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A B S T R A C T   

Diabetic Retinopathy (DR) is a common complication of diabetes mellitus, which causes lesions on the retina that 
effect vision. If it is not detected early, it can lead to blindness. Unfortunately, DR is not a reversible process, and 
treatment only sustains vision. DR early detection and treatment can significantly reduce the risk of vision loss. 
The manual diagnosis process of DR retina fundus images by ophthalmologists is time-, effort-, and cost- 
consuming and prone to misdiagnosis unlike computer-aided diagnosis systems. Recently, deep learning has 
become one of the most common techniques that has achieved better performance in many areas, especially in 
medical image analysis and classification. Convolutional neural networks are more widely used as a deep 
learning method in medical image analysis and they are highly effective. For this article, the recent state-of-the- 
art methods of DR color fundus images detection and classification using deep learning techniques have been 
reviewed and analyzed. Furthermore, the DR available datasets for the color fundus retina have been reviewed. 
Difference challenging issues that require more investigation are also discussed.   

1. Introduction 

In the healthcare field, the treatment of diseases is more effective 
when detected at an early stage. Diabetes is a disease that increases the 
amount of glucose in the blood caused by a lack of insulin [1]. It affects 
425 million adults worldwide [2]. Diabetes affects the retina, heart, 
nerves, and kidneys [1,2]. 

Diabetic Retinopathy (DR) is a complication of diabetes that causes 
the blood vessels of the retina to swell and to leak fluids and blood [3]. 
DR can lead to a loss of vision if it is in an advanced stage. Worldwide, 
DR causes 2.6% of blindness [4]. The possibility of DR presence in
creases for diabetes patients who suffer from the disease for a long 
period. Retina regular screening is essential for diabetes patients to di
agnose and to treat DR at an early stage to avoid the risk of blindness [5]. 
DR is detected by the appearance of different types of lesions on a retina 
image. These lesions are microaneurysms (MA), haemorrhages (HM), 
soft and hard exudates (EX) [1,6,7].  

� Microaneurysms (MA) is the earliest sign of DR that appears as small 
red round dots on the retina due to the weakness of the vessel’s walls. 
The size is less than 125 μm and there are sharp margins. Michael 
et al. [8] classified MA into six types, as shown in Fig. 1. The types of 
MA were seen with AOSLO reflectance and conventional fluorescein 
imaging.  

� Haemorrhages (HM) appear as larger spots on the retina, where its 
size is greater than 125 μm with an irregular margin. There are two 
types of HM, which are flame (superficial HM) and blot (deeper HM), 
as shown in Fig. 2.  
� Hard exudates appear as bright-yellow spots on the retina caused by 

leakage of plasma. They have sharp margins and can be found in the 
retina’s outer layers.  
� Soft exudates (also called cotton wool) appear as white spots on the 

retina caused by the swelling of the nerve fiber. The shape is oval or 
round. 
Red lesions are MA and HM, while bright lesions are soft and hard 

exudates (EX). There are five stages of DR depending on the presence of 
these lesions, namely, no DR, mild DR, moderate DR, severe DR and 
proliferative DR, which are briefly described in Table 1. A sample of DR 
stages images is provided in Fig. 3. 

The automated methods for DR detection are cost and time saving 
and are more efficient than a manual diagnosis [10]. A manual diagnosis 
is prone to misdiagnosis and requires more effort than automatic 
methods. This paper reviews the recent DR automated methods that use 
deep learning to detect and to classify DR. The current work covered 33 
papers which used deep learning techniques to classify DR images. This 
paper is organized as follows: Section 2 briefly explains deep learning 
techniques, while Section 3 presents the various fundus retina datasets. 
Section 4 presents the performance measures while Section 5 reviews 
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different image preprocessing methods used with fundus images. 

Section 6 describes different DR automated classification methods while 
a discussion section is presented in Section 7. A summary is provided in 
Section 8. 

2. Deep learning 

Deep learning (DL) is a branch of machine learning techniques that 
involves hierarchical layers of non-linear processing stages for unsu
pervised features learning as well as for classifying patterns [11]. DL is 
one computer-aided medical diagnosis method [12]. DL applications to 
medical image analysis include the classification, segmentation, detec
tion, retrieval, and registration of the images. 

Recently, DL has been widely used in DR detection and classification. 
It can successfully learn the features of input data even when many 
heterogeneous sources integrated [14]. There are many DL-based 
methods such as restricted Boltzmann Machines, convolutional neural 
networks (CNNs), auto encoder, and sparse coding [15]. The perfor
mance of these methods increases when the number of training data 
increase [16] due to the increase in the learned features unlike machine 
learning methods. Also, DL methods did not require hand-crafted feature 
extraction. Table 2 summarizes these differences between DL and ma
chine learning methods. 

CNNs are more widely used more than the other methods in medical 
image analysis [17], and it is highly effective [15]. 

There are three main layers in the CNN architecture, which are 
convolution layers (CONV), pooling layers, and fully connected layers 
(FC). The number of layers, size, and the number of filters of the CNN 
vary according to the author’s vision. Each layer in CNN architecture 
plays a specific role. In the CONV layers, different filters convolve an 
image to extract the features. Typically, pooling layer follows the CONV 
layer to reduce the dimensions of feature maps. There are many stra
tegies for pooling but average pooling and max pooling are adopted 
most [15]. A FC layers are a compact feature to describe the whole input 
image. SoftMax activation function is the most used classification 
function. There are different available pretrained CNN architectures on 
ImageNet dataset such as AlexNet [19], Inception-v3 [20] and ResNet 
[21]. Some studies like [22,23] transfer learning these pretrained ar
chitectures to speed up training while other studies build their own CNN 
from scratch for classification. The transfer learning strategies of pre
trained models include finetuning last FC layer or finetuning multiple 
layers or training all layers of pretrained model. 

Generally, the process used to detect and to classify DR images using 
DL begins by collecting the dataset and by applying the needed pre
process to improve and enhance the images. Then, this is fed to the DL 
method to extract the features and to classify the images, as shown in 
Fig. 4. These steps are explained in the following sections. 

