-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlondon_osm_canyons.Rmd
728 lines (490 loc) · 27.7 KB
/
london_osm_canyons.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
---
title: "Determining whether London streets are air quality canyons"
author: "James Smith"
output:
html_document:
toc: true
toc_depth: 4
date: "`r format(Sys.time(), '%Y-%m%-%d %H%:%M')`"
knit: (function(inputFile, encoding) {
rmarkdown::render(inputFile, encoding = encoding, output_dir = "docs", output_file ="index.html") })
---
### Loading libraries
```{r load libraries, message=F, warning=F, include=F}
rm(list=ls(all=TRUE))
library(devtools)
#suppressMessages(devtools::install_github("r-spatial/sf"))
library(sf)
#suppressMessages(devtools::install_github("ropensci/osmdata"))
suppressMessages(library(osmdata))
suppressMessages(library(raster))
#suppressMessages(devtools::install_github("tidyverse/ggplot2"))
library(ggplot2)
library(rgeos)
library(maptools)
library(rgdal)
library(rgeos)
library(data.table)
library(knitr)
suppressMessages(library(mapview))
library(RCurl)
#library(stplanr)
library(reshape2)
library(dplyr)
library(snow)
library(snowfall)
library(rlist)
library(rasterVis)
library(dplyr)
```
### Import building height data
Building height data is downloaded from [Copernicus Urban Atlas](https://land.copernicus.eu/local/urban-atlas/building-height-2012?tab=mapview), unzipped and extracted.
The methodology for their creation, by [gaf.d])(https://www.gaf.de/), was as following: "Our original input data were Cartosat-1 acquisitions. The following processing system uses a customised and specialised semi-global matching algorithm to generate am 3m in close cooperation with DLR (German Aerospace Center). Subsequent to the highly automated DSM generation, a DTM was calculated and a nDSM (normalised Digital Surface Model) derived by using internal software and processing tools. The nDSM were finally resampled from 3m up to 10m resolution by using the maximum height value".
This raster is then imported.
```{r get building rasters}
london_raster <- raster('buildings_raster/UK001L2_LONDON_UA2012_DHM/UK001L2_LONDON_UA2012_DHM.tif')
```
```{r}
focus_area <- st_as_sf(as(raster::extent(529735, 533671, 180049, 181052), 'SpatialPolygons')) %>%
st_set_crs(27700) %>%
st_transform(crs(london_raster)@projargs) %>%
as('Spatial')
temp <- crop(london_raster, focus_area)
temp <- rasterToPolygons(temp)
temp <- st_as_sf(temp)
labels <- list()
for (i in 1:5) {
labels[[i]] <- paste(round(quantile(temp$UK001L2_LONDON_UA2012_DHM,c(0.5,0.8,0.85,0.9,0.95,1))[i],0),
'-',
round(quantile(temp$UK001L2_LONDON_UA2012_DHM,c(0.5,0.8,0.85,0.9,0.95,1))[(i+1)],0))
}
labels <- unlist(labels)
temp$height <- cut(temp$UK001L2_LONDON_UA2012_DHM,
breaks=c(0,quantile(temp$UK001L2_LONDON_UA2012_DHM,c(0.5,0.8,0.85,0.9,0.95,1))[2:7]),
labels = labels)
colours <- c('#ffffd4','#fed98e','#fe9929','#d95f0e','#993404')
rm(focus_area)
plot <- ggplot() +
geom_sf(data = filter(temp, !is.na(height)), colour = NA, aes(fill = height)) +
coord_sf() +
scale_fill_manual(values = colours, name = "Height (m)") +
#scale_fill_discrete(name = expression(paste("NOx emissions (", mu, m^2, "/", m^3, ")", sep=""))) +
theme(axis.text = element_blank(),
axis.ticks = element_blank(),
panel.background = element_blank())
ggsave('building_height_map.png', plot = plot, path = 'maps/', height = 5, width = 15, units='cm')
```
### Import OSM roads data
First we get the extent of the raster
```{r get extent of the raster}
extent <- extent(london_raster)
extent <- as(extent, 'SpatialPolygons')
proj4string(extent) <- crs(london_raster)
latlong <- CRS("+init=epsg:4326")
extent <- spTransform(extent, latlong)
min_x <- extent(extent)[1]
max_x <- extent(extent)[2]
min_y <- extent(extent)[3]
max_y <- extent(extent)[4]
rm(extent)
```
Now using the [osmdata package](https://cran.r-project.org/web/packages/osmdata/osmdata.pdf) we can download osmdata for the extent we just defined. Roads have the value 'highway' in [OpenStreetMap](https://en.wikipedia.org/wiki/OpenStreetMap). Within that heading, we can also filter using the following tags:
```{r download data from osm, warning=F}
available_tags('highway')
```
Now we import OSM roads data for the following road types.
