
Sentence Similarity for Internal Knowledge Bases
Matthew Cline

College of Engineering
Cornell Tech

New York, New York
Email: mc2579@cornell.edu

Jacob Everly
College of Engineering

Cornell Tech
New York, New York

Email: je354@cornell.edu

Abstract—We want to tackle the practical problem of out-
dated documentation in internal knowledge bases using sentence
similarity. Specifically, we would like to find a way to match
knowledge shared using messaging tools to a team’s existing
internal knowledge base. After running a few experiments, we
learned that open-source sentence transformers can be used to
successfully solve the problem. We implemented a bi-encoder
sentence transformer to identify the most likely matches for a
particular query. For most queries, it correctly predicted the
most relevant sentence. Going one step further, we fine-tuned
a cross-encoder sentence transformer with customized data for
our application of interest. This extra layer ensured our model
predicted the correct matching sentence from the list of matches
produced from the bi-encoder sentence transformer.

I. INTRODUCTION

In professional and educational settings, individuals share
valuable information with each other via messaging tools - in
many cases this information is not migrated to their team or
school’s internal knowledge base where it could provide a lot
of value to many others. We implemented an application of
machine learning to match knowledge shared using messaging
tools (i.e. Slack, Teams, etc.) to a team’s knowledge base (i.e.
Confluence, Notion, etc.). In practice, we compare a sentence
from a messaging tool to all sentences in a knowledge base and
identify the most correlated sentence (and therefore document)
for the input sentence.

A. Process
1) Knowledge share: Employee/student shares a message

in Slack that should also be added to a team’s knowledge base
for future reference and to serve as contextual knowledge

2) Pass in inputs: Our sentence similarity model takes
two inputs: a list of sentences corresponding to the text in
the knowledge base and a single sentence that represents the
original message from Slack (assuming it’s just one sentence).

3) Use model to predict related sentence: The model
produces a score for each sentence in the knowledge base
indicating how closely related it is to the input sentence.

4) Visually pair the two sentences with a new tool: We
match the input sentence with the highest scored sentence in
the knowledge base returned from the model and display it
as overlay text in a new tool.

This is an application that could be used by companies and
universities to update their knowledge base with supplemental
knowledge.

II. BACKGROUND

In practice, there are two different methods that are
widely used to calculate sentence similarity. One method
is the bi-encoder approach in which two input sentences
are independently vectorized using BERT1 and compared
by calculating cosine-similarity. This approach is best for
calculating similarity in large datasets since vectorizing
individual sentences and calculating cosine-similarity is very
efficient.

The other approach is to use a cross-encoder. A cross-
encoder passes both sentences to BERT in order to calculate a
similarity score. The similarity score is more computationally
intensive but generally yields more accurate results than a bi-
encoder. Since the similarity score is computationally inten-
sive, it’s best to use a cross-encoder for small datasets.

Fig. 1. Bi-Encoder vs. Cross-Encoder Diagram8

III. METHOD

We used a handful of different methods to calculate
sentence similarity.

Firstly, we used the SentenceTransformers2 library from
SBERT.net to calculate sentence embeddings in a vectorized
format for our baseline. To evaluate the models, we selected
a few Wikipedia articles along with a few sentences in those
articles to rewrite with a similar meaning. We then calculated
the cosine similarity of the handful of rewritten sentences
with all of the sentences in the Wikipedia articles and ensured

the model selected the most relevant article and sentence.

Secondly, we used a combination of a bi-encoder and cross-
encoder sentence transformer model to evaluate performance
on data more closely related to the problem we wish to solve.