3. Retina dataset 

There are many publicly available datasets for the retina to detect DR 

Fig. 1. The different types of MA [8].  

Fig. 2. The different types of HM [9].  

Table 1 
Levels of DR with its associative lesions [13].  

DR Severity Level Lesions 

No DR Absent of lesions 
Mild non-proliferative 

DR 
MA only 

Moderate non- 
proliferative DR 

More than just MA but less than severe DR 

Severe non-proliferative 
DR 

Any of the following:  
� more than 20 intraretinal HM in each of 4 quadrants  
� definite venous beading in 2þquadrants  
� Prominent intraretinal microvascular abnormalities in 

1þ quadrant  
� no signs of proliferative DR 

Proliferative DR One or more of the following: vitreous/pre-retinal HM, 
neovascularization  
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and to detect the vessels. These datasets are often used to train, validate 
and test the systems and also to compare a system’s performance against 
other systems. Fundus color images and optical coherence tomography 
(OCT) are types of retinal imaging. OCT images are 2 and 3- dimensional 
images of the retina taken using low-coherence light and they provide 
considerable information about retina structure and thickness, while 
fundus images are 2-dimensional images of the retina taken using re
flected light [24]. OCT retinal images have been introduced in past few 
years. There is a diversity of publicly available fundus image datasets 
that are commonly used. Fundus image datasets are as follows:  

� DIARETDB1 [25]: It contains 89 publicly available retina fundus 
images with the size of 1500 � 1152 pixels acquired at the 50-degree 
field of view (FOV). It includes 84 DR images and five normal images 
annotated by four medical experts.  
� Kaggle [26]: It contains 88,702 high-resolution images with various 

resolutions, ranging from 433 � 289 pixels to 5184 � 3456 pixels, 
collected from different cameras. All images are classified into five 
DR stages. Only training images ground truths are publicly available. 
Kaggle contains many images with poor quality and incorrect la
beling [23,27].  
� E-ophtha [28]: This publicly available dataset includes E-ophtha EX 

and E-ophtha MA. E-ophtha EX includes 47 images with EX and 35 
normal images. E-ophtha MA contains 148 images with MA and 233 
normal images.  
� DDR [23]: This publicly available dataset contains 13,673 fundus 

images acquired at a 45-degree FOV annotated to five DR stages. 
There are 757 images from the dataset annotated to DR lesions.  
� DRIVE [29]: This publicly available dataset is used for blood vessel 

segmentation. It contains 40 images acquired at a 45-degree FOV. 
The images have a size of 565 � 584 pixels. Among them, there are 
seven mild DR images, and the remaining include images of a normal 
retina.  
� HRF [30]: These publicly available images provided for blood vessel 

segmentation. It contains 45 images with a size of 3504 � 2336 
pixels. There are 15 DR images, 15 healthy images and 15 glau
comatous images.  
� Messidor [31]: This publicly available dataset contains 1200 fundus 

color images acquired at a 45-degree FOV annotated to four DR 
stages. 
� Messidor-2 [31]: This publicly available dataset contains 1748 im

ages acquired at a 45-degree FOV.  

� STARE [32]: This publicly available dataset is used for blood vessel 
segmentation. It contains 20 images acquired at a 35-degree FOV. 
The images have a size of 700 � 605 pixels. Among them, there are 
10 normal images.  
� CHASE DB1 [33]: This publicly available dataset provided for blood 

vessel segmentation. It contains 28 images with a size of 1280 � 960 
pixels and acquired at a 30-degree FOV.  
� Indian Diabetic Retinopathy Image dataset (IDRiD) [34]: This publicly 

available dataset contains 516 fundus images acquired at a 50-degree 
FOV annotated to five DR stages.  
� ROC [35]: It contains 100 publicly available retina images acquired 

at the 45-degree FOV. Its size ranging from 768 � 576 to 1389 �
1383 pixels. The images annotated to detect MA. Only training 
ground truths are available.  
� DR2 [36]: It contains 435 publicly available retina images with 857 
� 569 pixels. It provides referral annotations for images. There are 
98 images were graded as referral. 

The study of [37] used DIARETDB1 datasets to detect DR lesions. The 
study of [38] used DIARETDB1 and E-ophtha to detect red lesion while 
the study of [39] used these datasets to detect MA. In Ref. [40] DIA
RETDB1 was used to detect EX. The Kaggle dataset was used in the 
studies of [22,37,41–45] to classify DR stages. DRIVE, HRF, STARE and 

Fig. 3. The DR stages: (a) normal retinal (b) Mild DR, (c) Moderate DR, (d) Severe DR, (e) Proliferative DR,(f) Macular edema [18].  

Table 2 
The differences between DL and machine learning methods.   

DL Machine learning 

Hand-crafted feature extraction Not required Required 
Training data Required large data Not required large data  

Fig. 4. The process of classifying the DR images using DL.  
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CHASE DB1 were used in the work of [46] to segment the blood vessels, 
while in Ref. [47] DRIVE dataset was used. The results of these studies 
are discussed in section 5. Table 3 compares these datasets. Most of the 
studies processed the datasets before using them for DL methods. The 
next sections discuss the performance measures and preprocessed 
methods. 

4. Performance measures 

There are many performance measurements that applied to DL 
methods to measure their classification performance. The commonly 
used measurements in DL are accuracy, sensitivity, specificity and area 
under the ROC curve (AUC). Sensitivity is the percentage of abnormal 
images that classified as abnormal, and specificity is the percentage of 
normal images that classified as normal [65]. AUC is a graph created by 
plotting sensitivity against specificity. Accuracy is the percentage of 
images that are classified correctly. The following is the equations of 
each measurement.  

Specificity ¼ TN / (TN FP)                                                               (1)  

Sensitivity ¼ TP/ (TP FN)                                                                (2)  

Accuracy ¼ TN þ TP/(TN þ TP þ FN þ FP)                                     (3) 

True positive (TP) is the number of disease images that classified as 
disease. True negative (TN) is the number of normal images that clas
sified as normal while false positive (FP) is the number of normal images 
that classified as disease. False negative (FN) is the number of disease 
images that classified as normal. The percentage of performance mea
sures used in the studies, that involved in the current work, shown in 
Fig. 5. 