```{r import road data}
primary <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='primary') %>% osmdata_sf()
primary <- primary$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
primary$type <- 'primary'
primary_link <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='primary_link') %>% osmdata_sf()
primary_link <- primary_link$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
primary_link$type <- 'primary_link'
secondary <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='secondary') %>% osmdata_sf()
secondary <- secondary$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
secondary$type <- 'secondary'
motorway <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='motorway') %>% osmdata_sf()
motorway <- motorway$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
motorway$type <- 'motorway'
motorway_link <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='motorway_link') %>% osmdata_sf()
motorway_link <- motorway_link$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
motorway_link$type <- 'motorway_link'
trunk <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='trunk') %>% osmdata_sf()
trunk <- trunk$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
trunk$type <- 'trunk'
trunk_link <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='trunk_link') %>% osmdata_sf()
trunk_link <- trunk_link$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
trunk_link$type <- 'trunk_link'
tertiary <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='tertiary') %>% osmdata_sf()
tertiary <- tertiary$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
tertiary$type <- 'tertiary'
```
Then bind them all into one object
```{r bind_roads}
roads <- rbind(primary, primary_link, secondary, motorway, motorway_link, trunk, trunk_link, tertiary)
roads$osm_id <- as.numeric(as.character(roads$osm_id))
rm(primary, primary_link, secondary, motorway, motorway_link, trunk, trunk_link, tertiary)
```
Due to the user-generated nature of OSM, need to remove duplicates in space. Also remove duplicated osm_ids.
```{r remove_duplicates}
roads <- roads[!duplicated(roads$geometry),]
roads <- roads[!duplicated(roads$osm_id),]
```
Now that we have a SpatialLinesDataFrame of all the London roads, we delete the ones where the 'lane' attribute is not formed properly or contains an error.
```{r clean lanes data}
roads$lanes <- as.character(roads$lanes)
roads <- roads[!grepl(';', roads$lanes),]
roads$lanes <- as.numeric(roads$lanes)
```
The number of lanes for each road type is below.
```{r check lanes data}
table(roads$type, roads$lanes)
```
Where this is missing, we fill in the blanks, using the mean values of that road type, rounded.
```{r fill_empty_roads}
roads[roads$type == 'primary' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'primary' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'primary_link' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'primary_link' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'secondary' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'secondary' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'motorway' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'motorway' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'motorway_link' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'motorway_link' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'trunk' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'trunk' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'trunk_link' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'trunk_link' & !is.na(roads$lanes),]$lanes),0)
roads[roads$type == 'tertiary' & is.na(roads$lanes),'lanes'] <- round(mean(roads[roads$type == 'tertiary' & !is.na(roads$lanes),]$lanes),0)
```
Now, presuming that a lane is 3.15 metres wide, each road width is now calculated and added to the dataset.
```{r road_widths}
roads$width <- as.numeric(roads$lanes) * 3.15
```
OSM splits some roads into two, like Marylebone Road, and motorways. This is a problem for calculating height to width ratios. So we are going to try and identify these.
