-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathODYM_Classes.html
1201 lines (1054 loc) · 75.4 KB
/
ODYM_Classes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
<meta name="generator" content="pdoc 0.6.3" />
<title>modules.ODYM_Classes API documentation</title>
<meta name="description" content="Created on Thu Mar
2 17:29:41 2017 …" />
<link href='https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.0/normalize.min.css' rel='stylesheet'>
<link href='https://cdnjs.cloudflare.com/ajax/libs/10up-sanitize.css/8.0.0/sanitize.min.css' rel='stylesheet'>
<link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css" rel="stylesheet">
<style>.flex{display:flex !important}body{line-height:1.5em}#content{padding:20px}#sidebar{padding:30px;overflow:hidden}.http-server-breadcrumbs{font-size:130%;margin:0 0 15px 0}#footer{font-size:.75em;padding:5px 30px;border-top:1px solid #ddd;text-align:right}#footer p{margin:0 0 0 1em;display:inline-block}#footer p:last-child{margin-right:30px}h1,h2,h3,h4,h5{font-weight:300}h1{font-size:2.5em;line-height:1.1em}h2{font-size:1.75em;margin:1em 0 .50em 0}h3{font-size:1.4em;margin:25px 0 10px 0}h4{margin:0;font-size:105%}a{color:#058;text-decoration:none;transition:color .3s ease-in-out}a:hover{color:#e82}.title code{font-weight:bold}h2[id^="header-"]{margin-top:2em}.ident{color:#900}pre code{background:#f8f8f8;font-size:.8em;line-height:1.4em}code{background:#f2f2f1;padding:1px 4px;overflow-wrap:break-word}h1 code{background:transparent}pre{background:#f8f8f8;border:0;border-top:1px solid #ccc;border-bottom:1px solid #ccc;margin:1em 0;padding:1ex}#http-server-module-list{display:flex;flex-flow:column}#http-server-module-list div{display:flex}#http-server-module-list dt{min-width:10%}#http-server-module-list p{margin-top:0}.toc ul,#index{list-style-type:none;margin:0;padding:0}#index code{background:transparent}#index h3{border-bottom:1px solid #ddd}#index ul{padding:0}#index h4{font-weight:bold}#index h4 + ul{margin-bottom:.6em}@media (min-width:200ex){#index .two-column{column-count:2}}@media (min-width:300ex){#index .two-column{column-count:3}}dl{margin-bottom:2em}dl dl:last-child{margin-bottom:4em}dd{margin:0 0 1em 3em}#header-classes + dl > dd{margin-bottom:3em}dd dd{margin-left:2em}dd p{margin:10px 0}.name{background:#eee;font-weight:bold;font-size:.85em;padding:5px 10px;display:inline-block;min-width:40%}.name:hover{background:#e0e0e0}.name > span:first-child{white-space:nowrap}.name.class > span:nth-child(2){margin-left:.4em}.inherited{color:#999;border-left:5px solid #eee;padding-left:1em}.inheritance em{font-style:normal;font-weight:bold}.desc h2{font-weight:400;font-size:1.25em}.desc h3{font-size:1em}.desc dt code{background:inherit}.source summary{color:#666;text-align:right;font-weight:400;font-size:.8em;text-transform:uppercase;cursor:pointer}.source pre{max-height:500px;overflow:auto;margin:0}.source pre code{font-size:12px;overflow:visible}.hlist{list-style:none}.hlist li{display:inline}.hlist li:after{content:',\2002'}.hlist li:last-child:after{content:none}.hlist .hlist{display:inline;padding-left:1em}img{max-width:100%}.admonition{padding:.1em .5em;margin-bottom:1em}.admonition-title{font-weight:bold}.admonition.note,.admonition.info,.admonition.important{background:#aef}.admonition.todo,.admonition.versionadded,.admonition.tip,.admonition.hint{background:#dfd}.admonition.warning,.admonition.versionchanged,.admonition.deprecated{background:#fd4}.admonition.error,.admonition.danger,.admonition.caution{background:lightpink}</style>
<style media="screen and (min-width: 700px)">@media screen and (min-width:700px){#sidebar{width:30%}#content{width:70%;max-width:100ch;padding:3em 4em;border-left:1px solid #ddd}pre code{font-size:1em}.item .name{font-size:1em}main{display:flex;flex-direction:row-reverse;justify-content:flex-end}.toc ul ul,#index ul{padding-left:1.5em}.toc > ul > li{margin-top:.5em}}</style>
<style media="print">@media print{#sidebar h1{page-break-before:always}.source{display:none}}@media print{*{background:transparent !important;color:#000 !important;box-shadow:none !important;text-shadow:none !important}a[href]:after{content:" (" attr(href) ")";font-size:90%}a[href][title]:after{content:none}abbr[title]:after{content:" (" attr(title) ")"}.ir a:after,a[href^="javascript:"]:after,a[href^="#"]:after{content:""}pre,blockquote{border:1px solid #999;page-break-inside:avoid}thead{display:table-header-group}tr,img{page-break-inside:avoid}img{max-width:100% !important}@page{margin:0.5cm}p,h2,h3{orphans:3;widows:3}h1,h2,h3,h4,h5,h6{page-break-after:avoid}}</style>
</head>
<body>
<main>
<article id="content">
<header>
<h1 class="title">Module <code>modules.ODYM_Classes</code></h1>
</header>
<section id="section-intro">
<p>Created on Thu Mar
2 17:29:41 2017</p>
<p>@author: spauliuk</p>
<details class="source">
<summary>Source code</summary>
<pre><code class="python"># -*- coding: utf-8 -*-
"""
Created on Thu Mar 2 17:29:41 2017
@author: spauliuk
"""
"""
File ODYM_Classes
Check https://github.com/IndEcol/ODYM for latest version.