5. IMAGE PREPROCESSING 

Image preprocessing is a necessary step to remove the noise from 
images, to enhance image features and to ensure the consistency of 
images [43]. The following paragraph discusses the most common 
preprocessing techniques that have been used recently in researches. 

Many researchers resized the images to a fixed resolution to be 
suitable for the used network, as done in Refs. [37,41]. Cropped images 
were applied to remove the extra regions of the image, while data 
normalization was used to normalize the images into a similar distri
bution, as in Ref. [45]. In some works, such as [38], only the green 
channel of images was extracted due to its high contrast [46], the images 
were converted into grayscale, such as in Ref. [43]. 

Noise removal methods include a median filter, Gaussian filter, and 
NonLocal Means Denoising methods, such as in the works of [38,43,45], 
respectively. Data augmentation techniques were performed when some 
image classes were imbalance or to increase the dataset size, such as in 
Ref. [38,45]. Data augmentation technique include translation, rotation, 
shearing, flipping, contrast scaling and rescaling. A morphological 
method was used, such as in Ref. [39], for contrast enhancement. The 
canny edge method was used for feature extraction in the study of [40]. 

Table 3 
Details of DR datasets.  

Dataset Numbers of images Normal image Mild DR Moderate and severe 
non-proliferative DR 

Proliferative 
DR 

Training 
Sets 

Test Sets Image Size 

DiaretDB1 89 images 27 images 7 
images 

28 images 27 images 28 images 61 images 1500 � 1152 
pixels 

Kaggle 88,702 images – – – – 35,126 
images 

53,576 
images 

Different image 
resolution 

DRIVE 40 images 33 images 7 
images 

– – 20 images 20 images 565 � 584 
pixels 

E-ophtha In e-ophtha EX 82 images 
and e-ophtha MA 381 
images 

35 images in e-ophtha 
EX. 233 images in e- 
ophtha MA 

– – – – – Different image 
resolution 

HRF 45 images 15 images 15 
images 

– – – – 3504 � 2336 
pixels 

DDR 13,673 images 6266 images 630 
images 

4713 images 913 images 6835 
images 

4105 
images 

Different image 
resolution 

Messidor 1200 images – – – – – – Different image 
resolution 

Messidor- 
2 

1748 images – – – – – – Different image 
resolution 

STARE 20 images 10 images – – – – – 700 � 605 
pixels 

CHASE 
DB1 

28 images – – – – – – 1280 � 960 
pixels 

IDRiD 516 images – – – – 413 
images 

103 
images 

4288 � 2848 
pixels 

ROC 100 images – – – – 50 images 50 images Different image 
resolution 

DR2 435 images – – – – – – 857 � 569 
pixels  

Fig. 5. The percentage of performance measures used in the studies.  
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After preprocessing the images, the images are ready to be used as an 
input for the DL, which is explained in the next section. 

6. Diabetic retinopathy screening systems 

Several researches have attempted to automate DR lesions detection 
and classification using DL. These methods can be categorized according 
to the classification method used as binary classification, multi-level 
classification, lesion-based classification, and vessels-based classifica
tion. Table 4 summarizes these methods. 

6.1. Binary classification 

This section summarizes the studies conducted to classify the DR 
dataset into two classes only. K. Xu et al. [41] automatically classified 
the images of the Kaggle [26] dataset into normal images or DR images 
using a CNN. They used 1000 images from the dataset. Data augmen
tation and resizing to 224*224*3 were performed before feeding the 
images to the CNN. Data augmentation was used to increase the dataset 
images by applying several transformations, such as rescaling, rotation, 
flipping, shearing and translation. The CNN architecture included eight 
CONV layers, four max-pooling layers and two FC layers. The SoftMax 
function was applied at the last layer of CNN for classification. This 
method had an accuracy of 94.5%. 

In the study performed by G. Quellec et al. [37], each image was 
classified as referable DR (refer to moderate stage or more) or 
non-referable DR (No DR or mild stage) by training three CNNs. The 
images were taken from three datasets, namely, Kaggle (88,702 image) 
[26], DiaretDB1 (89 image) [25] and private E-ophtha (107,799 image) 
[28]. During the preprocessing stage, the images were resized, cropped 
to 448 � 448 pixels, normalized, and eroded the FOV by 5%. A large 
Gaussian filter was used and the augmented data were applied. The used 
CNNs architectures were pretrained AlexNet [19] and the two networks 
of o_O solution [48]. MA, HM, soft and hard EX were detected by the 
CNNs. This study had an area under the ROC curve of 0.954 in Kaggle 
and 0.949 in E-ophtha. 

M. T. Esfahan et al. [22] used a known CNN, which is ResNet34 [49] 
in their study to classify DR images of the Kaggle dataset [26] into 
normal or DR image. ResNet34 is one available pretrained CNN archi
tecture on ImageNet database. They applied a set of image preprocessing 
techniques to improve the quality of images. The image preprocessing 
included the Gaussian filter, weighted addition and image normaliza
tion. The image number was 35000 images and its size was 512 � 512 
pixels. They reported an accuracy of 85% and a sensitivity of 86%. 

R. Pires et al. [50] built their own CNN architecture to determine 
whether an image was referable DR. The proposed CNN contains 16 
layers, which is similar to pretrained VGG-16 [51] and o_O team [48]. 
Two-fold cross-validation and multi-image resolution were used during 
training. The CNN of the 512 � 512 image input was trained after 
initializing the weights by the trained CNN on a smaller image resolu
tion. The drop-out and L2 regularization techniques were applied to the 
CNN to reduce overfitting. The CNN was trained on the Kaggle dataset 
[26] and was tested by the Messidor-2 [31] and DR2 dataset. The classes 
of the training dataset were balanced using data augmentation. The 
work achieved an area under the ROC curve of 98.2% when testing the 
Messidor-2. 

The study of H. Jiang et al. [52] integrated three pretrained CNN 
models, namely, Inception V3 [20], Inception-Resnet-V2 [53] and 
Resnet152 [21] to classify their own dataset as referable DR or 
non-referable DR. In CNNs training, Adam optimizer was used to update 
their weights. These models were integrated using the Adaboost algo
rithm. The dataset of 30,244 images was resized to 520 � 520 pixels, 
enhanced and augmented before being fed to the CNNs. The work ob
tained an accuracy of 88.21% and area under the curve (AUC) of 0.946. 

