-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_cnn_pos.py
83 lines (71 loc) · 4.06 KB
/
text_cnn_pos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
class TextCNN_POS(object):
def __init__(self, vocab_size, embedding_dim, pos_vocab_size, pos_emb_dim, sequence_length, num_classes, filter_sizes,
num_filters, l2_reg_lambda=0.0):
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
sum_dim = embedding_dim
# placeholder for input,output and dropout, wait for feed_dict
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_pos = tf.placeholder(tf.int32, [None, sequence_length], name='input_pos')
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
# embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
# initialize these using a random uniform distribution
word2vec = tf.Variable(tf.random_uniform([vocab_size, embedding_dim], -1, +1), name="word2vec")
pos = tf.Variable(tf.random_uniform([pos_vocab_size, pos_emb_dim], -1, +1), name='pos')
# embedding_lookup() creates the actual embedding operation
# aim shape: [None, seq_len, embedding_size, 1]
self.w_emb = tf.nn.embedding_lookup(word2vec, self.input_x)
self.pos_emb = tf.nn.embedding_lookup(pos, self.input_pos)
self.X = tf.concat(2, [self.w_emb, self.pos_emb])
self.X_expanded = tf.expand_dims(self.w_emb, -1)
# convolution and max-polling layers
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, sum_dim, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="c_W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="c_b")
conv = tf.nn.conv2d(
self.X_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Max-pooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
h_pool = tf.concat(3, pooled_outputs)
self.h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total])
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Fully connected payer ,scores and predections
with tf.name_scope("output"):
W = tf.Variable(tf.truncated_normal([num_filters_total, num_classes], stddev=0.1), name="f_W")
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="f_b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
# self.softmax_score = tf.nn.softmax(self.scores, name="softmax_scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# Calculate mean cross-entropy loss
with tf.name_scope("loss"):
self.losses = tf.nn.softmax_cross_entropy_with_logits(self.scores, self.input_y)
self.loss = tf.reduce_mean(self.losses) + l2_reg_lambda * l2_loss
# Calculate Accuracy
with tf.name_scope("accuracy"):
self.correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions, "float"), name="accuracy")