-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRoute_visualization.py
139 lines (116 loc) · 5.11 KB
/
Route_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import re
import os
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def downsample_data(data, group_size=50):
"""
downsample data points to an ideal frequency
"""
downsampled = []
for i in range(0, len(data), group_size):
chunk = data[i:i + group_size]
latitudes = [d['latitude'] for d in chunk if d['latitude'] is not None]
longitudes = [d['longitude'] for d in chunk if d['longitude'] is not None]
altitudes = [d['altitude'] for d in chunk if d['altitude'] is not None]
# means
mean_lat = np.mean(latitudes) if latitudes else None
mean_lon = np.mean(longitudes) if longitudes else None
mean_alt = np.mean(altitudes) if altitudes else None
# take the first timestamp as the time stap for the set
downsampled.append({
'timestamp': chunk[0]['timestamp'],
'latitude': mean_lat,
'longitude': mean_lon,
'altitude': mean_alt
})
return downsampled
def parse_drone_data(file_path):
"""
parse srt data from drone
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
blocks = re.findall(r'<font[^>]*>(.*?)</font>', content, re.DOTALL)
data = []
for block in blocks:
lines = block.strip().splitlines()
timestamp = lines[1].strip() if len(lines) >= 2 else None
iso_match = re.search(r'\[iso\s*:\s*(\d+)\]', block)
shutter_match = re.search(r'\[shutter\s*:\s*([\d/\.]+)\]', block)
fnum_match = re.search(r'\[fnum\s*:\s*(\d+)\]', block)
ev_match = re.search(r'\[ev\s*:\s*([\d\.-]+)\]', block)
ct_match = re.search(r'\[ct\s*:\s*(\d+)\]', block)
focal_len_match = re.search(r'\[focal_len\s*:\s*(\d+)\]', block)
lat_match = re.search(r'\[latitude:\s*([\d\.-]+)\]', block)
lon_match = re.search(r'\[longitude:\s*([\d\.-]+)\]', block)
alt_match = re.search(r'\[altitude:\s*([\d\.-]+)\]', block)
iso = int(iso_match.group(1)) if iso_match else None
shutter = shutter_match.group(1) if shutter_match else None
fnum = int(fnum_match.group(1)) if fnum_match else None
ev = float(ev_match.group(1)) if ev_match else None
ct = int(ct_match.group(1)) if ct_match else None
focal_len = int(focal_len_match.group(1)) if focal_len_match else None
latitude = float(lat_match.group(1)) if lat_match else None
longitude = float(lon_match.group(1)) if lon_match else None
altitude = float(alt_match.group(1)) if alt_match else None
data.append({
'timestamp': timestamp,
'iso': iso,
'shutter': shutter,
'fnum': fnum,
'ev': ev,
'ct': ct,
'focal_len': focal_len,
'latitude': latitude,
'longitude': longitude,
'altitude': altitude
})
return data
def plot_drone_path_2d(data, title="drone path"):
"""
draw 2D drone path according to parsed srt data
"""
longitudes = [d['longitude'] for d in data if d['longitude'] is not None]
latitudes = [d['latitude'] for d in data if d['latitude'] is not None]
timestamps = [d['timestamp'] for d in data if d['timestamp'] is not None]
plt.figure(figsize=(10, 6))
plt.plot(longitudes, latitudes, marker='o', linestyle='-', color='blue')
plt.title(title)
plt.xlabel('latitude')
plt.ylabel('longitude')
plt.grid(True)
# add timestamp on data point
# for lon, lat, alt, ts in zip(longitudes, latitudes, altitudes, timestamps):
# ax.text(lon, lat, alt, ts, fontsize=8)
plt.show()
def plot_drone_path_3d(data, title="drone path"):
"""
draw 3D drone path according to parsed srt data
"""
longitudes = [d['longitude'] for d in data if d['longitude'] is not None]
latitudes = [d['latitude'] for d in data if d['latitude'] is not None]
altitudes = [d['altitude'] for d in data if d['altitude'] is not None]
timestamps = [d['timestamp'] for d in data if d['timestamp'] is not None]
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection='3d')
ax.plot(longitudes, latitudes, altitudes, marker='o', linestyle='-', color='blue')
ax.set_title(title)
ax.set_xlabel('latitude')
ax.set_ylabel('longitude')
ax.set_zlabel('altitude')
# add timestamp on data point
# for lon, lat, alt, ts in zip(longitudes, latitudes, altitudes, timestamps):
# ax.text(lon, lat, alt, ts, fontsize=8)
plt.ion() # interaction
plt.show()
if __name__ == '__main__':
# alter the file path to your real file
current_dir = os.getcwd()
parent_dir = os.path.dirname(current_dir)
file_name = 'DJI_0206.SRT'
file_path = os.path.join(parent_dir, 'DJI_0206.SRT')
data = parse_drone_data(file_path)
downsampled_data = downsample_data(data, group_size=50)
plot_drone_path_2d(downsampled_data, title=file_name)
plot_drone_path_3d(downsampled_data, title=file_name)