Y. Liu et al. [54] built a weighted paths CNN (WP-CNN) to detect 
referable DR images. They collected over 60,000 images labeled as 

referable or non-referable DR and augmented them many times to bal
ance the classes. These images were resized to 299 � 299 pixels and 
were normalized before being fed to the CNN. The WP-CNN includes 
many CONV layers with different kernel sizes in different weighted 
paths that merged by taking the average. The WP-CNN of 105 layers had 
a better accuracy than pretrained ResNet [21], SeNet [55] and DenseNet 
[56] architectures with 94.23% in their dataset and 90.84% in the 
STARE dataset. 

G. Zago et al. [57] detected DR red lesions and DR images based on 
augmented 65*65 patches using two CNN models. The CNNs used were 
pretrained VGG16 [51] and a custom CNN, which contains five CONV, 
five max-polling layers and a FC layer. These models were trained on the 
DIARETDB1 [25] dataset and tested on the DDR [23], IDRiD [34], 
Messidor-2, Messidor [58], Kaggle [26], and DIARETDB0 [59] datasets 
to classify patches into red lesions or non-red lesions. After that, the 
image with DR or non-DR were classified based on a lesion probability 
map of test images. The results of this work achieved the best sensitivity 
of 0.94 and an AUC of 0.912 for the Messidor dataset. 

Unfortunately, the researchers who classified DR images into two 
classes did not consider the five DR stages. The DR stages are important 
to determine the exact stage of DR to treat the retina with the suitable 
process and to prevent the deterioration and blindness. 

6.2. Multi-level classification 

This section reviews the studies in which the DR dataset was classi
fied into many classes. The work by V. Gulshan et al. [60] introduced a 
method to detect DR and diabetic macular edema (DME) using CNN 
model. They used Messidor-2 [31] and eyepacs-1 datasets which contain 
1748 images and 9963 images, respectively to test the model. These 
images were first normalized, and the diameter was resized to 299 pixels 
wide before feeding them to the CNN. They trained 10 CNNs with the 
pretrained Inception-v3 [20] architecture with a various number of 
images, and the final result was computed by a linear average function. 
The images were classified into referable diabetic macular edema, 
moderate or worse DR, severe or worse DR, or fully gradable. They 
obtained a specificity of 93% in both datasets and 96.1% and 97.5% in 
sensitivity for the Messidor-2 and eyepacs-1 datasets, respectively; 
however, they did not explicitly detect non-DR or the five DR stage 
images. 

M. Abramoff et al. [61] integrated a CNN with an IDX-DR device to 
detect and to classify DR images. They applied data augmentation to the 
Messidor-2 [31] dataset, which contains 1748 images. Their various 
CNNs were integrated using a Random Forest classifier to detect DR 
lesions as well as retina normal anatomy. The images in this work were 
classified as no DR, referable DR, or vision threatening DR. They re
ported an area under the curve of 0.980, a sensitivity of 96.8%, and a 
specificity of 87.0%. Unfortunately, they considered images of the mild 
DR stage as no DR, and the five DR stages were not considered. 

H. Pratt et al. [42] proposed a method based on a CNN to classify 
images from the Kaggle dataset [26] into five DR stages. In the pre
processing stage, color normalization and image resizing to 512 � 512 
pixels were performed. Their custom CNN architecture contained 10 
CONV layers, eight max-pooling layers, and three FC layers. The Soft
Max function was used as a classifier for 80,000 test images. L2 regu
larization and dropout methods was used in CNN to reduce overfitting. 
Their results had a specificity of 95%, an accuracy of 75% and a sensi
tivity of 30%. Unfortunately, CNN does not detect the lesions in the 
images, and only one dataset was used to evaluate their CNN. 

S. Dutta et al. [43] detected and classified DR images from the Kaggle 
dataset [26] into five DR stages. They investigated the performance of 
three networks, the back propagation neural network (BNN), the deep 
neural network (DNN), and the CNN, using 2000 images. The images 
were resized to 300 � 300 pixels and converted into grayscale, and the 
statistical features were extracted from the RGB images. Furthermore, a 
set of filters were applied, namely, edge detection, median filter, 
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Table 4 
The methods used for DR detection/classification.  

Ref. DL method Lesion 
detection 

Dataset (Dataset size) Performance measure 

AUC Accuracy Sensitivity Specificity 

[60] CNN (Inception-v3) No Messidor-2 (1748) and 
EyePACS-1 (9963) 

– – 96.1% 
97.5% 

93.9% 
93.4% 

[61] CNN yes Messidor-2 (1748) 0.980 – 96.8% 87.0% 
[42] CNN No Kaggle (80,000) – 75% 30% 95% 
[41] CNN No Kaggle (1000) – 94.5% – – 
[37] CNN yes Kaggle (88,702), DiaretDB1 

(89) and E-ophtha (107,799). 
0.954 
– 
0.949 

– – – 

[38] CNN Red 
lesion 
only 

DIARETDB1 (89), 
E-Ophtha (381) and 
MESSIDOR (1200) 

CPM ¼ 0.4874 for DIARETDB1 
and CPM ¼ 0.3683 for e-ophtha 

0.4883 
0.3680 

– 

[22] CNN-ResNet34 No Kaggle (35000) – 85% 86% – 
[43] DNN, CNN (VGGNET architecture), BNN No Kaggle (2000) – BNN ¼ 42% 

DNN ¼
86.3% 
CNN ¼
78.3% 

– – 

[44] CNN (InceptionNet V3, AlexNet and 
VGG16) 

No Kaggle (166) – AlexNet ¼
37.43%, 
VGG16 ¼
50.03%, and 
InceptionNet 
V3 ¼ 63.23% 

– – 

[45] CNN (AlexNet, VggNet, GoogleNet and 
ResNet) 

No Kaggle (35,126) The higher is 
VggNet-s 
(0.9786) 

The higher is 
VggNet-s 
(95.68%) 

VggNet-16 achieved 
higher result (90.78%). 