```{r marylebone_issue}
roads$half_of_one <- NA
roads[roads$oneway == 'yes' & !is.na(roads$oneway) & roads$type == 'trunk' & !is.na(roads$type),'half_of_one'] <- as.character('Yes')
roads[roads$oneway == 'yes' & !is.na(roads$oneway) & roads$type == 'trunk_link' & !is.na(roads$type),'half_of_one'] <- as.character('Yes')
roads[roads$oneway == 'yes' & !is.na(roads$oneway) & roads$type == 'motorway' & !is.na(roads$type),'half_of_one'] <- as.character('Yes')
roads[roads$oneway == 'yes' & !is.na(roads$oneway) & roads$type == 'motorway_link' & !is.na(roads$type),'half_of_one'] <- as.character('Yes')
```
The road widths by road type are now as below
```{r road_widths_summary, fig.width=10}
ggplot(roads, aes(x = width, fill=type)) + geom_histogram(alpha=0.3) + facet_wrap(.~type, scales="free") + ggtitle('Road widths by road type')
```
The widest road in the dataset is here
```{r checking roads}
m <- mapview(st_buffer(st_transform(roads[roads$width>25,][1,],27700),100), map.types = 'Esri.WorldImagery', alpha.regions=0.1)
mapshot(m, file = paste0(getwd(), "/map.png"), remove_controls = c("zoomControl", "layersControl", "homeButton","scaleBar"))
```
![](map.png)
Pavement width is also added to the roads, depending on what type of road it is, as follows. Presumes 3 metres wide pavement. For motorways we still add 'pavement' but presume this is hard-shoulder.
```{r add pavement widths}
roads$pavement_width <- NA
roads[roads$type == 'primary' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'primary_link' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'secondary' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'motorway' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'motorway_link' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'trunk' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'trunk_link' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'tertiary' & is.na(roads$half_of_one), 'pavement_width'] <- 6
roads[roads$type == 'primary' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'primary_link' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'secondary' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'motorway' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'motorway_link' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'trunk' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'trunk_link' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads[roads$type == 'tertiary' & !is.na(roads$half_of_one) & roads$half_of_one == 'Yes', 'pavement_width'] <- 3
roads$total_width <- roads$width + roads$pavement_width
```
Road widths are now
```{r new_road_widths_summary, fig.width=10}
ggplot(roads, aes(x = total_width, fill=type)) + geom_histogram(alpha=0.3) + facet_wrap(.~type, scales="free") + ggtitle('Road widths by road type')
```
Add half central reservation
```{r}
roads[roads$half_of_one == 'Yes' & !is.na(roads$half_of_one),]$total_width <- roads[roads$half_of_one == 'Yes' & !is.na(roads$half_of_one),]$total_width + 2
```
With pavements added the roads width is..
```{r road_widths_summary_with_pavements, fig.width=10}
ggplot(roads, aes(x = total_width, fill=type)) + geom_histogram(alpha=0.3) + facet_wrap(.~type, scales="free") + ggtitle('Road widths by road type')
```
As a table the road widths
```{r road_widths_table_summary_2}
table(roads$type, roads$total_width)
```
As a table the road lanes
```{r road_lanes_table_summary}
table(roads$type, roads$lanes)
```
The map below shows roads currently in the dataset, coloured by type
```{r show downloaded roads}
ggplot(roads, aes(colour = type, fill=type)) +
geom_sf() +
ggtitle('Downloaded OSM roads, by road type') +
theme(axis.text = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
legend.position = 'bottom')
```
Remove a few circular roads that are a problem for buffers
```{r remove problem roads}
roads_to_ignore <- c(9393,11079,14595,15578)
roads <- roads[-roads_to_ignore,]
rm(roads_to_ignore)
```
Make the buffers around the roads
```{r make road buffers}
roads <- st_transform(roads, 27700)
roads$area <- st_geometry(st_buffer(roads, dist = 20)) / st_geometry(st_buffer(roads, dist = 15))
```
For the roads like Marylebone Road, going to double the buffer area and add 5 metres to the buffers.
```{r special_case}
roads[!is.na(roads$half_of_one),]$area <- st_geometry(st_buffer(roads[!is.na(roads$half_of_one),], dist = 20*2+5)) /
st_geometry(st_buffer(roads[!is.na(roads$half_of_one),], dist = 15*2+5))
```
Transform the buffers to the same CRS as the raster we're going to extract from.
