We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
this is a demo about schema.
m = graph.openManagement() v1 = m.makeVertexLabel('v1').make() v2 = m.makeVertexLabel('v2').make() v3 = m.makeVertexLabel('v3').make() cp0 = m.makePropertyKey('cp0').dataType(String.class).make() cp1 = m.makePropertyKey('cp1').dataType(String.class).make() cp2 = m.makePropertyKey('cp2').dataType(String.class).make() cp0_c = m.buildIndex('cp0_c', Vertex.class).addKey(cp0).buildCompositeIndex() cp1_c = m.buildIndex('cp1_c', Vertex.class).addKey(cp1).unique().buildCompositeIndex() cp2_c = m.buildIndex('cp2_c', Vertex.class).addKey(cp2).buildCompositeIndex() cp2_c_v3 = m.buildIndex('cp2_c_v3', Vertex.class).addKey(cp2).indexOnly(v3).unique().buildCompositeIndex() m.setConsistency(cp0, ConsistencyModifier.LOCK) m.setConsistency(cp1, ConsistencyModifier.LOCK) m.setConsistency(cp2, ConsistencyModifier.LOCK) m.setConsistency(cp0_c, ConsistencyModifier.LOCK) m.setConsistency(cp1_c, ConsistencyModifier.LOCK) m.setConsistency(cp2_c, ConsistencyModifier.LOCK) m.setConsistency(cp2_c_v3, ConsistencyModifier.LOCK) m.commit() ------------------------------------------------------------------------------------------------ Vertex Label Name | Partitioned | Static | --------------------------------------------------------------------------------------------------- v3 | false | false | v1 | false | false | v2 | false | false | --------------------------------------------------------------------------------------------------- Edge Label Name | Directed | Unidirected | Multiplicity | --------------------------------------------------------------------------------------------------- v1_rt1_v2 | true | false | MULTI | v2_rt1_v3 | true | false | MULTI | --------------------------------------------------------------------------------------------------- Property Key Name | Cardinality | Data Type | --------------------------------------------------------------------------------------------------- cp0 | SINGLE | class java.lang.String | cp1 | SINGLE | class java.lang.String | cp2 | SINGLE | class java.lang.String | --------------------------------------------------------------------------------------------------- Graph Index (Vertex) | Type | Unique | Backing | Key: Status | --------------------------------------------------------------------------------------------------- cp0_c | Composite | false | internalindex | cp0: ENABLED | cp2_c | Composite | false | internalindex | cp2: ENABLED | cp1_c | Composite | true | internalindex | cp1: ENABLED | cp2_c_v3 | Composite | true | internalindex | cp2: ENABLED | --------------------------------------------------------------------------------------------------- Graph Index (Edge) | Type | Unique | Backing | Key: Status | --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- Relation Index (VCI) | Type | Direction | Sort Key | Order | Status | ---------------------------------------------------------------------------------------------------
This is data and gremlin query
gremlin> g.V().elementMap() ==>{cp0=v1, cp1=2, cp2=cp2, id=81924096, label=v1} ==>{cp0=v2, cp1=6, cp2=cp2, id=81928192, label=v2} ==>{cp0=v2, cp1=4, cp2=cp2, id=12440, label=v2} ==>{cp0=v3, cp1=9, cp2=v3_cp2_3, id=16536, label=v3} ==>{cp0=v3, cp1=8, cp2=v3_cp2_2, id=40972488, label=v3} ==>{cp0=v1, cp1=1, cp2=cp2, id=40964304, label=v1} ==>{cp0=v1, cp1=3, cp2=cp2, id=12504, label=v1} ==>{cp0=v3, cp1=7, cp2=v3_cp2_1, id=16600, label=v3} ==>{cp0=v2, cp1=5, cp2=cp2, id=40964328, label=v2} gremlin> g.E().elementMap() ==>{id=2pkjcw-1crx1c-8v85-1cs074, label=v1_rt1_v2, IN={id=81928192, label=v2}, OUT={id=81924096, label=v1}} gremlin> g.V().has('cp1','2').out('v1_rt1_v2').has('cp2','cp2').elementMap() gremlin> g.V().has('cp1','2').out('v1_rt1_v2').elementMap() ==>{cp0=v2, cp1=6, cp2=cp2, id=81928192, label=v2} gremlin> g.V().has('cp1','2').out('v1_rt1_v2').has('cp2','cp2').explain() ==>Traversal Explanation ============================================================================================================================================================================================================ Original Traversal [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] ConnectiveStrategy [D] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] IdentityRemovalStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] MatchPredicateStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] FilterRankingStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] ByModulatorOptimizationStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] InlineFilterStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] IncidentToAdjacentStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] RepeatUnrollStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] PathRetractionStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] AdjacentToIncidentStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] CountStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] EarlyLimitStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] LazyBarrierStrategy [O] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] AdjacentVertexHasIdOptimizerStrategy [P] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] AdjacentVertexIsOptimizerStrategy [P] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],vertex), HasStep([cp2.eq(cp2)])] AdjacentVertexHasUniquePropertyOptimizerStrategy [P] [GraphStep(vertex,[]), HasStep([cp1.eq(2)]), VertexStep(OUT,[v1_rt1_v2],edge), HasStep([~adjacent.eq(40964304)]), EdgeVertexStep(IN)]
The problem is ~adjacent.eq(40964304), it will be returned a random vertex when has step matched
~adjacent.eq(40964304)
The text was updated successfully, but these errors were encountered:
The same problem as I met. Need a solution.
Sorry, something went wrong.
No branches or pull requests
this is a demo about schema.
This is data and gremlin query
The problem is
~adjacent.eq(40964304)
, it will be returned a random vertex when has step matchedThe text was updated successfully, but these errors were encountered: