1
a)
y2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
---|---|---|---|---|---|---|---|---|---|
mod 19 | 1 | 4 | 9 | 16 | 6 | 17 | 11 | 7 | 5 |
y2 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 |
---|---|---|---|---|---|---|---|---|---|
mod 19 | 5 | 7 | 11 | 17 | 6 | 16 | 9 | 4 | 1 |
So the quadratic residues of Z19 is 1, 4, 9, 16, 6, 17, 11, 7 and 5.
b)
- 5(7 - 1)/2 = 6 mod p, so 5 is not a quadratic residue of 7
- 4(8 - 1)/2 = 0 mod p, so 4 is not a quadratic residue of 8
- 6(15 - 1)/2 = 6 mod 16, so 6 is a quadratic residue of 15
- 13(17 - 1)/2 = 1 mod 17, so 13 is a quadratic residue of 17
2
- (2/45) = (2/3)2(2/5) = -1
- (109/385) = (385/109) = (58/109) = (2/109)(29/109) = -(109/29) = -(22/29) = -(2/29)(11/29) = (29/11) = (7/11) = (11/7) = (4/7) = (2/7)2 = 1
- (1009/2307) = (2307/1009) = (289/1009) = (1009/289) = (142/289) = (71/289) = (289/71) = (5/71) = (71/5) = (1/5) = 1
- (2663/3299) = (3299/2663) = (636/2663) = (159/2663) = (2663/159) = (119/159) = (159/119) = (40/119) = (2/119)3(5/119) = (119/5) = (4/5) = (2/5)2 = 1
3
a)
a | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 2 | 3 | 4 |
2 | 0 | 1 | 4 | 9 | 16 |
3 | 0 | 1 | 8 | 27 | 64 |
4 | 0 | 1 | 16 | 81 | 256 |
b)
a | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 0 | 1 | 4 | 9 | 16 | 25 |
3 | 0 | 1 | 8 | 27 | 64 | 125 |
4 | 0 | 1 | 16 | 81 | 256 | 625 |
5 | 0 | 1 | 32 | 243 | 1024 | 3125 |
4
element | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
power 1 mod 7 | 1 | 2 | 3 | 4 | 5 | 6 |
power 2 mod 7 | 1 | 4 | 2 | 2 | 4 | 1 |
power 3 mod 7 | 1 | 1 | 6 | 1 | 6 | 6 |
power 4 mod 7 | 1 | 2 | 4 | 4 | 2 | 1 |
power 5 mod 7 | 1 | 4 | 5 | 2 | 3 | 6 |
power 6 mod 7 | 1 | 1 | 1 | 1 | 1 | 1 |
So the primitive elements of Z7 are 3 and 5
5
By looking at the chart in Problem 4, we see that the power of 4 does not generate all of the elements of Z7, so 4 is not a primitive element of Z7
6
- p = 23, α = 6, a = 6, k = 3
- β = αa mod p = 66 mod 23 = 12
- (y1, y2) = (αa mod p, xβk mod p) = (63 mod 23, 10 * 123 mod 23) = (9, 7)
7
- (y1, y2) = (6, 9), a = 8, k = 11
- x = y2(y1a)-1 mod p = 9 * (68)-1 mod 11 = 9 * 4 mod 11 = 3