The higher is 
VggNet-s 
(97.43%) 

[39] CNN MA only E- Ophtha (381), 
ROC (100) and DIARETDB1 
(89) 

0.562 
0.193 
0.392 

– – – 

[40] CNN EX Only DiaretDB0 (130), DiaretDB1 
(89), and DrimDB (125). 

– 99.17 
98.53 
99.18 

100 
99.2 
100 

98.41 
97.97 
98.44 

[46] Fully CNN No STARE (20), 
HRF (45), 
DRIVE (40) and CHASE DB1 
(28). 

0.9801 
0.9701 
0.9787 
0.9752 

0.9628 
0.9608 
0.9634 
0.9664 

0.8090 
0.7762 
0.7941 
0.7571 

0.9770 
0.9760 
0.9870 
0.9823 

[47] Fully CNN No STARE (20), 
DRIVE (40) and CHASE_DB1 
(28) 

0.9905 
0.9821 
0.9855 

0.9694 
0.9576 
0.9653 

0.8315 
0.8039 
0.7779 

0.9858 
0.9804 
0.9864 

[63] CNN (AlexNet, VggNet16, custom CNN) No MESSIDOR (1200) – 98.15% 98.94% 97.87% 
[65] CNN (ResNet50, InceptionV3, 

InceptionResNetV2, Xception and 
DenseNets) 

No Their Own dataset (13767) – 96.5% 98.1% 98.9% 

[50] CNN No Messidor-2 (1748), 
Kaggle (88,702) and DR2 
(520) 

98.2% 
– 
98% 

– – – 

[68] CNN (AlexNet) No Kaggle (22,700) and IDRiD 
(516) 

– 90.07% – – 

[52] CNN (Inception V3, Inception- 
Resnet-V2 and Resnet152) 

No Their Own dataset (30244) 0.946 88.21% 85.57% 90.85% 

[54] CNN (WP-CNN, ResNet, SeNet and 
DenseNet) 

No Their Own dataset (60,000), and 
STARE (131) 

0.9823 
0.951 

94.23% 
90.84% 

90.94% 95.7–4% 

[74] CNN (improved LeNet, U-net) Red 
lesion 
only 

DIARETDB1 (89) CPM ¼ 0.4823 48.71% – 

[57] CNN (VGG16, custom CNN) Red 
lesion 
only 

DIARETDB1 (89), DIARETDB0 (130), 
Kaggle (15,919), Messidor (1200), 
Messidor-2 (874), 
IDRiD (103) and DDR (4105) 

– 
0.786 
0.764 
0.912 
– 
0.818 
0.848 

– – 
0.821 
0.911 
0.94 
– 
0.841 
0.891 

–  

[23] CNN (GoogLeNet, ResNet-18, 
DenseNet-121, VGG-16 and SE-BN- 
Inception) 

No DDR (13,673) – 0.8284 – –  

[69] CNN (modified Alexnet) No Messidor (1190) – 96.35 92.35 97.45  
[78] CNN No HRF (45) and DRIVE (40) 0.894 93.94% – –  
[81] CNN (ResNet-101) No DRIVE (40) 0.9732 0.951 0.793 0.974  
[75] CNN EX 

only 
E-optha (82) and HEI-MED (169) 0.9644 

0.9323 
– 0.8990 

0.9477 
–  

[77] Deep residual network EX 
only 

E-optha (82) and HEI-MED (169) 0.9647 
0.9709 

– 0.9227 
0.9255 

–  

[82] CNN No DRIVE (40) and STARE (20)  

(continued on next page) 

W.L. Alyoubi et al.                                                                                                                                                                                                                             



Informatics in Medicine Unlocked 20 (2020) 100377

7

morphological processing, and binary conversion, before being fed into 
the networks. Pretrained VGG16 [51] was used as the CNN architecture, 
which includes 16 CONV layers and 4 max pooling layers and three FC 
layers while the DNN includes three FC layers. Their results shown that 
the DNN outperforms the CNN and the BNN. Unfortunately, few images 
were used for networks training, and thus the networks could not learn 
more features. Also, only one dataset was used to evaluate their study. 

X. Wang et al. [44] studied the performance of the three available 
pretrained architectures of CNN, VGG16 [51], AlexNet [19] and 
InceptionNet V3 [20], to detect the five DR stages in the Kaggle [26] 
dataset. The images were resized to 224 � 224 pixels for VGG16, 227 �
227 pixels for AlexNet, and 299 � 299 pixels for InceptionNet V3 at the 
preprocessing stage. The dataset only contains 166 images. They re
ported an average accuracy of 50.03% in VGG16, 37.43% in AlexNet 
and 63.23% in InceptionNet V3; however, they trained the networks 
with limited number of images, which could prevent the CNN from 
learning more features and the images required more preprocessing 
functions to improve them. Also, only one dataset was used to evaluate 
their study. 

The performance of four available pretrained architectures of the 
CNN was investigated in Ref. [45]: AlexNet [19], ResNet [21], Goo
gleNet [62] and VggNet [51]. These architectures were trained to detect 
the five DR stages from the Kaggle [26] dataset, which contains 35,126 
images. Transfer learning these CNNs was done by fine tuning the last FC 
layer and hyperparameter. During the preprocessing stage, the images 
were augmented, cropped, normalized and the NonLocal Means 
Denoising function was applied. This study achieved an accuracy of 
95.68%, AUC of 0.9786 and a specificity of 97.43% for VggNet-s, which 
had a higher accuracy, specificity, and an AUC than the other archi
tectures. The use of more than one dataset makes a system more reliable 
and able to generalize [83]. Unfortunately, the study only included one 
dataset and their method does not detect the DR lesions. 

Mobeen-ur-Rehman et al. [63] detected the DR levels of the MES
SIDOR dataset [31] using their custom CNN architecture and pretrained 
models, including AlexNet [19], VGG-16 [51] and SqueezeNet [64]. 
This dataset contains 1200 images classified into four DR stages. The 
images were cropped, resized to a fixed size, which was 244 � 244 pixel, 
and enhanced by applying the histogram equalization (HE) method at 
the pre-processing stage. The custom CNN includes five layers: two 
CONV layers, two max-pooling layers, and three FC layers. They re
ported the best accuracy of 98.15%, specificity of 97.87% and sensitivity 
of 98.94% by their custom CNN. Unfortunately, only one dataset was 
used to evaluate their CNN and does not detect the DR lesions. 