Contains class definitions for ODYM
standard abbreviation: msc (material-system-classes)
dependencies:
numpy >= 1.9
scipy >= 0.14
Repository for this class, documentation, and tutorials: https://github.com/IndEcol/ODYM
"""
import os
import logging
import numpy as np
import pandas as pd
import xlrd, xlwt
####################################
# Define classes for ODYM #
####################################
def __version__():
return str('1.0') # version number of this file
class Obj(object):
"""
Class with the object definition for a data object (system, process, flow, ...) in ODYM
"""
def __init__(self, Name=None, ID=None, UUID=None):
""" Basic initialisation of Obj."""
self.Name = Name # object name
self.ID = ID # object ID
self.UUID = UUID # object UUID
self.Aspects = {'Time': 'Model time','Cohort': 'Age-cohort','OriginProcess':'Process where flow originates','DestinationProcess':'Destination process of flow','OriginRegion': 'Region where flow originates from','DestinationRegion': 'Region where flow is bound to', 'Good': 'Process, good, or commodity', 'Material': 'Material: ore, alloy, scrap type, ...','Element': 'Chemical element' } # Define the aspects of the system variables
self.Dimensions = {'Time': 'Time', 'Process':'Process', 'Region': 'Region', 'Good': 'Process, good, or commodity', 'Material': 'Material: ore, alloy, scrap type, ...','Element': 'Chemical element' } # Define the dimensions of the system variables
class Classification(Obj):
"""
Class for aspect classification
"""
def __init__(self, Name = None, ID = None, UUID = None, Dimension = None, Items = None, IDs = None, AdditionalProporties = {}):
""" Basic initialisation of an item list for alloys, materials, etc."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.Dimension = Dimension # Dimension of classification: Time, Region, process, material, goods, ...
self.Items = Items # list with names of items
self.IDs = IDs # list with IDs of items
self.AdditionalProps = AdditionalProporties # Like population for regions, element composition for alloys, ...
class MFAsystem(Obj):
"""
Class with the definition and methods for a system in ODYM
"""
def __init__(self, Name, Time_Start, Time_End, Geogr_Scope, Unit, IndexTable, Elements, ProcessList = [], FlowDict = {}, StockDict = {}, ParameterDict = {}, Graphical = None, ID = None, UUID = None, ):
""" Initialisation of MFAsystem."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.Time_Start = Time_Start # start time of model (year: int)
self.Time_End = Time_End # end time of model (year: int)
self.Geogr_Scope = Geogr_Scope # geographical boundary (string)
self.Elements = Elements # list of chemical elements considered, indicated by atomic numbers
self.Unit = Unit # flow and stock base unit, without 'per yr'
self.ProcessList = ProcessList # list of processes, processes are referred to by their number
self.FlowDict = FlowDict # Dictionary of flows, are indexed by tuples of process they are attached to (p1,p2)
self.StockDict = StockDict # Dictionary of stocks, are indexed by process they are located at (p)
self.ParameterDict = ParameterDict # Dictionary of of parameters: lifetime, yield rates, etc.
self.IndexTable = IndexTable # Dictionary of abbreviations for aspect-classification tuples
self.Graphical = Graphical # Dictionary of graphical properties (size in pixel, background color, etc.)
@property
def Time_V(self):
""" Array of all model years"""
return np.arange(self.Time_Start,self.Time_End +1,1)
@property
def Time_L(self):
""" List of all model years"""
return np.arange(self.Time_Start,self.Time_End +1,1).tolist()
def IndexTableCheck(self):
""" Check whether chosen classifications fit to dimensions of index table."""
for indx in self.IndexTable.index:
if self.IndexTable.ix[indx]['Dimension'] != self.IndexTable.ix[indx]['Classification'].Dimension:
raise ValueError('Dimension mismatch. Dimension of classifiation needs to fit to dimension of flow or parameter index. Found a mismatch for the following index: {foo}. Check your index table definition!'.format(foo = indx))
if 'Time' not in self.IndexTable.index:
raise ValueError(' "Time" aspect must be present in IndexTable. Please check your index table definition!')
if 'Element' not in self.IndexTable.index:
raise ValueError(' "Element" aspect must be present in IndexTable. Please check your index table definition!')
if len(self.IndexTable.ix['Element'].Classification.Items) == 0:
raise ValueError('Need at least one element in element list, please check your classification definition!')
if len(self.IndexTable.ix['Time'].Classification.Items) == 0:
raise ValueError('Need at least one element in Time list, please check your classification definition!')
return True
def Initialize_FlowValues(self):
""" This method will construct empty numpy arrays (zeros) for all flows where the value is None and wheree the indices are given."""
for key in self.FlowDict:
if self.FlowDict[key].Values is None:
self.FlowDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.FlowDict[key].Indices.split(',')]))
# Raw code, for development
# Indices = 't,Ro,a,e'
# IndList = Indices.split(',')
# Dimensions = [len(IndexTable.ix[x]['Classification'].Items) for x in IndList]
# Values = np.zeros(tuple(Dimensions))
def Initialize_StockValues(self):
""" This method will construct empty numpy arrays (zeros) for all stocks where the value is None and wheree the indices are given."""
for key in self.StockDict:
if self.StockDict[key].Values is None:
self.StockDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.StockDict[key].Indices.split(',')]))
def Initialize_ParameterValues(self):
""" This method will construct empty numpy arrays (zeros) for all parameters where the value is None and wheree the indices are given."""
for key in self.ParameterDict:
if self.ParameterDict[key].Values is None:
self.ParameterDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.ParameterDict[key].Indices.split(',')]))
def Consistency_Check(self):
""" Method that check a readily defined system for consistency of dimensions, Value setting, etc. See detailed comments."""
# 1) Check dimension consistency in index table:
A = self.IndexTableCheck()
# 2) Check whether all process indices that the flows refer to are in the process list:
for key in self.FlowDict:
if self.FlowDict[key].P_Start > len(self.ProcessList) -1:
raise ValueError('Start process of flow {foo} not present. Check your flow definition!'.format(foo = key))
if self.FlowDict[key].P_End > len(self.ProcessList) -1:
raise ValueError('End process of flow {foo} not present. Check your flow definition!'.format(foo = key))
# 3) Check whethe all flow valua arrays match with the index structure:
for key in self.FlowDict:
if tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.FlowDict[key].Indices.split(',')]) != self.FlowDict[key].Values.shape:
raise ValueError('Dimension mismatch. Dimension of flow value array does not fit to flow indices for flow {foo}. Check your flow and flow value definition!'.format(foo = key))
return A, True, True
def Flow_Sum_By_Element(self,FlowKey):
"""
Reduce flow values to a Time x Elements matrix and return as t x e array.
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
"""
return np.einsum(self.FlowDict[FlowKey].Indices.replace(',','') + '->'+ self.IndexTable.ix['Time'].IndexLetter + self.IndexTable.ix['Element'].IndexLetter ,self.FlowDict[FlowKey].Values)
def Stock_Sum_By_Element(self,StockKey):
"""
Reduce stock values to a Time x Elements matrix and return as t x e array.
We take the indices of each stock, e.g., 't,c,G,m,e', strip off the ',' to get 'tcGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tcGme->te',
and apply it to the stock values.
