-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
114 lines (90 loc) · 3.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
from unet import UNet
from utils import load_data_set
from torchvision.transforms import transforms
from tqdm import tqdm
import torchvision
config = {
"lr": 1e-3,
"batch_size": 16,
"image_dir": "CUB_200_2011/CUB_200_2011/images",
"segmentation_dir": "CUB_200_2011/CUB_200_2011/segmentations",
"image_paths": "CUB_200_2011/CUB_200_2011/images.txt",
"epochs": 10,
"checkpoint": "checkpoint/bird_segmentation_v1.pth",
"optimiser": "checkpoint/bird_segmentation_v1_optim.pth",
"continue_train": False,
"device": "cuda" if torch.cuda.is_available() else "cpu"
}
print(f"Training using {config['device']}")
transforms_image = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0., 0., 0.), (1., 1., 1.))
])
transforms_mask = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize((0.,), (1.,))
])
train_dataset, val_dataset = load_data_set(
config['image_paths'],
config['image_dir'],
config['segmentation_dir'],
transforms=[transforms_image, transforms_mask],
batch_size=config['batch_size']
)
print("loaded", len(train_dataset), "batches")
model = UNet(3).to(config['device'])
optimiser = torch.optim.Adam(params=model.parameters(), lr=config['lr'])
if config['continue_train']:
state_dict = torch.load(config['checkpoint'])
optimiser_state = torch.load(config['optimiser'])
model.load_state_dict(state_dict)
optimiser.load_state_dict(optimiser_state)
loss_fn = torch.nn.BCEWithLogitsLoss()
scaler = torch.cuda.amp.GradScaler()
model.train()
def check_accuracy_and_save(model, optimiser, epoch):
torch.save(model.state_dict(), config['checkpoint'])
torch.save(optimiser.state_dict(), config['optimiser'])
num_correct = 0
num_pixel = 0
dice_score = 0
model.eval()
with torch.no_grad():
for x, y in val_dataset:
x = x.to(config['device'])
y = y.to(config['device'])
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
num_correct += (preds == y).sum()
num_pixel += torch.numel(preds)
dice_score += (2 * (preds * y).sum()) / (
(preds + y).sum() + 1e-8
)
torchvision.utils.save_image(preds, f"test/pred/{epoch}.png")
torchvision.utils.save_image(y, f"test/true/{epoch}.png")
print(
f"Dice Score = {dice_score/len(val_dataset)}"
)
model.train()
def train():
step = 0
for epoch in range(config['epochs']):
loop = tqdm(train_dataset)
for image, seg in loop:
image = image.to(config['device'])
seg = seg.float().to(config['device'])
with torch.cuda.amp.autocast():
pred = model(image)
loss = loss_fn(pred, seg)
optimiser.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimiser)
scaler.update()
loop.set_postfix(loss=loss.item())
step += 1
check_accuracy_and_save(model, optimiser, epoch)
if __name__ == "__main__":
train()