forked from udacity/FCND-Motion-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotion_planing_grid.py
233 lines (183 loc) · 9.14 KB
/
motion_planing_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import time
import msgpack
from enum import Enum, auto
import random
import numpy as np
from planning_utils_grid import a_star, heuristic, create_grid, prune_path, plot_route
from udacidrone import Drone
from udacidrone.connection import MavlinkConnection
from udacidrone.messaging import MsgID
from udacidrone.frame_utils import global_to_local
class States(Enum):
MANUAL = auto()
ARMING = auto()
TAKEOFF = auto()
WAYPOINT = auto()
LANDING = auto()
DISARMING = auto()
PLANNING = auto()
class MotionPlanning(Drone):
def __init__(self, connection):
super().__init__(connection)
self.target_position = np.array([0.0, 0.0, 0.0])
self.waypoints = []
self.in_mission = True
self.check_state = {}
# initial state
self.flight_state = States.MANUAL
# register all your callbacks here
self.register_callback(MsgID.LOCAL_POSITION, self.local_position_callback)
self.register_callback(MsgID.LOCAL_VELOCITY, self.velocity_callback)
self.register_callback(MsgID.STATE, self.state_callback)
def local_position_callback(self):
if self.flight_state == States.TAKEOFF:
if -1.0 * self.local_position[2] > 0.95 * self.target_position[2]:
self.waypoint_transition()
elif self.flight_state == States.WAYPOINT:
if np.linalg.norm(self.target_position[0:2] - self.local_position[0:2]) < 0.2:
if len(self.waypoints) > 0:
self.waypoint_transition()
else:
if np.linalg.norm(self.local_velocity[0:2]) < 1.0:
self.landing_transition()
def velocity_callback(self):
if self.flight_state == States.LANDING:
if self.global_position[2] - self.global_home[2] < 0.1:
if abs(self.local_position[2]) < 0.01:
self.disarming_transition()
def state_callback(self):
if self.in_mission:
if self.flight_state == States.MANUAL:
self.arming_transition()
elif self.flight_state == States.ARMING:
if self.armed:
self.plan_path()
elif self.flight_state == States.PLANNING:
self.takeoff_transition()
elif self.flight_state == States.DISARMING:
if ~self.armed & ~self.guided:
self.manual_transition()
def arming_transition(self):
self.flight_state = States.ARMING
print("arming transition")
self.arm()
self.take_control()
def takeoff_transition(self):
self.flight_state = States.TAKEOFF
print("takeoff transition")
self.takeoff(self.target_position[2])
def waypoint_transition(self):
self.flight_state = States.WAYPOINT
print("waypoint transition")
self.target_position = self.waypoints.pop(0)
print('target position', self.target_position)
self.cmd_position(self.target_position[0], self.target_position[1], self.target_position[2], self.target_position[3])
def landing_transition(self):
self.flight_state = States.LANDING
print("landing transition")
self.land()
def disarming_transition(self):
self.flight_state = States.DISARMING
print("disarm transition")
self.disarm()
self.release_control()
def manual_transition(self):
self.flight_state = States.MANUAL
print("manual transition")
self.stop()
self.in_mission = False
def send_waypoints(self):
print("Sending waypoints to simulator ...")
data = msgpack.dumps(self.waypoints)
self.connection._master.write(data)
###### FONCTION TO IMPLEMENT BETWEEN THE ARMING STATE AND THE TAKEOFF STATE#################
def plan_path(self):
self.flight_state = States.PLANNING
print("Searching for a path ...")