"""
return np.einsum(self.StockDict[StockKey].Indices.replace(',','') + '->'+ self.IndexTable.ix['Time'].IndexLetter + self.IndexTable.ix['Element'].IndexLetter ,self.StockDict[StockKey].Values)
def MassBalance(self, Element = None):
"""
Determines mass balance of MFAsystem
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
Sum to t and e is subtracted from process where flow is leaving from and added to destination process.
"""
Bal = np.zeros((len(self.Time_L),len(self.ProcessList),len(self.Elements))) # Balance array: years x process x element:
#process position 0 is the balance for the system boundary, the other positions are for the processes,
#element position 0 is the balance for the entire mass, the other are for the balance of the individual elements
for key in self.FlowDict: # Add all flows to mass balance
Bal[:,self.FlowDict[key].P_Start,:] -= self.Flow_Sum_By_Element(key) # Flow leaving a process
Bal[:,self.FlowDict[key].P_End,:] += self.Flow_Sum_By_Element(key) # Flow entering a process
for key in self.StockDict: # Add all stock changes to the mass balance
if self.StockDict[key].Type == 1:
Bal[:,self.StockDict[key].P_Res,:] -= self.Stock_Sum_By_Element(key) # 1: net stock change or addition to stock
elif self.StockDict[key].Type == 2:
Bal[:,self.StockDict[key].P_Res,:] += self.Stock_Sum_By_Element(key) # 2: removal/release from stock
#add stock changes to process with number 0 ('system boundary, environment of system')
for key in self.StockDict:
if self.StockDict[key].Type == 1:
Bal[:,0,:] += self.Stock_Sum_By_Element(key) # 1: net stock change or addition to stock
elif self.StockDict[key].Type == 2:
Bal[:,0,:] -= self.Stock_Sum_By_Element(key) # 2: removal/release from stock
return Bal
def Check_If_All_Chem_Elements_Are_present(self,FlowKey,AllElementsIndex):
"""
This method is applicable to systems where the chemical element list contains both 0 ('all' chemical elements) and individual elements.
It checks whether the sum of the system variable of the other elements equals the entry for element 0.
This means that the breakdown of the system variable into individual elements has the same mass as the total for all elements.
AllElementsindex is the position of the element 0 in the element list, typically, it is also 0.
"""
txe = self.Flow_Sum_By_Element(FlowKey)
txe_0 = txe[:,AllElementsIndex]
txe_o = np.delete(txe,AllElementsIndex,axis=1).sum(axis=1)
if np.allclose(txe_0,txe_o):
Check = True
else:
Check = False
return Check, txe_0, txe_o # Check flag, time series for element 'all', time series for all 'other' elements.
def SankeyExport(self,Year, Path, Element): # Export data for given year in excel format for the D3.js Circular Sankey method
""" Exports MFAsystem to xls Template for the Circular Sankey method."""
TimeIndex = Year - self.Time_Start
myfont = xlwt.Font()
myfont.bold = True
mystyle = xlwt.XFStyle()
mystyle.font = myfont
Result_workbook = xlwt.Workbook(encoding = 'ascii')
Result_worksheet = Result_workbook.add_sheet('Nodes')
Result_worksheet.write(0, 0, label = 'Name', style = mystyle)
Result_worksheet.write(0, 1, label = 'Color', style = mystyle)
Result_worksheet.write(0, 2, label = 'Orientation', style = mystyle)
Result_worksheet.write(0, 3, label = 'Width', style = mystyle)
Result_worksheet.write(0, 4, label = 'Height', style = mystyle)
Result_worksheet.write(0, 5, label = 'x_position', style = mystyle)
Result_worksheet.write(0, 6, label = 'y_position', style = mystyle)
for m in range(0,len(self.ProcessList)):
if self.ProcessList[m].Graphical is None:
raise ValueError('Graphical properties of process number {foo} are not set. No export to Sankey possible, as position of process on canvas etc. needs is not specified.'.format(foo = m))
Result_worksheet.write(m +1, 0, label = self.ProcessList[m].Graphical['Name'])
Result_worksheet.write(m +1, 1, label = self.ProcessList[m].Graphical['Color'])
Result_worksheet.write(m +1, 2, label = self.ProcessList[m].Graphical['Angle'])
Result_worksheet.write(m +1, 3, label = self.ProcessList[m].Graphical['Width'])
Result_worksheet.write(m +1, 4, label = self.ProcessList[m].Graphical['Height'])
Result_worksheet.write(m +1, 5, label = self.ProcessList[m].Graphical['xPos'])
Result_worksheet.write(m +1, 6, label = self.ProcessList[m].Graphical['yPos'])
Result_worksheet = Result_workbook.add_sheet('Flows')
Result_worksheet.write(0, 0, label = 'StartNode', style = mystyle)
Result_worksheet.write(0, 1, label = 'EndNode', style = mystyle)
Result_worksheet.write(0, 2, label = 'Value', style = mystyle)
Result_worksheet.write(0, 3, label = 'Color', style = mystyle)
for key in self.FlowDict:
Result_worksheet.write(m +1, 0, label = self.FlowDict[key].P_Start)
Result_worksheet.write(m +1, 1, label = self.FlowDict[key].P_End)
Result_worksheet.write(m +1, 2, label = float(self.Flow_Sum_By_Element(key)[TimeIndex,Element]))
Result_worksheet.write(m +1, 3, label = self.FlowDict[key].Color)
Result_workbook.save(Path + self.Name + '_' + str(TimeIndex) + '_' + str(Element) + '_Sankey.xls')
class Process(Obj):
"""
Class with the definition and methods for a process in ODYM
"""
def __init__(self, Name = None, ID = None, UUID = None, Bipartite = None, Graphical = None, Extensions = None, Parameters = None):
""" Basic initialisation of a process."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.Bipartite = Bipartite # For bipartite system graphs, a string with value 't' or 'd' for transformation and distribution process indicates which group the process belongs to.
self.Extensions= Extensions # Dictionary of
self.Graphical = Graphical # # Dictionary of graphical properties: xPos = None, yPos = None, Orientation = None, Color=None, Width = None, Height=None,
def add_extension(self,Time = None, Name = None, Value=None, Unit = None, Uncert=None): # Extensions flows that are not part of the system-wide mass balance!
