-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGBIF_SDM.R
83 lines (58 loc) · 2.88 KB
/
GBIF_SDM.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# ---- 0: Load Packages ----
require(tidyverse)
require(rgbif)
require(sf)
require(raster)
require(geodata)
require(ENMeval)
require(ecospat)
require(rJava)
require(dismo)
require(countrycode)
# ---- 1: Load Script Functions ----
source(here::here("GBIF_SDM_Functions.R")) # REPLACE W/ YOUR PATH TO GBIF_SDM_Functions.R
# ---- 2: Download BioClim Data ----
bioclim_download(resolution = 10) # Adjust resolution as needed
# ---- 3: Batch Read BioClim Folder Data ----
bioclim_dir = here::here("data", "wc2.1_10m") # Adjust version & resolution path accordingly
bioclim_files = list.files(path = bioclim_dir
, pattern = "\\.tif$", full.names = TRUE)
# Convert to RasterStack for dismo::maxent()
env_rs = raster::stack(bioclim_files)
# ---- 4: Load Species Dataframe & Convert Countries ----
# Example Dataframe - Replace W/ Your Own
spp = data.frame(
Scientific.Name = "Adelges tsugae",
Source.Location = "Japan"
)
# Convert Country --> Country Code
spp = spp %>%
filter(Source.Location != "")
spp$countryCode = sapply(spp$Source.Location, flexible_country_code)
spp = subset(spp, !is.na(countryCode) & countryCode != "")
# Apply the function to the Source.Location column
spp$Source.Location = sapply(spp$Source.Location, region_to_country, mapping = region_mapping)
# ---- 5: Download Species Data from GBIF ----
# Apply the function to each scientific name in the dataframe
occ_list = setNames(mapply(gbif_occ_data,
spp$Scientific.Name, spp$countryCode,
SIMPLIFY = FALSE), spp$Scientific.Name)
# Convert the list to a data frame, and also create a new column to hold the Scientific.Name
occ_df = bind_rows(occ_list, .id = "Scientific.Name")
# Remove NA values
occ_df = occ_df[complete.cases(occ_df), ]
# Check how many occurrences subset for each spp.
table(occ_df$Scientific.Name)
# ---- 6: Batch Run MaxEnt Models on all species ----
maxent_results = run_maxent(occ_df, env_rs)
save(maxent_results, file = "maxent_results.rda")
# ---- 7: Predict Species in Source.Location ----
# Use world country boundaries to clip prediction extent for each species
# https://public.opendatasoft.com/explore/dataset/world-administrative-boundaries/information/?flg=en-us
worldbound = st_read(here::here('data', 'world-administrative-boundaries', 'world-administrative-boundaries.shp'))
# Batch clip prediction extents
clipped_rasters_list <- spp_clip_raster(spp, worldbound, env_rs)
# Create the "MaxEnt_Predictions" directory to store results
dir.create("MaxEnt_Target_Predictions", showWarnings = FALSE)
# Loop through each model and predict
maxent_predict()