TARGET_ALTITUDE = 5
SAFETY_DISTANCE = 5
self.target_position[2] = TARGET_ALTITUDE
# Time initialization to know how long we need to provide the path
clock_system_init = time.time()
# Read the latitude and the longitude from colliders.csv to know the initial starting point of the path
data = np.loadtxt('colliders.csv', delimiter=';', dtype='str')
field = data[0].split(",")
lat = float(field[0].split()[1])
lon = float(field[1].split()[1])
# Set home position to (lon, lat, 0), the last parameter is for the altitude
self.set_home_position(lon, lat, 0.0)
# Retrieve current global position
current_global_position = [self._longitude, self._latitude, self._altitude]
#print(current_global_position)
# Convert from Geodetic (global position) to NED (local position) : use of the function global_to_local() in planning_utils_grid
current_local_position = global_to_local (current_global_position, self.global_home)
#print(current_local_position)
print('global home {0}, position {1}, local position {2}'.format(self.global_home, self.global_position,
self.local_position))
# Read in obstacle map, skip the 2 first lines
data = np.loadtxt ('colliders.csv', delimiter =',', dtype= 'float64', skiprows=2)
# Define a grid for a particular altitude and safety margin around obstacles
grid, north_offset, east_offset = create_grid(data, TARGET_ALTITUDE, SAFETY_DISTANCE)
print("North offset = {0}, east offset = {1}".format(north_offset, east_offset))
# Define starting point on the grid
# Convert start position to current position rather than map center ( map center : north_offset and east_offset)
grid_start = (int (current_local_position[0]-north_offset), int(current_local_position[1]-east_offset))
# Define randomly the goal / Start_Grid + North_Random_Value,Start_Grid + East_Random_Value
north_offset_random = random.randint(-abs(north_offset), abs(north_offset))
east_offset_random = random.randint(-abs(east_offset), abs(east_offset))
grid_goal = (int(grid_start[0] + north_offset_random), int(grid_start[1] + east_offset_random))
#Safety Test : Default Case --> Landing Transition
#Safety test : verify if the start and the goal are the same
if ((grid_start[0] == grid_goal[0]) & (grid_start[1] == grid_goal[1])):
print ("The goal coordinates are the same as the start coordinates")
self.landing_transition() # Safety State
return
# Safety Test : verify if the goal coordinates are outside from the map
if (grid_goal[0]<0 | grid_goal[1]<0 | grid_goal[0]>900 | grid_goal[1]>900):
print("Overflow - the goal is not located in the map")
self.landing_transition() # Safety State
return
# Safety Test : verify if the goal coordinates are inside a building
if grid[grid_goal[0], grid_goal[1]] == 1 :
print("Obstacles - the goal is located inside the building!")
self.landing_transition() # Safety State
return
# Dignostics informations
print ('Local Start : ', grid_start)
print ('Local Goal :', grid_goal)
# Run A* to find a path from start to goal + the cost of the path
path, path_cost = a_star(grid, heuristic, grid_start, grid_goal)
# Visualization without optimization (standard path)
plot_route(grid, grid_start, grid_goal, path)
print('length of path without optimization: {}'.format(len(path)))
# Prune the path to minimize number of waypoints : the unneeded point are delete
pruned_path = prune_path(path)
# Visualization with the optimization (pruned path)
plot_route(grid, grid_start,grid_goal,pruned_path)
print('path length with optimization: {}'.format(len(pruned_path)))
print('the cost of the path :{}'.format(path_cost))
# Convert path to waypoints
waypoints = [[p[0] + north_offset, p[1] + east_offset, TARGET_ALTITUDE, 0] for p in pruned_path]
print ('the waypoints for the path are :{}'.format(waypoints))
print('Time to find the plan : {:.2f}'.format(time.time() - clock_system_init))
self.waypoints = waypoints
# Send waypoints to the simulator
self.send_waypoints()
def start(self):
self.start_log("Logs", "NavLog.txt")
print("starting connection")
self.connection.start()
# Only required if they do threaded
# while self.in_mission:
# pass
self.stop_log()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=5760, help='Port number')
parser.add_argument('--host', type=str, default='127.0.0.1', help="host address, i.e. '127.0.0.1'")
args = parser.parse_args()
conn = MavlinkConnection('tcp:{0}:{1}'.format(args.host, args.port), timeout=60)
drone = MotionPlanning(conn)
time.sleep(1)
drone.start()