if self.Extensions is None:
self.Extensions = []
self.Extensions.append(Flow(P_Start = self.ID, P_End = None, Time = Time, Name = Name, Unit = Unit, Value = Value, Uncert = Uncert))
def add_parameter(self,Name = None):
if self.Parameters is None:
self.Parameters = []
self.Parameters.append(Parameter(Value = None))
class Flow(Obj): # Flow needs to at least have dimension time x element
"""
Class with the definition and methods for a flow in ODYM
"""
def __init__(self, Name = None, ID = None, UUID = None, P_Start = None, P_End = None, Indices = None, Values=None, Uncert=None, Unit = None, Color = None):
""" Basic initialisation of a flow."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.P_Start = P_Start # id of start process of flow (id: int)
self.P_End = P_End # id of end process of flow (id: int)
self.Indices = Indices # String with indices as defined in IndexTable, separated by ,: 't,c,p,s,e'
self.Values = Values # flow values, np.array, multidimensional, unit is system-wide unit
self.Uncert = Uncert # uncertainty of value in %
self.Unit = Unit # Unit string
self.Color = Color # color as string 'R,G,B', where each of R, G, B has a value of 0...255
class Stock(Obj): # Flow needs to at least have dimension time x element
"""
Class with the definition and methods for a stock in ODYM
"""
def __init__(self, Name = None, ID = None, UUID = None, P_Res = None, Indices = None, Type = None, Values=None, Uncert=None, Unit = None, Color = None):
""" Basic initialisation of a stock."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.P_Res = P_Res # id of process where stock resides (id: int)
self.Indices = Indices # String with indices as defined in IndexTable, separated by ,: 't,c,p,s,e'
self.Type = Type # Type is an int value, indicating: 0: stock, 1: (net) stock change or addition to stock, 2: removal from stock
self.Values = Values # flow values, np.array, multidimensional, unit is system-wide unit
self.Uncert = Uncert # uncertainty of value in %
self.Unit = Unit # Unit string
self.Color = Color # color as string 'R,G,B', where each of R, G, B has a value of 0...255
class Parameter(Obj):
"""
Class with the definition and methods for parameters
"""
def __init__(self, Name = None, ID = None, UUID = None, P_Res = None, MetaData = None, Indices = None, Values=None, Uncert=None, Unit = None):
""" Basic initialisation of a parameter."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.P_Res = P_Res # id of process to which parameter is assigned (id: int)
self.Indices = Indices # String with indices as defined in IndexTable, separated by ,: 't,c,p,s,e'
self.MetaData = MetaData # Dictionary with additional metadata
self.Values = Values # parameter values, np.array, multidimensional, unit is Unit
self.Uncert = Uncert # uncertainty of value in %
self.Unit = Unit # Unit of parameter values
#
#
# </code></pre>
</details>
</section>
<section>
</section>
<section>
</section>
<section>
</section>
<section>
<h2 class="section-title" id="header-classes">Classes</h2>
<dl>
<dt id="modules.ODYM_Classes.Classification"><code class="flex name class">
<span>class <span class="ident">Classification</span></span>
<span>(</span><span>Name=None, ID=None, UUID=None, Dimension=None, Items=None, IDs=None, AdditionalProporties={})</span>
</code></dt>
<dd>
<section class="desc"><p>Class for aspect classification</p>
<p>Basic initialisation of an item list for alloys, materials, etc.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">class Classification(Obj):
"""
Class for aspect classification
"""
def __init__(self, Name = None, ID = None, UUID = None, Dimension = None, Items = None, IDs = None, AdditionalProporties = {}):
""" Basic initialisation of an item list for alloys, materials, etc."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.Dimension = Dimension # Dimension of classification: Time, Region, process, material, goods, ...
self.Items = Items # list with names of items
self.IDs = IDs # list with IDs of items
self.AdditionalProps = AdditionalProporties # Like population for regions, element composition for alloys, ...</code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="modules.ODYM_Classes.Obj" href="#modules.ODYM_Classes.Obj">Obj</a></li>
</ul>
</dd>
<dt id="modules.ODYM_Classes.Flow"><code class="flex name class">
<span>class <span class="ident">Flow</span></span>
<span>(</span><span>Name=None, ID=None, UUID=None, P_Start=None, P_End=None, Indices=None, Values=None, Uncert=None, Unit=None, Color=None)</span>
</code></dt>
<dd>
<section class="desc"><p>Class with the definition and methods for a flow in ODYM</p>
<p>Basic initialisation of a flow.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">class Flow(Obj): # Flow needs to at least have dimension time x element
"""
Class with the definition and methods for a flow in ODYM
"""
def __init__(self, Name = None, ID = None, UUID = None, P_Start = None, P_End = None, Indices = None, Values=None, Uncert=None, Unit = None, Color = None):
""" Basic initialisation of a flow."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.P_Start = P_Start # id of start process of flow (id: int)
self.P_End = P_End # id of end process of flow (id: int)
self.Indices = Indices # String with indices as defined in IndexTable, separated by ,: 't,c,p,s,e'
self.Values = Values # flow values, np.array, multidimensional, unit is system-wide unit
self.Uncert = Uncert # uncertainty of value in %
self.Unit = Unit # Unit string
self.Color = Color # color as string 'R,G,B', where each of R, G, B has a value of 0...255</code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="modules.ODYM_Classes.Obj" href="#modules.ODYM_Classes.Obj">Obj</a></li>
</ul>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem"><code class="flex name class">
<span>class <span class="ident">MFAsystem</span></span>
<span>(</span><span>Name, Time_Start, Time_End, Geogr_Scope, Unit, IndexTable, Elements, ProcessList=[], FlowDict={}, StockDict={}, ParameterDict={}, Graphical=None, ID=None, UUID=None)</span>
</code></dt>
<dd>
<section class="desc"><p>Class with the definition and methods for a system in ODYM</p>
<p>Initialisation of MFAsystem.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">class MFAsystem(Obj):
"""
Class with the definition and methods for a system in ODYM
"""
def __init__(self, Name, Time_Start, Time_End, Geogr_Scope, Unit, IndexTable, Elements, ProcessList = [], FlowDict = {}, StockDict = {}, ParameterDict = {}, Graphical = None, ID = None, UUID = None, ):
""" Initialisation of MFAsystem."""