```{r buffers_transform}
roads$geometry <- st_transform(roads$geometry,4326)
roads$area <- st_transform(roads$area, 4326)
roads$geometry <- st_transform(roads$geometry, crs(london_raster)@projargs)
roads$area <- st_transform(roads$area, crs(london_raster)@projargs)
```
Check everything looks ok
```{r sanity_check}
plot(london_raster, xlim=c(3621000, 3622000), ylim = c(3204000,3205000))
plot(st_geometry(roads), xlim=c(3621000, 3622000), add=T)
plot(st_geometry(roads$area), xlim=c(3621000, 3622000), add=T)
```
Make an example of one road with buffer for report
```{r checking}
plot <- ggplot(data=filter(roads, osm_id == 379356929)) +
geom_sf(aes(geometry = area), fill = NA, colour = 'red') +
geom_sf(aes(geometry=geometry), colour = 'blue') +
coord_sf() +
theme_bw() +
theme(axis.text = element_blank(),
axis.ticks = element_blank(),
panel.border = element_blank())
ggsave(plot = plot, filename='road_buffer_example.png', path='maps')
```
Now another example, showing a road and raster intersection
```{r}
focus_area <- st_as_sf(as(raster::extent(filter(st_set_geometry(roads, 'area'), osm_id == 379356929))+50, 'SpatialPolygons')) %>%
as('Spatial')
temp <- crop(london_raster, focus_area)
temp <- rasterToPolygons(temp)
#temp <- st_as_sf(temp) %>% st_set_crs(27700)
labels <- list()
for (i in 1:5) {
labels[[i]] <- paste(round(quantile(temp$UK001L2_LONDON_UA2012_DHM,c(0,0.6,0.7,0.8,0.9,1))[i],0),
'-',
round(quantile(temp$UK001L2_LONDON_UA2012_DHM,c(0,0.6,0.7,0.8,0.9,1))[(i+1)],0))
}
labels <- unlist(labels)
temp$height <- cut(temp$UK001L2_LONDON_UA2012_DHM,
breaks=c(0,quantile(temp$UK001L2_LONDON_UA2012_DHM,c(0,0.6,0.7,0.8,0.9,1))[2:6]),
labels = labels)
colours <- c('#ffffd4','#fed98e','#fe9929','#d95f0e','#993404')
rm(focus_area)
temp <- st_as_sf(temp)
plot <- ggplot(data=(filter(roads, osm_id == 379356929))) +
geom_sf(data = filter(temp,!is.na(height)), colour = NA, aes(fill = height)) +
scale_fill_manual(values = colours, name = "Height (m)") +
geom_sf(aes(geometry = area), fill = NA, colour = 'red') +
geom_sf(aes(geometry=geometry), colour = 'blue') +
coord_sf() +
theme_bw() +
theme(axis.text = element_blank(),
axis.ticks = element_blank(),
panel.border = element_blank())
ggsave('roads_with_raster_eample.png', plot = plot, path = 'maps/', height = 5, width = 15, units='cm')
```
```{r checking}
ggplot(data=filter(roads, osm_id == 379356929)) +
geom_sf(aes(geometry = area), fill = NA, colour = 'red') +
geom_sf(aes(geometry=geometry), colour = 'blue') +
coord_sf() +
theme_bw() +
theme(axis.text = element_blank(),
axis.ticks = element_blank(),
panel.border = element_blank())
ggsave(plot = plot, filename='road_buffer_example.png', path='maps')
```
Interactive map view of one feature
```{r map view of a buffer}
osm_id_to_examine <- 379356929
temp_raster <- extent(st_bbox(roads[roads$osm_id == osm_id_to_examine,])$xmin-40, st_bbox(roads[roads$osm_id == osm_id_to_examine,])$xmax+40,
st_bbox(roads[roads$osm_id == osm_id_to_examine,])$ymin-40, st_bbox(roads[roads$osm_id == osm_id_to_examine,])$ymax+40)
temp_raster <- crop(london_raster, temp_raster)
mapview(temp_raster, alpha.regions = 0.4, map.types = 'OpenStreetMap.BlackAndWhite') %>%
addFeatures(st_transform(roads[roads$osm_id == osm_id_to_examine,],4326))
rm(temp_raster, osm_id_to_examine)
```
Now extract the data we need from the raster (this takes circa 12 hours)
```{r extracting_heights, results="hide"}
start_time <- Sys.time()
road_polygons <- as(roads$area,'Spatial')
roads$area <- NULL
print('about extracting data')
sfInit(parallel=TRUE, cpus=parallel:::detectCores()-1)
sfLibrary(raster)
sfLibrary(sp)
start_time <- Sys.time()
extracted <- extract(london_raster, road_polygons, na.rm=T)
end_time <- Sys.time()
sfStop()
print(end_time - start_time)
print('extracted data, using sapply to put into the roads file')