In order to solve for this specific application of machine
learning in enterprise settings, we collected and labeled data
from public community channels and corresponding documen-
tation sources. We read through a public Slack workspace
for a JavaScript library called Babel3 consisting of a robust
community of 2000 developers. We identified questions and
tips that developers shared in a channel called “development”
along with relevant knowledge in Babel’s documentation. We
then created 100 samples of these matches in the following
format:

{
’ s e n t e n c e 1 ’ : ” P r e s e t s run a f t e r p l u g i n s ” ,
’ s e n t e n c e 2 ’ : ” P r e s e t s can c o n t a i n o t h e r

p r e s e t s , and p l u g i n s wi th
o p t i o n s . ” ,

’ s c o r e ’ : 0 . 9 ,
’ s p l i t ’ : ’ t r a i n ’

}

where ‘sentence1’ contains the message from Slack and
‘sentence2’ contains the relevant text in documentation. We
also included a score to quantify how related each pair of
sentences is and a ’split’ value for separating our train and
test sets. In addition to highly correlated sentences with high
score values, we also included samples of unrelated sentence
pairs with low score values.

In addition to Babel, we gathered data from another source
called Ultimaker Forum4, which is a community forum
for 3D printers. Similar to what we did with Babel data,
we matched messages from Ultimaker Forum with relevant
text in product documentation. The dataset was conducted
by surveying online forums, whose focus was technical
troubleshooting. From the forums we could see problems and
solutions relating towards physical systems. When we found
a solution or problem we then looked in the documentation
released by the manufacturer that could solve the problem.
Through the given solution related to the forum’s content, a
score was then given based on how relevant the two sentences
were to each other.

With this data we collected, we implemented a bi-encoder
sentence transformer model layer which produces the top
32 sentence matches from the input dataset given a specific
query. Our input dataset was the ‘multi-qa-MiniLM-L6-cos-
v1’ dataset from HuggingFace, which contains 215 million
question-answer pairs from diverse sources5, along with the
sentence data we collected from Babel and Ultimaker Forum.

After the bi-encoder layer selects the top 32 sentence
matches for a specific query, we send those 32 sentences to the
next layer, the cross-encoder sentence transformer. The cross-
encoder model calculates a score between the query and each
of the top 32 sentence matches from the previous layer and
reorders the sentences according to its score. We created the
cross-encoder from a base model called ‘distilroberta-base’6

and fine-tuned it with the data we collected and labeled.

IV. EXPERIMENTS

We first ran a baseline experiment to determine the
effectiveness of SentenceTransformers in predicting sentence
similarity from a few different Wikipedia articles.

We loaded three different Wikipedia articles (“Cosine
similarity”, “Product requirements document”, “Internet of
Things”), split them into sentences, and selected one sentence
to test the model’s prediction.

Fig. 2. Specific Sentence

We created a new “contextual” sentence to test if our
model recognized this contextual sentence as the most similar
sentence to the original sentence. We wrote this sentence
in a way that provides contextual information about product
requirements documents (PRDs) and resembles text one might
send in a conversational tool like Slack.

Fig. 3. Contextual Sentence

We added this new sentence to the list of sentences
from all of our Wikipedia articles. Then, we used the
SentenceTransformers library to encode the sentences into
text embeddings, which are represented as n-dimensional
vectors. We then used those embeddings to calculate
cosine similarity between our original sentence and all
other sentences across the Wikipedia articles along with
our contextual sentence we added. When we predicted the
most similar sentences to the original sentence, it correctly
predicted the contextual sentence.

After the baseline experiment, we ran a more robust
experiment with our collected data using the bi-encoder and
cross-encoder sentence transformer models. We trained our
bi-encoder transformer with all of the sentences we collected
and fine-tuned our cross-encoder with 82 of the labeled pairs
of sentences, holding out 18 for testing.

Initially, we fine-tuned the cross-encoder with only the
labeled data points we created. After seeing low accuracy
on our test dataset for the cross-encoder (Pearson correlation

score of .4), we decided to supplement our fine-tuned dataset
with the STS Benchmark dataset, which contains semantic
semantic textual similarity data from ”image captions, news
headlines, and user forums”7, we noticed a much higher
Pearson correlation score of .83 for a test set containing 18
of our own test samples and 1379 samples from the STS
Benchmark dataset. In addition to the improved test accuracy
score, we also noticed better, more intuitive sentence matches
from the cross-encoder. The cross-encoder model fine-tuned
with only our labeled data had too small of a sample size
which produced less accurate results. The solution was to
leverage existing labeled data in addition to the data we
collected to improve accuracy.