Obj.__init__(self, Name = Name, ID = ID, UUID = UUID) # Hand over parameters to parent class init
self.Time_Start = Time_Start # start time of model (year: int)
self.Time_End = Time_End # end time of model (year: int)
self.Geogr_Scope = Geogr_Scope # geographical boundary (string)
self.Elements = Elements # list of chemical elements considered, indicated by atomic numbers
self.Unit = Unit # flow and stock base unit, without 'per yr'
self.ProcessList = ProcessList # list of processes, processes are referred to by their number
self.FlowDict = FlowDict # Dictionary of flows, are indexed by tuples of process they are attached to (p1,p2)
self.StockDict = StockDict # Dictionary of stocks, are indexed by process they are located at (p)
self.ParameterDict = ParameterDict # Dictionary of of parameters: lifetime, yield rates, etc.
self.IndexTable = IndexTable # Dictionary of abbreviations for aspect-classification tuples
self.Graphical = Graphical # Dictionary of graphical properties (size in pixel, background color, etc.)
@property
def Time_V(self):
""" Array of all model years"""
return np.arange(self.Time_Start,self.Time_End +1,1)
@property
def Time_L(self):
""" List of all model years"""
return np.arange(self.Time_Start,self.Time_End +1,1).tolist()
def IndexTableCheck(self):
""" Check whether chosen classifications fit to dimensions of index table."""
for indx in self.IndexTable.index:
if self.IndexTable.ix[indx]['Dimension'] != self.IndexTable.ix[indx]['Classification'].Dimension:
raise ValueError('Dimension mismatch. Dimension of classifiation needs to fit to dimension of flow or parameter index. Found a mismatch for the following index: {foo}. Check your index table definition!'.format(foo = indx))
if 'Time' not in self.IndexTable.index:
raise ValueError(' "Time" aspect must be present in IndexTable. Please check your index table definition!')
if 'Element' not in self.IndexTable.index:
raise ValueError(' "Element" aspect must be present in IndexTable. Please check your index table definition!')
if len(self.IndexTable.ix['Element'].Classification.Items) == 0:
raise ValueError('Need at least one element in element list, please check your classification definition!')
if len(self.IndexTable.ix['Time'].Classification.Items) == 0:
raise ValueError('Need at least one element in Time list, please check your classification definition!')
return True
def Initialize_FlowValues(self):
""" This method will construct empty numpy arrays (zeros) for all flows where the value is None and wheree the indices are given."""
for key in self.FlowDict:
if self.FlowDict[key].Values is None:
self.FlowDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.FlowDict[key].Indices.split(',')]))
# Raw code, for development
# Indices = 't,Ro,a,e'
# IndList = Indices.split(',')
# Dimensions = [len(IndexTable.ix[x]['Classification'].Items) for x in IndList]
# Values = np.zeros(tuple(Dimensions))
def Initialize_StockValues(self):
""" This method will construct empty numpy arrays (zeros) for all stocks where the value is None and wheree the indices are given."""
for key in self.StockDict:
if self.StockDict[key].Values is None:
self.StockDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.StockDict[key].Indices.split(',')]))
def Initialize_ParameterValues(self):
""" This method will construct empty numpy arrays (zeros) for all parameters where the value is None and wheree the indices are given."""
for key in self.ParameterDict:
if self.ParameterDict[key].Values is None:
self.ParameterDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.ParameterDict[key].Indices.split(',')]))
def Consistency_Check(self):
""" Method that check a readily defined system for consistency of dimensions, Value setting, etc. See detailed comments."""
# 1) Check dimension consistency in index table:
A = self.IndexTableCheck()
# 2) Check whether all process indices that the flows refer to are in the process list:
for key in self.FlowDict:
if self.FlowDict[key].P_Start > len(self.ProcessList) -1:
raise ValueError('Start process of flow {foo} not present. Check your flow definition!'.format(foo = key))
if self.FlowDict[key].P_End > len(self.ProcessList) -1:
raise ValueError('End process of flow {foo} not present. Check your flow definition!'.format(foo = key))
# 3) Check whethe all flow valua arrays match with the index structure:
for key in self.FlowDict:
if tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.FlowDict[key].Indices.split(',')]) != self.FlowDict[key].Values.shape:
raise ValueError('Dimension mismatch. Dimension of flow value array does not fit to flow indices for flow {foo}. Check your flow and flow value definition!'.format(foo = key))
return A, True, True
def Flow_Sum_By_Element(self,FlowKey):
"""
Reduce flow values to a Time x Elements matrix and return as t x e array.
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
"""
return np.einsum(self.FlowDict[FlowKey].Indices.replace(',','') + '->'+ self.IndexTable.ix['Time'].IndexLetter + self.IndexTable.ix['Element'].IndexLetter ,self.FlowDict[FlowKey].Values)
def Stock_Sum_By_Element(self,StockKey):
"""
Reduce stock values to a Time x Elements matrix and return as t x e array.
We take the indices of each stock, e.g., 't,c,G,m,e', strip off the ',' to get 'tcGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tcGme->te',
and apply it to the stock values.
"""
return np.einsum(self.StockDict[StockKey].Indices.replace(',','') + '->'+ self.IndexTable.ix['Time'].IndexLetter + self.IndexTable.ix['Element'].IndexLetter ,self.StockDict[StockKey].Values)
def MassBalance(self, Element = None):
"""
Determines mass balance of MFAsystem
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
Sum to t and e is subtracted from process where flow is leaving from and added to destination process.
"""
Bal = np.zeros((len(self.Time_L),len(self.ProcessList),len(self.Elements))) # Balance array: years x process x element:
#process position 0 is the balance for the system boundary, the other positions are for the processes,
#element position 0 is the balance for the entire mass, the other are for the balance of the individual elements
for key in self.FlowDict: # Add all flows to mass balance
Bal[:,self.FlowDict[key].P_Start,:] -= self.Flow_Sum_By_Element(key) # Flow leaving a process
Bal[:,self.FlowDict[key].P_End,:] += self.Flow_Sum_By_Element(key) # Flow entering a process
for key in self.StockDict: # Add all stock changes to the mass balance
if self.StockDict[key].Type == 1:
Bal[:,self.StockDict[key].P_Res,:] -= self.Stock_Sum_By_Element(key) # 1: net stock change or addition to stock
elif self.StockDict[key].Type == 2:
Bal[:,self.StockDict[key].P_Res,:] += self.Stock_Sum_By_Element(key) # 2: removal/release from stock
#add stock changes to process with number 0 ('system boundary, environment of system')
for key in self.StockDict:
if self.StockDict[key].Type == 1:
Bal[:,0,:] += self.Stock_Sum_By_Element(key) # 1: net stock change or addition to stock
elif self.StockDict[key].Type == 2:
Bal[:,0,:] -= self.Stock_Sum_By_Element(key) # 2: removal/release from stock
return Bal
def Check_If_All_Chem_Elements_Are_present(self,FlowKey,AllElementsIndex):
"""
This method is applicable to systems where the chemical element list contains both 0 ('all' chemical elements) and individual elements.
