-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
135 lines (119 loc) · 4.05 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import json
import torch
from utils.prompter import Prompter
from collections import defaultdict
from peft import PeftModel
from datasets import load_dataset
from transformers import Pipeline, PreTrainedTokenizer, AutoModelForCausalLM, AutoTokenizer, AutoModel,AutoConfig, GPTJForCausalLM
from transformers import GenerationConfig
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['NVIDIA_VISIBLE_DEVICES']='all'
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
def generate_prompt(data_point):
# taken from https://github.com/tloen/alpaca-lora
if data_point["instruction"]:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Input:
{data_point["input"]}
### Response:
{data_point["output"]}"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{data_point["instruction"]}
### Response:
{data_point["output"]}"""
def evaluate(
instruction,
model,
prompter,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
# print(output)
return prompter.get_response(output)
if __name__ == '__main__':
CUTOFF_LEN = 256
base_model = "databricks/dolly-v2-3b"
trained_model = "alpaca-lora-dolly-2.0"
output_dir = "dolly-ft-rebel-output/"
# output_dir = "./"
output_file = "generated_response.json"
data_path = "rebel/instruction/en_val.json"
template_name = "alpaca"
prompter = Prompter(template_name)
tokenizer = AutoTokenizer.from_pretrained(base_model, padding_side="left")
# load val data
data = load_dataset("json", data_files=data_path)
# For debugging only, Slice the dataset
data = data['train'].select(range(0, 10))
# data = data['train']
data = data.map(
lambda data_point: tokenizer(
generate_prompt(data_point),
truncation=True,
max_length=CUTOFF_LEN,
padding="max_length",
)
)
model = AutoModelForCausalLM.from_pretrained(
base_model,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
trained_model,
torch_dtype=torch.float16,
)
model.eval()
print("running for validations")
res_sequences = []
for sample in data:
# print(sample)
result = {}
instruction = sample['instruction']
input = sample['input']
response = evaluate(instruction=instruction, model=model, input=input, prompter=prompter)
# print(response)
result["instruction"] = instruction
result["input"] = input
result["label"] = sample['output']
result["response"] = response
# print("Instruction: ", instruction)
# print("Input: ", input)
# print("Response: ", response)
res_sequences.append(result)
with open(output_dir + output_file, 'w') as f:
json.dump(res_sequences, f)