Skip to content

Latest commit

 

History

History
83 lines (59 loc) · 2.85 KB

Homework 6 7 Xuenan Xu.md

File metadata and controls

83 lines (59 loc) · 2.85 KB

Homework 6 & 7

by Xuenan Xu GWID G26980825

 

1

a)

y2 1 4 9 16 25 36 49 64 81
mod 19 1 4 9 16 6 17 11 7 5
y2 100 121 144 169 196 225 256 289 324
mod 19 5 7 11 17 6 16 9 4 1

So the quadratic residues of Z19 is 1, 4, 9, 16, 6, 17, 11, 7 and 5.

b)

  • 5(7 - 1)/2 = 6 mod p, so 5 is not a quadratic residue of 7
  • 4(8 - 1)/2 = 0 mod p, so 4 is not a quadratic residue of 8
  • 6(15 - 1)/2 = 6 mod 16, so 6 is a quadratic residue of 15
  • 13(17 - 1)/2 = 1 mod 17, so 13 is a quadratic residue of 17

2

  • (2/45) = (2/3)2(2/5) = -1
  • (109/385) = (385/109) = (58/109) = (2/109)(29/109) = -(109/29) = -(22/29) = -(2/29)(11/29) = (29/11) = (7/11) = (11/7) = (4/7) = (2/7)2 = 1
  • (1009/2307) = (2307/1009) = (289/1009) = (1009/289) = (142/289) = (71/289) = (289/71) = (5/71) = (71/5) = (1/5) = 1
  • (2663/3299) = (3299/2663) = (636/2663) = (159/2663) = (2663/159) = (119/159) = (159/119) = (40/119) = (2/119)3(5/119) = (119/5) = (4/5) = (2/5)2 = 1

3

a)

a 0 1 2 3 4
0 1 1 1 1 1
1 0 1 2 3 4
2 0 1 4 9 16
3 0 1 8 27 64
4 0 1 16 81 256

b)

a 0 1 2 3 4 5
0 1 1 1 1 1 1
1 0 1 2 3 4 5
2 0 1 4 9 16 25
3 0 1 8 27 64 125
4 0 1 16 81 256 625
5 0 1 32 243 1024 3125

4

element 1 2 3 4 5 6
power 1 mod 7 1 2 3 4 5 6
power 2 mod 7 1 4 2 2 4 1
power 3 mod 7 1 1 6 1 6 6
power 4 mod 7 1 2 4 4 2 1
power 5 mod 7 1 4 5 2 3 6
power 6 mod 7 1 1 1 1 1 1

So the primitive elements of Z7 are 3 and 5

5

By looking at the chart in Problem 4, we see that the power of 4 does not generate all of the elements of Z7, so 4 is not a primitive element of Z7

6

  • p = 23, α = 6, a = 6, k = 3
  • β = αa mod p = 66 mod 23 = 12
  • (y1, y2) = (αa mod p, xβk mod p) = (63 mod 23, 10 * 123 mod 23) = (9, 7)

7

  • (y1, y2) = (6, 9), a = 8, k = 11
  • x = y2(y1a)-1 mod p = 9 * (68)-1 mod 11 = 9 * 4 mod 11 = 3