It checks whether the sum of the system variable of the other elements equals the entry for element 0.
This means that the breakdown of the system variable into individual elements has the same mass as the total for all elements.
AllElementsindex is the position of the element 0 in the element list, typically, it is also 0.
"""
txe = self.Flow_Sum_By_Element(FlowKey)
txe_0 = txe[:,AllElementsIndex]
txe_o = np.delete(txe,AllElementsIndex,axis=1).sum(axis=1)
if np.allclose(txe_0,txe_o):
Check = True
else:
Check = False
return Check, txe_0, txe_o # Check flag, time series for element 'all', time series for all 'other' elements.
def SankeyExport(self,Year, Path, Element): # Export data for given year in excel format for the D3.js Circular Sankey method
""" Exports MFAsystem to xls Template for the Circular Sankey method."""
TimeIndex = Year - self.Time_Start
myfont = xlwt.Font()
myfont.bold = True
mystyle = xlwt.XFStyle()
mystyle.font = myfont
Result_workbook = xlwt.Workbook(encoding = 'ascii')
Result_worksheet = Result_workbook.add_sheet('Nodes')
Result_worksheet.write(0, 0, label = 'Name', style = mystyle)
Result_worksheet.write(0, 1, label = 'Color', style = mystyle)
Result_worksheet.write(0, 2, label = 'Orientation', style = mystyle)
Result_worksheet.write(0, 3, label = 'Width', style = mystyle)
Result_worksheet.write(0, 4, label = 'Height', style = mystyle)
Result_worksheet.write(0, 5, label = 'x_position', style = mystyle)
Result_worksheet.write(0, 6, label = 'y_position', style = mystyle)
for m in range(0,len(self.ProcessList)):
if self.ProcessList[m].Graphical is None:
raise ValueError('Graphical properties of process number {foo} are not set. No export to Sankey possible, as position of process on canvas etc. needs is not specified.'.format(foo = m))
Result_worksheet.write(m +1, 0, label = self.ProcessList[m].Graphical['Name'])
Result_worksheet.write(m +1, 1, label = self.ProcessList[m].Graphical['Color'])
Result_worksheet.write(m +1, 2, label = self.ProcessList[m].Graphical['Angle'])
Result_worksheet.write(m +1, 3, label = self.ProcessList[m].Graphical['Width'])
Result_worksheet.write(m +1, 4, label = self.ProcessList[m].Graphical['Height'])
Result_worksheet.write(m +1, 5, label = self.ProcessList[m].Graphical['xPos'])
Result_worksheet.write(m +1, 6, label = self.ProcessList[m].Graphical['yPos'])
Result_worksheet = Result_workbook.add_sheet('Flows')
Result_worksheet.write(0, 0, label = 'StartNode', style = mystyle)
Result_worksheet.write(0, 1, label = 'EndNode', style = mystyle)
Result_worksheet.write(0, 2, label = 'Value', style = mystyle)
Result_worksheet.write(0, 3, label = 'Color', style = mystyle)
for key in self.FlowDict:
Result_worksheet.write(m +1, 0, label = self.FlowDict[key].P_Start)
Result_worksheet.write(m +1, 1, label = self.FlowDict[key].P_End)
Result_worksheet.write(m +1, 2, label = float(self.Flow_Sum_By_Element(key)[TimeIndex,Element]))
Result_worksheet.write(m +1, 3, label = self.FlowDict[key].Color)
Result_workbook.save(Path + self.Name + '_' + str(TimeIndex) + '_' + str(Element) + '_Sankey.xls') </code></pre>
</details>
<h3>Ancestors</h3>
<ul class="hlist">
<li><a title="modules.ODYM_Classes.Obj" href="#modules.ODYM_Classes.Obj">Obj</a></li>
</ul>
<h3>Instance variables</h3>
<dl>
<dt id="modules.ODYM_Classes.MFAsystem.Time_L"><code class="name">var <span class="ident">Time_L</span></code></dt>
<dd>
<section class="desc"><p>List of all model years</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">@property
def Time_L(self):
""" List of all model years"""
return np.arange(self.Time_Start,self.Time_End +1,1).tolist()</code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Time_V"><code class="name">var <span class="ident">Time_V</span></code></dt>
<dd>
<section class="desc"><p>Array of all model years</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">@property
def Time_V(self):
""" Array of all model years"""
return np.arange(self.Time_Start,self.Time_End +1,1)</code></pre>
</details>
</dd>
</dl>
<h3>Methods</h3>
<dl>
<dt id="modules.ODYM_Classes.MFAsystem.Check_If_All_Chem_Elements_Are_present"><code class="name flex">
<span>def <span class="ident">Check_If_All_Chem_Elements_Are_present</span></span>(<span>self, FlowKey, AllElementsIndex)</span>
</code></dt>
<dd>
<section class="desc"><p>This method is applicable to systems where the chemical element list contains both 0 ('all' chemical elements) and individual elements.
It checks whether the sum of the system variable of the other elements equals the entry for element 0.
This means that the breakdown of the system variable into individual elements has the same mass as the total for all elements.
AllElementsindex is the position of the element 0 in the element list, typically, it is also 0.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Check_If_All_Chem_Elements_Are_present(self,FlowKey,AllElementsIndex):
"""
This method is applicable to systems where the chemical element list contains both 0 ('all' chemical elements) and individual elements.
It checks whether the sum of the system variable of the other elements equals the entry for element 0.
This means that the breakdown of the system variable into individual elements has the same mass as the total for all elements.
AllElementsindex is the position of the element 0 in the element list, typically, it is also 0.
"""
txe = self.Flow_Sum_By_Element(FlowKey)
txe_0 = txe[:,AllElementsIndex]
txe_o = np.delete(txe,AllElementsIndex,axis=1).sum(axis=1)
if np.allclose(txe_0,txe_o):
Check = True
else:
Check = False
return Check, txe_0, txe_o # Check flag, time series for element 'all', time series for all 'other' elements.</code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Consistency_Check"><code class="name flex">
<span>def <span class="ident">Consistency_Check</span></span>(<span>self)</span>
</code></dt>
<dd>
<section class="desc"><p>Method that check a readily defined system for consistency of dimensions, Value setting, etc. See detailed comments.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Consistency_Check(self):
""" Method that check a readily defined system for consistency of dimensions, Value setting, etc. See detailed comments."""