W. Zhang et al. [65] proposed a system to detect the DR of their own 
dataset. The dataset includes 13,767 images, which are grouped into 
four classes. These images were cropped, resized to the required size of 
each network, and improved by applying HE and adaptive HE. In 
addition, the size of the training images was enlarged by data 
augmentation, and the contrast was improved by a contrast stretching 
algorithm that is used for dark images. They finetuned pretrained CNN 

architectures: ResNet50 [66], InceptionV3 [20], InceptionResNetV2 
[53], Xception [67], and DenseNets [56] to detect the DR. Their 
approach involved training the added new FC layers on top of these 
CNNs. After that, they finetuned some layers of the CNNs to retrain it. 
Lastly, the strong models were integrated. This approach achieved an 
accuracy of 96.5%, a specificity of 98.9% and a sensitivity of 98.1%. 
Unfortunately, CNNs do not detect the lesions in the images and only 
one private dataset was used to evaluate their method. 

B. Harangi et al. [68] integrated the available pretrained AlexNet 
[19] and the hand-crafted features to classify the five DR stages. The 
CNN was trained by the Kaggle dataset [26] and tested by the IDRiD 
[34]. The obtained accuracy for this study was 90.07%. Unfortunately, 
the work does not detect the lesions in the images and only one dataset 
was used to test their method. 

T. Li et al. [23] detected DR stages in their dataset (DDR) by fine
tuning the GoogLeNet [62], ResNet-18 [21], DenseNet-121 [56], 
VGG-16 [51], and SE-BN-Inception [55] available pretrained networks. 
Their dataset includes 13,673 fundus images. During preprocessing, the 
images were cropped, resized to 224 � 224 pixels, augmented and 
resampled to balance the classes. The SE-BN-Inception network obtained 
the best accuracy at 0.8284. Unfortunately, the work does not detect the 
lesions in the images and only one dataset was used to test their method. 

T. Shanthi and R. Sabeenian [69] detected the DR stages of the 
Messidor dataset [31] using a pretrained architecture Alexnet [19]. The 
images were resized, and the green channel was extracted before being 
fed into the CNN. This CNN achieved an accuracy of 96.35. Unfortu
nately, the work does not detect the lesions in the images and only one 
dataset and architecture were used to test their method. 

J. Wang et al. [70] modified a R-FCN method [71] to detected DR 
stages in their private dataset and the public Messidor dataset [58]. 
Moreover, they detected MA and HM in their dataset. They modified the 
R-FCN by adding a feature pyramid network and also adding five region 
proposal networks rather than one to the method. The lesion images 
were augmented for training. The obtained sensitivity for detecting DR 
stages were 99.39% and 92.59% in their dataset and the Messidor 
dataset, respectively. They reported a PASCAL-VOC AP of 92.15 in 
lesion detection. Unfortunately, the study only evaluated the method on 
one public dataset and only detected HM and MA without detecting EX. 

X. Li et al. [72] classified the public Messidor [58] dataset into 
referable or non-referable images and classified the public IDRiD dataset 
[34] into five DR stages and three DME stages by using the ResNet50 
[21] and four attention modules. The features extracted by ResNet50 
used as the inputs for the first two attention modules to select one dis
ease features. The first two attention modules contain average pooling 
layers, max-pooling layers, multiplication layers, concatenation layer, 
CONV layer and FC layers while the next two attention modules contain 
FC and multiplication layers. Data augmentation, normalization and 
resizing were performed before feeding the images to the CNN. This 
work achieved a sensitivity of 92%, an AUC of 96.3% and an accuracy of 
92.6% for the Messidor dataset and an accuracy of 65.1% for the IDRiD. 

Table 4 (continued ) 

Ref. DL method Lesion 
detection 

Dataset (Dataset size) Performance measure 

AUC Accuracy Sensitivity Specificity 

0.9822 
0.9868 

0.9685 
0.9735 

0.7439 
0.8196 

0.99 
0.9871 

[83] CNN No DRIVE (40), 
STARE (20) and CHASE (28). 

98.30% 
98.75% 
98.94% 

95.82% 
96.72% 
96.88% 

79.96% 79.63% 
80.03% 

98.13% 
98.63% 
98.80%  

[84] CNN No DRIVE (40) and CHASE_DB1 (28). 0.9560 
0.9577 

0.9580 
0.9601 

0.8639 
0.8778 

0.9665 
0.9680  

[70] CNN Red 
lesion 
only 

Their dataset (9194) and Messidor 
(1200) 

– 
0.972 

92.95 
– 

99.39% 
92.59% 

99.93% 
96.20%  

[72] CNN (ResNet50) No Messidor (1200) and IDRiD (516) 96.3% 
– 

92.6% 
65.1% 

92% 
– 

–   
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Unfortunately, the study does not detect the lesions in the images. 

6.3. Lesion-based classification 

This section summarizes the works performed to detect and to clas
sify certain types of DR lesions. For example, J. Orlando et al. [38] 
detected only red lesions in DR images by incorporating DL methods 
with domain knowledge for feature learning. Then, the images were 
classified by applying the Random Forest method. The images of the 
MESSIDOR [58], E-ophtha [73] and DIARETDB1 [25] datasets were 
processed by extracting the green band and expanding the FOV, and 
applying a Gaussian filter, r-polynomial transformation, thresholding 
operation and, many morphological closing functions. Next, red lesion 
patches were resized to 32*32 pixels and were augmented for CNN 
training. The datasets contain 89 images, 381 images and 1200 images 
in DIARETDB1, E-ophtha and MESSIDOR, respectively. Their custom 
CNN contains four CONV layers, three pooling layers and one FC layer. 
They achieved a Competition Metric (CPM) of 0.4874 and 0.3683 for the 
DIARETDB1 and the E-ophtha datasets, respectively. 