# Check this next bit doesn't insert a list to the data framne. might need to unlist.
roads$canyon_height <- suppressWarnings(lapply(extracted, max))
roads[roads$canyon_height == '-Inf' | is.na(roads$canyon_height),'canyon_height'] <- 5
print('done')
roads$geometry <- st_transform(roads$geometry, 4326)
rm(london_raster)
end_time <- Sys.time()
print(end_time - start_time)
rm(start_time, end_time)
st_write(roads, 'roads_after_height_extraction.geojson', delete_dsn = T)
```
Where the road is 'half of one', double the width of the road
```{r double_width_for_half_roads}
roads[roads$half_of_one == 'Yes' & !is.na(roads$half_of_one),]$total_width <- roads[roads$half_of_one == 'Yes' & !is.na(roads$half_of_one),]$total_width * 2
```
Add another column for height to width ratio
```{r height and width ratio}
#roads$height_width_ratio <- roads$weighted_mean / roads$total_width
```
Add another height width ratio column for when using the non-zero height from the rasterz
```{r add_another_height_width_ratio}
#roads$height_width_ratio <- roads$canyon_height / roads$total_width
```
Now plot the non-zero height/width ratios.
```{r plot_the_non_zero_height_width_ratios}
ggplot(roads, aes(y = height_width_ratio, group=type, x=type, fill=type)) + geom_boxplot() + ggtitle('Height to width ratio by street type')
```
Need to classify the roads as canyons and directions for modelling. Here are some categories.
```{r road_classification}
road_types <- read.csv('model_street_types.csv')
road_types$orientation <- as.character(road_types$orientation)
road_types$width_cat <- paste0(road_types$min_width, '-', road_types$max_width)
road_types$height_cat <- paste0(road_types$min_height, '-', road_types$max_height)
road_types$jds_id <- 1:nrow(road_types)
```
Now need to get the bearing of each road from start point to end point
```{r calculate bearing}
roads$bearing <- line_bearing(roads)
```
Haven't been working on them, but think it's time time to add the residential roads back in and harmonise them with the main roads data.
```{r add_residential_roads}
residential <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='residential') %>% osmdata_sf()
residential <- residential$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
residential$type <- 'residential'
service <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='service') %>% osmdata_sf()
service <- service$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
service$type <- 'service'
unclassified <- opq(bbox = c(min_x, min_y, max_x, max_y)) %>% add_osm_feature(key = 'highway', value='unclassified') %>% osmdata_sf()
unclassified <- unclassified$osm_lines[,c('osm_id', 'oneway', 'lanes', 'geometry')]
unclassified$type <- 'unclassified'
extra_roads <- rbind(residential, service, unclassified)
rm(residential, service, unclassified)
extra_roads$osm_id <- as.numeric(as.character(extra_roads$osm_id))
extra_roads$lanes <- as.character(extra_roads$lanes)
extra_roads <- extra_roads[!grepl(';', extra_roads$lanes),]
extra_roads$lanes <- as.numeric(extra_roads$lanes)
extra_roads[is.na(extra_roads$lanes),'lanes'] <- 2
extra_roads$width <- extra_roads$lanes * 3.15
extra_roads$half_of_one <- as.factor(NA)
extra_roads$pavement_width <- as.numeric(6)
extra_roads$total_width <- as.numeric(extra_roads$width + extra_roads$pavement_width)
extra_roads$type <- as.factor(extra_roads$type)
#extra_roads$weighted_mean <- as.numeric(NA)
#extra_roads$cell_count <- as.integer(NA)
#extra_roads$zero_cells <- as.integer(NA)
extra_roads$bearing <- line_bearing(extra_roads)
#extra_roads$height_width_ratio <- as.numeric(NA)
#extra_roads$max_height <- as.numeric(NA)
extra_roads$canyon_height <- as.numeric(5)
#extra_roads$height_width_ratio <- as.numeric(NA)
col_order <- names(roads)
extra_roads <- extra_roads[,col_order]
roads <- rbind(roads, extra_roads)
rm(extra_roads)
