1. Download nuScenes V1.0 full dataset data HERE. Folder structure:
OpenOccupancy
├── data/
│ ├── nuscenes/
│ │ ├── maps/
│ │ ├── samples/
│ │ ├── sweeps/
│ │ ├── lidarseg/
│ │ ├── v1.0-test/
│ │ ├── v1.0-trainval/
2. Download the generated train/val pickle files and put them in data. Folder structure:
OpenOccupancy
├── data/
│ ├── nuscenes/
│ │ ├── maps/
│ │ ├── samples/
│ │ ├── sweeps/
│ │ ├── lidarseg/
│ │ ├── v1.0-test/
│ │ ├── v1.0-trainval/
│ │ ├── nuscenes_occ_infos_train.pkl/
│ │ ├── nuscenes_occ_infos_val.pkl/
2. Pre-compute depth map for fast training (depth-aware view transform module, same logic as BEVDepth):
python ./tools/gen_data/gen_depth_gt.py
Folder structure:
OpenOccupancy
├── data/
│ ├── nuscenes/
│ ├── depth_gt/
3. Download and unzip our annotation for nuScenes-Occupancy:
Subset | Google Drive | Baidu Cloud | Size |
---|---|---|---|
approx. 24G |
Note that the v0.0 version is deprecated, and we release the v0.1 version, new features:
- Less occupancy noises, especially the artifacts caused by moving objects.
- More lightweight (V0.0: 24GB-before unzip, 270GB-after unzip. V0.1: 5GB-before unzip, 130GB-after unzip).
- Impreoved performance: v0.1 pretrained models enhance the mIoU by ~0.3 (compared to v0.0 pretrained models).
Subset | Google Drive | Baidu Cloud | Size |
---|---|---|---|
trainval-v0.1 | link | link (code:25ue) | approx. 5G |
We will release annotation (with more iterations of augmenting and purifying) in the future.
mv nuScenes-Occupancy-v0.1.7z ./data
cd ./data
7za x nuScenes-Occupancy-v0.1.7z
mv nuScenes-Occupancy-v0.1 nuScenes-Occupancy
Folder structure:
OpenOccupancy
├── data/
│ ├── nuscenes/
│ ├── depth_gt/
│ ├── nuScenes-Occupancy/
Type | Info |
---|---|
train | 28,130 frames |
val | 6,019 frames |
cameras | 6 |
voxel size | 0.2m |
range | [-51.2m, -51.2m, -5m, 51.2m, 51.2m, 3m] |
volume size | [512, 512, 40] |
classes | 0 - 16 (see bellow) |
Label | Category |
---|---|
0* | noise |
1 | barrier |
2 | bicycle |
3 | bus |
4 | car |
5 | construction |
6 | motorcycle |
7 | pedestrian |
8 | trafficcone |
9 | trailer |
10 | truck |
11 | driveable_surface |
12 | other |
13 | sidewalk |
14 | terrain |
15 | mannade |
16 | vegetation |
*Note that we ignore noise, and set empty as label 0 in the training phase.