P. Chudzik et al. [39] used custom CNN architecture to detect MA 
from DR images. Three datasets were used in this study: ROC [35] (100 
images), E-ophtha [73] (381 images), and DIARETDB1 [25] (89 im
ages). These datasets were processed by extracting the green plane and 
then performing cropping, resizing, applying Otsu thresholding to 
generate a mask, and utilizing a weighted sum and morphological 
functions. Next, MA patches were extracted, and random trans
formations were applied. The used CNN includes 18 CONV layers, and 
each CONV layer is followed by a batch normalization layer, three 
max-pooling layers, three simple up-sampling layers, and four skip 
connections between both paths. They reported a ROC score of 0.355. 

The system proposed by Refs. [40], detected the exudates from DR 
images using the custom CNN with Circular Hough Transformation 
(CHT). They used three public datasets: the DiaretDB0 dataset includes 
130 images, the DiaretDB1 dataset contains 89 images and the DrimDB 
dataset has 125 images. All the datasets were converted into grayscale. 
Then, Canny edge detection and adaptive histogram equalization func
tions were applied. Next, the optical disc was detected by CHT and then 
removed from the images. The 1152*1152 pixels of the images were fed 
into the custom CNN, which contains three CONV layers, three max 
pooling layers, and an FC layer that uses SoftMax as a classifier. The 
accuracies of detecting exudates were 99.17, 98.53, and 99.18 for Dia
retDB0, DiaretDB1, and DrimDB, respectively. 

Y. Yan et al. [74] detected DR red lesions in the DIARETDB1 [25] 
dataset by integrating the features of a handcrafted and improved pre
trained LeNet architecture using a Random Forest classifier. The green 
channel of the images was cropped, and they were enhanced by CLAHE. 
Also, noise was removed by the Gaussian filter, and a morphological 
method was used. After that, the blood vessels were segmented from 
images by applying the U-net CNN architecture. The improved LeNet 
architecture includes four CONV layers, three max-pooling layers, and 
one FC layer. This work achieved a sensitivity of 48.71% in red lesions 
detection. 

H. Wang et al. [75] detected hard exudate lesion in the E-ophtha 
dataset [28] and the HEI-MED dataset [76] by integrating the features of 
a handcrafted and custom CNN using a Random Forest classifier. These 
datasets were processed by performing cropping, color normalizing, 
modifying a camera aperture and detecting the candidates by using 
morphological construction and dynamic thresholding. After that, 
patches of size 32*32 are collected and augmented. The custom CNN 
includes three CONV and three pooling layers and a FC layer to detect 
the patches features. This work achieved a sensitivity of 0.8990 and 
0.9477 and an AUC of 0.9644 and 0.9323 for the E-ophtha and HEI-MED 
datasets, respectively. 

J. Mo et al. [77] detected exudate lesions in the public available 
E-optha [28] and the HEI-MED [76] datasets by segmenting and clas
sifying the exudates using deep residual network. The exudates were 

segmented using a fully convolutional residual network which contains 
up-sampling and down-sampling modules. After that, the exudates were 
classified using a deep residual network which includes one CONV layer, 
one max-pooling layer and 5 residual blocks. The down-sampling 
module includes CONV layer followed by a max pooling layer and 12 
residual blocks while the up-sampling module comprises CONV and 
deconvolutional layers to enlarge the image as the input image. The 
residual block includes three CONV layers and three batch normaliza
tion layers. This work achieved a sensitivity of 0.9227 and 0.9255 and 
an AUC of 0.9647 and 0.9709 for the E-optha and HEI-MED datasets, 
respectively. 

Unfortunately, these studies detected only some DR lesions without 
considering the five DR stages. Furthermore, they used a limited number 
of images for DL methods. 

6.4. Vessel-based classification 

Vessel segmentation is used to diagnosis and to evaluate the progress 
of retinal diseases, such as glaucoma, DR and hypertension. Many 
studies have been conducted to investigate vessel segmentation as part 
of DR detection. DR lesions remain in the image after the vessels have 
been extracted. Therefore, detecting the remaining lesions in the images 
lead to detect and classify DR images. The study in Ref. [74] detected the 
red lesions after vessels were extracted. Some studies on vessel seg
mentation used DL methods, which is reviewed in this section. 

Sunil et al. [78] used a modified CNN of pretrained 
DEEPLAB-COCO-LARGEFOV [79] to extract the retinal blood vessels 
from RGB retina images. They extracted 512 � 512 image patches from 
the dataset and then fed them to the CNN. After that, they applied a 
threshold to binarize the images. The CNN includes eight CONV layers 
and three max-pooling layers. The HRF [30], DRIVE [29] datasets were 
used to evaluate the method. They reported an accuracy of 93.94% and 
an area under the ROC of 0.894. 

The study conducted by Refs. [46] used fully CNN to segments the 
blood vessels in RGB retina images. The images of the STARE [32], HRF 
[30], DRIVE [29] and CHASE DB1 [33] datasets were preprocessed by 
applying morphological methods, flipped horizontally, adjusted to 
different intensities, and cropped into patches. Then they were fed to the 
CNN for segmentation and to condition random field model [80] to 
consider the non-local correlations during segmentation. After that, the 
vessel map was rebuilt, and morphological operations were applied. 
Their CNN contains 16 CONV layers and five dilated CONV layers. The 
STARE, HRF, DRIVE and CHASE DB1 datasets contain 20, 45, 40, and 28 
images, respectively were used. An accuracy of 0.9634, 0.9628, 0.9608 
and 0.9664 was achieved for the DRIVE, STARE, HRF and CHASE DB1, 
respectively. 

The work conducted by Refs. [47] included the Stationary Wavelet 
Transform (SWT) with a fully CNN to extract the vessels from the im
ages. The STARE (20 images) [32], DRIVE (40 images) [29] and CHA
SE_DB1 (28 images) [33] datasets were preprocessed by extracting the 
green channel and normalizing images, and SWT was applied. Next, the 
patches were extracted and augmented. Then, the patches were fed to 
the CNN which includes CONV layers, max-pooling layers, crop layer, 
and SoftMax classifier and up-sampling layer that return the feature 
maps to the previous dimensions. The results of this study reached an 
AUC of 0.9905, 0.9821 and 0.9855 for the STARE, DRIVE and CHA
SE_DB1 datasets, respectively. 