# 1) Check dimension consistency in index table:
A = self.IndexTableCheck()
# 2) Check whether all process indices that the flows refer to are in the process list:
for key in self.FlowDict:
if self.FlowDict[key].P_Start > len(self.ProcessList) -1:
raise ValueError('Start process of flow {foo} not present. Check your flow definition!'.format(foo = key))
if self.FlowDict[key].P_End > len(self.ProcessList) -1:
raise ValueError('End process of flow {foo} not present. Check your flow definition!'.format(foo = key))
# 3) Check whethe all flow valua arrays match with the index structure:
for key in self.FlowDict:
if tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.FlowDict[key].Indices.split(',')]) != self.FlowDict[key].Values.shape:
raise ValueError('Dimension mismatch. Dimension of flow value array does not fit to flow indices for flow {foo}. Check your flow and flow value definition!'.format(foo = key))
return A, True, True</code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Flow_Sum_By_Element"><code class="name flex">
<span>def <span class="ident">Flow_Sum_By_Element</span></span>(<span>self, FlowKey)</span>
</code></dt>
<dd>
<section class="desc"><p>Reduce flow values to a Time x Elements matrix and return as t x e array.
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Flow_Sum_By_Element(self,FlowKey):
"""
Reduce flow values to a Time x Elements matrix and return as t x e array.
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
"""
return np.einsum(self.FlowDict[FlowKey].Indices.replace(',','') + '->'+ self.IndexTable.ix['Time'].IndexLetter + self.IndexTable.ix['Element'].IndexLetter ,self.FlowDict[FlowKey].Values) </code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.IndexTableCheck"><code class="name flex">
<span>def <span class="ident">IndexTableCheck</span></span>(<span>self)</span>
</code></dt>
<dd>
<section class="desc"><p>Check whether chosen classifications fit to dimensions of index table.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def IndexTableCheck(self):
""" Check whether chosen classifications fit to dimensions of index table."""
for indx in self.IndexTable.index:
if self.IndexTable.ix[indx]['Dimension'] != self.IndexTable.ix[indx]['Classification'].Dimension:
raise ValueError('Dimension mismatch. Dimension of classifiation needs to fit to dimension of flow or parameter index. Found a mismatch for the following index: {foo}. Check your index table definition!'.format(foo = indx))
if 'Time' not in self.IndexTable.index:
raise ValueError(' "Time" aspect must be present in IndexTable. Please check your index table definition!')
if 'Element' not in self.IndexTable.index:
raise ValueError(' "Element" aspect must be present in IndexTable. Please check your index table definition!')
if len(self.IndexTable.ix['Element'].Classification.Items) == 0:
raise ValueError('Need at least one element in element list, please check your classification definition!')
if len(self.IndexTable.ix['Time'].Classification.Items) == 0:
raise ValueError('Need at least one element in Time list, please check your classification definition!')
return True</code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Initialize_FlowValues"><code class="name flex">
<span>def <span class="ident">Initialize_FlowValues</span></span>(<span>self)</span>
</code></dt>
<dd>
<section class="desc"><p>This method will construct empty numpy arrays (zeros) for all flows where the value is None and wheree the indices are given.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Initialize_FlowValues(self):
""" This method will construct empty numpy arrays (zeros) for all flows where the value is None and wheree the indices are given."""
for key in self.FlowDict:
if self.FlowDict[key].Values is None:
self.FlowDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.FlowDict[key].Indices.split(',')])) </code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Initialize_ParameterValues"><code class="name flex">
<span>def <span class="ident">Initialize_ParameterValues</span></span>(<span>self)</span>
</code></dt>
<dd>
<section class="desc"><p>This method will construct empty numpy arrays (zeros) for all parameters where the value is None and wheree the indices are given.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Initialize_ParameterValues(self):
""" This method will construct empty numpy arrays (zeros) for all parameters where the value is None and wheree the indices are given."""
for key in self.ParameterDict:
if self.ParameterDict[key].Values is None:
self.ParameterDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.ParameterDict[key].Indices.split(',')])) </code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Initialize_StockValues"><code class="name flex">
<span>def <span class="ident">Initialize_StockValues</span></span>(<span>self)</span>
</code></dt>
<dd>
<section class="desc"><p>This method will construct empty numpy arrays (zeros) for all stocks where the value is None and wheree the indices are given.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Initialize_StockValues(self):
""" This method will construct empty numpy arrays (zeros) for all stocks where the value is None and wheree the indices are given."""
for key in self.StockDict:
if self.StockDict[key].Values is None:
self.StockDict[key].Values = np.zeros(tuple([len(self.IndexTable.set_index('IndexLetter').ix[x]['Classification'].Items) for x in self.StockDict[key].Indices.split(',')])) </code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.MassBalance"><code class="name flex">
<span>def <span class="ident">MassBalance</span></span>(<span>self, Element=None)</span>
</code></dt>
<dd>
<section class="desc"><p>Determines mass balance of MFAsystem
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
Sum to t and e is subtracted from process where flow is leaving from and added to destination process.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def MassBalance(self, Element = None):
"""
Determines mass balance of MFAsystem
We take the indices of each flow, e.g., 't,O,D,G,m,e', strip off the ',' to get 'tODGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tODGme->te',
and apply it to the flow values.
Sum to t and e is subtracted from process where flow is leaving from and added to destination process.
"""
Bal = np.zeros((len(self.Time_L),len(self.ProcessList),len(self.Elements))) # Balance array: years x process x element:
#process position 0 is the balance for the system boundary, the other positions are for the processes,
#element position 0 is the balance for the entire mass, the other are for the balance of the individual elements
for key in self.FlowDict: # Add all flows to mass balance
Bal[:,self.FlowDict[key].P_Start,:] -= self.Flow_Sum_By_Element(key) # Flow leaving a process
Bal[:,self.FlowDict[key].P_End,:] += self.Flow_Sum_By_Element(key) # Flow entering a process
for key in self.StockDict: # Add all stock changes to the mass balance
if self.StockDict[key].Type == 1:
Bal[:,self.StockDict[key].P_Res,:] -= self.Stock_Sum_By_Element(key) # 1: net stock change or addition to stock
elif self.StockDict[key].Type == 2:
Bal[:,self.StockDict[key].P_Res,:] += self.Stock_Sum_By_Element(key) # 2: removal/release from stock
#add stock changes to process with number 0 ('system boundary, environment of system')
for key in self.StockDict:
if self.StockDict[key].Type == 1:
Bal[:,0,:] += self.Stock_Sum_By_Element(key) # 1: net stock change or addition to stock
elif self.StockDict[key].Type == 2:
Bal[:,0,:] -= self.Stock_Sum_By_Element(key) # 2: removal/release from stock
return Bal</code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.SankeyExport"><code class="name flex">
<span>def <span class="ident">SankeyExport</span></span>(<span>self, Year, Path, Element)</span>
</code></dt>
<dd>
<section class="desc"><p>Exports MFAsystem to xls Template for the Circular Sankey method.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def SankeyExport(self,Year, Path, Element): # Export data for given year in excel format for the D3.js Circular Sankey method
""" Exports MFAsystem to xls Template for the Circular Sankey method."""
