This repo is the official implementation of "DuMLP-Pin: A Dual-MLP-dot-product Permutation-invariant Network for Set Feature Extraction" (AAAI 2022). It includes codes and models for the following tasks:
Task | Dataset | Evaluation Metric | Value (%) |
---|---|---|---|
Point Cloud Classification | ModelNet40 | Overall Accuracy | 92.26 |
Point Cloud Part Segmentation | ShapeNetPart | Mean IoU | S: 83.43 L: 84.92 |
All experiments are done with one RTX 3090.
- Clone this repo.
- Create a conda virtual environment and activate it:
conda create -n dmpp python=3.8
conda activate dmpp
- Install
CUDA==11.1
withcudnn8
following the official installation instructions - Install
pytorch
:
conda install pytorch==1.8.1 cudatoolkit=11.1
- Install
h5py
,tqdm
andtensorboard
:
conda install h5py tqdm==4.59.0 tensorboard==2.4.0
We provide several examples in my_script.sh
, which includes some commands to reproduce our results in the paper. Please fill in the value of MODEL_LOAD_PATH
for your usage.
The template is:
./my_script.sh [MODE] [TASK] [GPU_INDEX] [S=small, L=large, optional for ShapeNetPart]
Some examples:
chmod +x my_script.sh
./my_script.sh train ModelNet40 0
./my_script.sh train ShapeNetPart 0 S
./my_script.sh eval ShapeNetPart -1 L # -1 for CPU
Models and datasets are grouped as follows. For ShapeNetPart, we have two models of different sizes: small in S
and large in L
. We do each single experiment twice to validate the reproducibility.
DuMLP_Pin
├─ModelNet40
│ ├─datasets
│ └─models
│ ├─2021-10-09-18-58-28
│ └─2021-10-09-20-57-57
└─ShapeNetPart
├─datasets
└─models
├─L
│ ├─2021-10-17-11-29-54
│ └─2021-10-18-15-33-17
└─S
├─2021-10-18-15-34-37
└─2021-10-19-04-49-45
@article{Fei_Zhu_Liu_Deng_Li_Deng_Zhang_2022,
title={DuMLP-Pin: A Dual-MLP-Dot-Product Permutation-Invariant Network for Set Feature Extraction},
volume={36},
url={https://ojs.aaai.org/index.php/AAAI/article/view/19939},
DOI={10.1609/aaai.v36i1.19939},
number={1},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
author={Fei, Jiajun and Zhu, Ziyu and Liu, Wenlei and Deng, Zhidong and Li, Mingyang and Deng, Huanjun and Zhang, Shuo},
year={2022},
month={Jun.},
pages={598-606}
}
Feel free to contact Jiajun Fei feijj20@mails.tsinghua.edu.cn if you have some questions.