Cam-Hao et al. [81] extracted retinal vessels from the DRIVE dataset 
[29]. They selected four feature maps from the pretrained ResNet-101 
[21] network and then combined each feature map with its neighbor. 
After that, the feature map outputs were also combined until one feature 
map was obtained. Next, each round of the best resolution feature maps 
was concatenated. They augmented the training images before being fed 
to the network. They achieved a sensitivity of 0.793, an accuracy of 
0.951, a specificity of 0.9741 and an AUC of 0.9732. 

Ü. Budak et al. [82] extracted retinal vessels from the DRIVE [29] 
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and STARE [32] public datasets using custom CNN architecture. The 
custom CNN includes three blocks of concatenated encoder-decoder and 
two CONV layers between them. Each block contains eight CONV layers, 
eight Batch Normalization layers, two max-unpooling layers and two 
max-pooling layers. They cropped images, extracted and augmented 
patches before feeding them into the CNN for training. They reported an 
accuracy of 0.9685, 0.9735 an AUC of 0.9822 and 0.9868 for the DRIVE 
and STARE datasets, respectively. 

Y. Wu et al. [83] used a custom CNN to extract the retinal blood 
vessels from the DRIVE [29], STARE [32] and CHASE [33] public 
datasets. They converted RGB images to grayscale, normalized and 
enhanced them by CLAHE. After that, they extracted and augmented 48 
� 48 patches from the datasets and fed them to the CNN. The CNN in
cludes of two networks that have encoder–decoder structure and skip 
connections. The encoder–decoder structure has CONV layers, Batch 
Normalization layers, concatenation layers and dropout layers. They 
achieved an accuracy of 95.82%, 96.72% and 96.88%, and an AUC of 
98.30%, 98.75% and 98.94% for the DRIVE, STARE and CHASE, 
respectively. 

C. Tian et al. [84] extracted retinal vessels from the DRIVE [29] and 
CHASE_DB1 [33] public datasets using custom multi-path CNN archi
tecture and Gaussian matched filter. They obtained a high-frequency 
and a low-frequency images from Gaussian filter. Then they con
structed CNN path for low-frequency images that composed of CONV 
layers, down-sampling and up-sampling modules and constructed other 
CNN path for high-frequency images that composed of two CONV layers 
and seven encoder–decoder blocks. The encoder–decoder structure has 
dilated CONV layers, down-sampling and up-sampling modules. The 
segmentation maps were extracted from the two paths and then merged 
them for final segmentation results. They achieved an accuracy of 
0.9580 and 0.9601 and an AUC of 0.9560 and 0.9577 for the DRIVE and 
CHASE_DB1, respectively. 

Unfortunately, these works only considered segmented vessels and 
did not detect DR stages or DR lesions. 

7. Discussion section 

The current study reviewed 33 papers. All of the studies mentioned 
in the current work manipulated the diabetic retinopathy screening 
system using deep learning techniques. The need for reliable diabetic 
retinopathy screening systems became a critical issue recently due to the 
increase in the number of diabetic patients. Using DL in DR detection 
and classification overcomes the problem of selecting reliable featured 
for ML; on the other hand, it needs a huge data size for training. Most 
studies used data augmentation to increase the number of images and 
overcoming overfitting on training stage. The studies covered on the 
current work 94% of them used public datasets, 59% of them used a 
combination of two or more public datasets to overcome the problem of 
data size and to evaluate the DL methods on many datasets as shown in 
Fig. 6. 

One of the limitations of the usage of deep learning with medical 
field faces is the size of the datasets needed to train the DL systems, as DL 
is required large amount of data. The results of DL systems depend 
heavily on the size of the training data as much as its quality and balance 
its classes. So, the current public datasets sizes need to be increased, 
while the big size one like public Kaggle dataset needs to be refined to 
eliminates miss labeled and low-quality data. 

The covered studies here varied in using DL techniques. They differ 
in the number of studies that built their own CNN structure, and those 
who preferred to use the existing structures, such as VGG, ResNet, or 
AlexNet, with transfer learning is slightly small. Building a new CNN 
architecture from scratch needs a lot of effort and time consuming while 
using transfer learning is much easier and speed up the process of 
structuring and developing new architecture. On the other hand, it is 
notable that the accuracy of the system which built their own CNN 
structure is higher than those using the existing structures. This point 
needs to be focused by the researchers and more studies should be 
conducted to judge among the two trends. 

Most of the studies covered here (73%) only classified the fundus 
input image to DR non-DR, while 27% classified input to one or more 
stages as shown in Fig. 7. On the other hands 70% of the current studies 
didn’t detect the affected lesions while, 30% of them detected the 
affected lesions. Among them, only 6% of the studies succeeded in 
classifying images and detecting the type of the affected lesion on the 
retain image as shown in Fig. 8. The existence of a reliable DR screening 
system capable of detecting different lesions types and DR stages leads to 
an effective follow up system for DR patients, which averted the danger 
of losing sight. The gap that needed to be covered is the existence of 
systems that could determine the five DR stages with high accuracy as 
well as detecting DR lesions. This point could be considered as the 
current challenge for researchers for further investigations. 

8. Conclusion 

Automated screening systems significantly reduce the time required 
to determine diagnoses, saving effort and costs for ophthalmologists and 
result in the timely treatment of patients. Automated systems for DR 
detection play an important role in detecting DR at an early stage. The 
DR stages are based on the type of lesions that appear on the retina. This 
article has reviewed the most recent automated systems of diabetic 
retinopathy detection and classification that used deep learning tech
niques. The common fundus DR datasets that are publicly available have 
been described, and deep-learning techniques have been briefly 
explained. Most researchers have used the CNN for the classification and 
the detection of the DR images due to its efficiency. This review has also 
discussed the useful techniques that can be utilized to detect and to 
classify DR using DL. 

Fig. 6. The percentage of studies that used one or more public datasets.  Fig. 7. The percentage of studies that detected DR stages.  
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