TimeIndex = Year - self.Time_Start
myfont = xlwt.Font()
myfont.bold = True
mystyle = xlwt.XFStyle()
mystyle.font = myfont
Result_workbook = xlwt.Workbook(encoding = 'ascii')
Result_worksheet = Result_workbook.add_sheet('Nodes')
Result_worksheet.write(0, 0, label = 'Name', style = mystyle)
Result_worksheet.write(0, 1, label = 'Color', style = mystyle)
Result_worksheet.write(0, 2, label = 'Orientation', style = mystyle)
Result_worksheet.write(0, 3, label = 'Width', style = mystyle)
Result_worksheet.write(0, 4, label = 'Height', style = mystyle)
Result_worksheet.write(0, 5, label = 'x_position', style = mystyle)
Result_worksheet.write(0, 6, label = 'y_position', style = mystyle)
for m in range(0,len(self.ProcessList)):
if self.ProcessList[m].Graphical is None:
raise ValueError('Graphical properties of process number {foo} are not set. No export to Sankey possible, as position of process on canvas etc. needs is not specified.'.format(foo = m))
Result_worksheet.write(m +1, 0, label = self.ProcessList[m].Graphical['Name'])
Result_worksheet.write(m +1, 1, label = self.ProcessList[m].Graphical['Color'])
Result_worksheet.write(m +1, 2, label = self.ProcessList[m].Graphical['Angle'])
Result_worksheet.write(m +1, 3, label = self.ProcessList[m].Graphical['Width'])
Result_worksheet.write(m +1, 4, label = self.ProcessList[m].Graphical['Height'])
Result_worksheet.write(m +1, 5, label = self.ProcessList[m].Graphical['xPos'])
Result_worksheet.write(m +1, 6, label = self.ProcessList[m].Graphical['yPos'])
Result_worksheet = Result_workbook.add_sheet('Flows')
Result_worksheet.write(0, 0, label = 'StartNode', style = mystyle)
Result_worksheet.write(0, 1, label = 'EndNode', style = mystyle)
Result_worksheet.write(0, 2, label = 'Value', style = mystyle)
Result_worksheet.write(0, 3, label = 'Color', style = mystyle)
for key in self.FlowDict:
Result_worksheet.write(m +1, 0, label = self.FlowDict[key].P_Start)
Result_worksheet.write(m +1, 1, label = self.FlowDict[key].P_End)
Result_worksheet.write(m +1, 2, label = float(self.Flow_Sum_By_Element(key)[TimeIndex,Element]))
Result_worksheet.write(m +1, 3, label = self.FlowDict[key].Color)
Result_workbook.save(Path + self.Name + '_' + str(TimeIndex) + '_' + str(Element) + '_Sankey.xls') </code></pre>
</details>
</dd>
<dt id="modules.ODYM_Classes.MFAsystem.Stock_Sum_By_Element"><code class="name flex">
<span>def <span class="ident">Stock_Sum_By_Element</span></span>(<span>self, StockKey)</span>
</code></dt>
<dd>
<section class="desc"><p>Reduce stock values to a Time x Elements matrix and return as t x e array.
We take the indices of each stock, e.g., 't,c,G,m,e', strip off the ',' to get 'tcGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tcGme->te',
and apply it to the stock values.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">def Stock_Sum_By_Element(self,StockKey):
"""
Reduce stock values to a Time x Elements matrix and return as t x e array.
We take the indices of each stock, e.g., 't,c,G,m,e', strip off the ',' to get 'tcGme',
add a '->' and the index letters for time and element (here, t and e),
and call the Einstein sum function np.einsum with the string 'tcGme->te',
and apply it to the stock values.
"""
return np.einsum(self.StockDict[StockKey].Indices.replace(',','') + '->'+ self.IndexTable.ix['Time'].IndexLetter + self.IndexTable.ix['Element'].IndexLetter ,self.StockDict[StockKey].Values) </code></pre>
</details>
</dd>
</dl>
</dd>
<dt id="modules.ODYM_Classes.Obj"><code class="flex name class">
<span>class <span class="ident">Obj</span></span>
<span>(</span><span>Name=None, ID=None, UUID=None)</span>
</code></dt>
<dd>
<section class="desc"><p>Class with the object definition for a data object (system, process, flow, …) in ODYM</p>
<p>Basic initialisation of Obj.</p></section>
<details class="source">
<summary>Source code</summary>
<pre><code class="python">class Obj(object):
"""
Class with the object definition for a data object (system, process, flow, ...) in ODYM
"""
def __init__(self, Name=None, ID=None, UUID=None):
""" Basic initialisation of Obj."""
self.Name = Name # object name
self.ID = ID # object ID
self.UUID = UUID # object UUID
self.Aspects = {'Time': 'Model time','Cohort': 'Age-cohort','OriginProcess':'Process where flow originates','DestinationProcess':'Destination process of flow','OriginRegion': 'Region where flow originates from','DestinationRegion': 'Region where flow is bound to', 'Good': 'Process, good, or commodity', 'Material': 'Material: ore, alloy, scrap type, ...','Element': 'Chemical element' } # Define the aspects of the system variables
self.Dimensions = {'Time': 'Time', 'Process':'Process', 'Region': 'Region', 'Good': 'Process, good, or commodity', 'Material': 'Material: ore, alloy, scrap type, ...','Element': 'Chemical element' } # Define the dimensions of the system variables</code></pre>
</details>
<h3>Subclasses</h3>
<ul class="hlist">
<li><a title="modules.ODYM_Classes.Classification" href="#modules.ODYM_Classes.Classification">Classification</a></li>
<li><a title="modules.ODYM_Classes.MFAsystem" href="#modules.ODYM_Classes.MFAsystem">MFAsystem</a></li>
<li><a title="modules.ODYM_Classes.Process" href="#modules.ODYM_Classes.Process">Process</a></li>
<li><a title="modules.ODYM_Classes.Flow" href="#modules.ODYM_Classes.Flow">Flow</a></li>