'],
)
#print('Achieves ({}, {})-DP'.format(analysis.epsilon(len(train_dataset),params['minibatch_size'],params['noise_multiplier'],params['iterations'],params['delta']),params['delta'],))
loss_function = nn.CrossEntropyLoss()
minibatch_loader, microbatch_loader = sampling.get_data_loaders(
params['minibatch_size'],
params['microbatch_size'],
params['local_epochs']
)
#iteration = 0
#acc = []
for X_minibatch, y_minibatch in minibatch_loader(train_dataset):
optimizer.zero_grad()
y_minibatch = torch.squeeze(y_minibatch)
for X_microbatch, y_microbatch in microbatch_loader(TensorDataset(X_minibatch, y_minibatch)):
# weights = ResNet50_Weights.DEFAULT
# preprocess = weights.transforms()
# X_microbatch = preprocess(X_microbatch)
X_microbatch = X_microbatch.to(params['device'])
y_microbatch = y_microbatch.to(params['device'])
optimizer.zero_microbatch_grad()
loss = loss_function(classifier(X_microbatch), y_microbatch)
loss.backward()
optimizer.microbatch_step()
optimizer.step()
# if iteration % 10 == 0:
# acc.append(test())
# print('Achieves ({}, {})-DP'.format(analysis.epsilon(len(train_dataset),params['minibatch_size'],params['noise_multiplier'],iteration,params['delta']),params['delta'],))
# print('[Iteration %d/%d] [Loss: %f]' % (iteration, params['iterations'], loss.item()))
#iteration += 1
#return classifier,acc
return classifier,loss.item() #,val_acc
def server_aggregate(global_model, client_models):
"""
This function has aggregation method 'mean'
"""
global_dict = global_model.state_dict()
for k in global_dict.keys():
global_dict[k] = torch.stack([client_models[i].state_dict()[k].float() for i in range(len(client_models))], 0).mean(0)
global_model.load_state_dict(global_dict)
global_model.load_state_dict(global_dict)
for model in client_models:
model.load_state_dict(global_model.state_dict())
return client_models
def test(model):
classifier = model
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True)
classifier.eval()
accuracy = 0.0
total = 0.0
with torch.no_grad():
for data in test_loader:
images, labels = data
# weights = ResNet50_Weights.DEFAULT
# preprocess = weights.transforms()
# images = preprocess(images)
images = images.to(params['device'])
labels = torch.squeeze(labels)
labels = labels.to(params['device'])
# run the model on the test set to predict labels
outputs = classifier(images)
# the label with the highest energy will be our prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
accuracy += (predicted == labels).sum().item()
# compute the accuracy over all test images|
accuracy = (100 * accuracy / total)
#print('Test Accuracy: {}'.format(accuracy))
return accuracy
############################################
#### Initializing models and optimizer ####
############################################
#### global model ##########
import opacus
from opacus.validators import ModuleValidator
global_model = MNISTResNet()
global_model = ModuleValidator.fix(global_model ).to(params['device'])
ModuleValidator.validate(global_model , strict=False)
############## client models ##############
client_models = [ ModuleValidator.fix(MNISTResNet()).to(params['device']) for _ in range(params["num_sel"])]
for model in client_models:
model.load_state_dict(global_model.state_dict()) ### initial synchronizing with global model
############### optimizers ################
#opt = [optim.SGD(model.parameters(), lr=0.1) for model in client_models]
#client_models = server_aggregate(global_model, client_models)
parameter_count = 0
for p in global_model.parameters():
if(p.requires_grad):
#print(torch.numel(p))
parameter_count+=torch.numel(p)
print(p.size())
print(parameter_count)
#net = global_model.to(device)
# for epoch in range(200):
# global_model,loss= client_update(global_model, train_datasets[0])
# if(epoch%10==0):
# acc = test(global_model)
# print(f"Final test set performance:\n\tloss {loss}\n\taccuracy {acc}")
# client_idx = np.random.permutation(params["total_clients"])[:params["num_sel"]]
# print(client_idx )
# losses_train = []
# losses_test = []
# acc_train = []
# acc_test = []
# for r in range(params["num_rounds"]):
# # select random clients
# # "total_clients": 4,
# # "num_sel":4,
# client_idx = np.random.permutation(params["total_clients"])[:params["num_sel"]]
# #client_idx =[1,2,3]
# # client update
# loss = 0
# temp = 0
# temp1 = 0
# val_acc = 0
# for i in tqdm(range(params["num_sel"])):
# for j in tqdm(range(params['local_epochs'])):
# client_models[i],loss_temp = client_update(client_models[i], train_datasets[client_idx[i]])
# client_models[i].eval()
# loss+=loss_temp
# losses_train.append(loss)
# losses_train.append(loss)
# # server aggregate
# client_models = server_aggregate(global_model, client_models)
# # _,val_acc = test(global_model,valloaders[0])
# if(r%10==0):
# acc = test(global_model)
# acc_test.append(acc)
# print('%d-th round' % r)
# print('average train loss %0.3g | test acc: %0.3f' % (loss / params["num_sel"], acc))
#test(global_model)
#acc_test.append(test(global_model))
#acc_test