We noticed that for most queries, the bi-encoder was
sufficient for predicting the most relevant sentence match, i.e.
it produced the same results as the cross-encoder. However,
we did notice examples where the cross-encoder gave a
higher score to a more relevant match than the bi-encoder.
Here’s an example of this case:

>>> s e a r c h (que ry =”What a r e Babel p r e s e t s ? ”)

Top−3 Bi − Encoder R e t r i e v a l h i t s :

0 . 663 i s t h e r e a way t o c o n f i g u r e
p l u g i n s used by babe l − p r e s e t −env

0 .649 @babel / p r e s e t −env t a k e s any t a r g e t
e n v i r o n m e n t s you ’ ve s p e c i f i e d and
c he ck s them a g a i n s t i t s mappings
t o compi l e a l i s t o f p l u g i n s and
p a s s e s i t t o Babel .

0 . 547 @babel / t y p e s

Top−3 Cross − Encoder Re− r a n k e r h i t s

0 .917 @babel / p r e s e t −env t a k e s any t a r g e t
e n v i r o n m e n t s you ’ ve s p e c i f i e d and
c he ck s them a g a i n s t i t s mappings
t o compi l e a l i s t o f p l u g i n s and
p a s s e s i t t o Babel .

0 . 894 i s t h e r e a way t o c o n f i g u r e
p l u g i n s used by babe l − p r e s e t −env

0 .659 P r e s e t s can c o n t a i n o t h e r p r e s e t s ,
and p l u g i n s wi th o p t i o n s .

In this example, there is one sentence that provides the
most clear answer to our input query, and that’s the sentence
the cross-encoder ranks as highest and the bi-encoder ranks
as second. This provides evidence that using a cross-encoder
layer after the bi-encoder layer as an extra filter can yield
better results. Since we’re only calculating a finite number of
sentence similarities in the cross-encoder layer, as opposed
to the bi-encoder layer which calculates sentence similarities
for all sentences in the large dataset, this extra layer of
computation is not time-intensive and therefore worth the
improvement in results in practice.

V. DISCUSSION AND PRIOR WORK

Our baseline experiment proved that sentence transformers
successfully match sentences from Wikipedia data. After
collecting and experimenting with public data that is closer in
nature to the problem we are trying to solve, we learned that
we can just as effectively match sentences from enterprise
and educational settings using bi-encoder and cross-encoder
sentence transformers.

VI. CONCLUSION

In summary, we believe that open source sentence
transformers are powerful enough to help us solve the
problem of outdated documentation for enterprise and
educational settings. The biggest challenge is to gather
enough high-quality data from public sources. In addition to
Slack and online community forums, we plan to gather data
from Discord communities since Discord is a very popular
tool for developers.

In addition to documentation, we also want to experiment
with mapping messages from messaging tools with code.
For example, we believe there’s value in mapping questions
and answers from Slack to code in Github pull requests to
provide additional context.

We believe this application of machine learning will
improve productivity for employees and students and lead to
more efficient and cohesive teams.

ACKNOWLEDGMENT

The authors would like to thank Professor Volodymyr
Kuleshov for his guidance regarding experimentation and
data collection.

REFERENCES

[1] BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, https://arxiv.org/abs/1810.04805

[2] SentenceTransformers, https://www.sbert.net/
[3] Babel, https://babeljs.io/
[4] Ultimaker Forum, https://community.ultimaker.com/
[5] multi-qa-MiniLM-L6-cos-v1, https://huggingface.co/sentence-

transformers/multi-qa-MiniLM-L6-cos-v1
[6] distilroberta-base, https://huggingface.co/distilroberta-base
[7] STS Benchmark, https://paperswithcode.com/dataset/sts-benchmark
[8] Bi-Encoder vs. Cross-Encoder, https://www.sbert.net/examples/applications/cross-

encoder/README.html