```
Add orientations
```{r categorise_orientations}
roads$orientation_classification <- NA
roads[roads$bearing >= -22.5 & roads$bearing <= 22.5 & !is.na(roads$bearing),]$orientation_classification <- 'NS'
roads[roads$bearing >= 157.5 & roads$bearing <= 180 & !is.na(roads$bearing), ]$orientation_classification <- 'NS'
roads[roads$bearing <= -157.5 & roads$bearing >= -180 & !is.na(roads$bearing), ]$orientation_classification <- 'NS'
roads[roads$bearing >= 67.5 & roads$bearing <= 112.5 & !is.na(roads$bearing),]$orientation_classification <- 'EW'
roads[roads$bearing >= -112.5 & roads$bearing <= -67.5 & !is.na(roads$bearing),]$orientation_classification <- 'EW'
roads[roads$bearing >= 112.5 & roads$bearing <= 157.5 & !is.na(roads$bearing),]$orientation_classification <- 'SENW'
roads[roads$bearing <= -22.5 & roads$bearing >= -67.5 & !is.na(roads$bearing),]$orientation_classification <- 'SENW'
roads[roads$bearing >= 22.5 & roads$bearing <= 67.5 & !is.na(roads$bearing),]$orientation_classification <- 'SWNE'
roads[roads$bearing <= -112.5 & roads$bearing >= -157.5 & !is.na(roads$bearing),]$orientation_classification <- 'SWNE'
```
Categorise our heights and widths
```{r}
road_height_banding <- unique(c(road_types$min_height, road_types$max_height))
road_width_banding <- unique(c(road_types$min_width, road_types$max_width))
roads$height_cat <- cut(roads$canyon_height, road_height_banding)
roads$height_cat <- as.character(roads$height_cat)
roads$width_cat <- cut(roads$total_width, road_width_banding)
roads$width_cat <- as.character(roads$width_cat)
roads$height_cat <- gsub("(", "", roads$height_cat, fixed=T)
roads$height_cat <- gsub("]", "", roads$height_cat, fixed=T)
roads$height_cat <- gsub(",", "-", roads$height_cat, fixed=T)
roads$width_cat <- gsub("(", "", roads$width_cat, fixed=T)
roads$width_cat <- gsub("]", "", roads$width_cat, fixed=T)
roads$width_cat <- gsub(",", "-", roads$width_cat, fixed=T)
roads[is.na(roads$height_cat) & roads$canyon_height == 0,'height_cat'] <- '0-0'
```
Add a road type type depending on orientation, height category, and width category
```{r join_street_canyon_types}
roads <- left_join(roads, road_types, by = c("orientation_classification" = "orientation", "height_cat" = "height_cat", "width_cat" = "width_cat"), suffix = c('x','y'))
rm(road_types, road_height_banding, road_width_banding)
```
Remove duplicates.
```{r remove_duplicates}
roads <- roads[!duplicated(roads$geometry),]
roads <- roads[!duplicated(roads$osm_id),]
```
```{r write_out_as_geojson}
st_write(roads, dsn='final_roads_london.gpkg', delete_dsn = T)
```
Kernels data for Sean
```{r}
london_kernels_in_use <- aggregate(data = roads, cbind(width, total_width, canyon_height) ~ jds_id, FUN=mean )
count <- aggregate(data = roads, osm_id ~ jds_id, FUN=length )
road_types <- merge(road_types, london_kernels_in_use, by = 'jds_id', all.x=T)
road_types <- merge(road_types, count, by = 'jds_id', all.x=T)
names(road_types)[names(road_types) == 'osm_id'] <- 'count_of_roads'
road_types$canyon_height <- round(road_types$canyon_height,2)
road_types$width <- round(road_types$width,2)
road_types$total_width <- round(road_types$total_width,2)
write.csv(road_types, 'london_kernels.csv')
```
Now just for London look to join our new classifications to the existing roads using a link file from Andrew Beddows.
```{r join}
osm_to_dotref <- read.csv('osmToDotRef.csv')
osm_to_dotref <- osm_to_dotref[osm_to_dotref$osm_id != osm_to_dotref$DotRef & osm_to_dotref$DotRef_Lts == 'DotRef',]
osm_to_dotref <- osm_to_dotref[,c('osm_id', 'DotRef')]
roads <- merge(roads, osm_to_dotref, by.x = 'osm_id', by.y = 'osm_id', all.x=T)
dotref_roads <- roads[!is.na(roads$DotRef),c('DotRef', 'jds_id')]
dotref_roads <- st_transform(dotref_roads, 27700)
dotref_roads$length <- as.numeric(st_length(dotref_roads$geometry))
dotref_roads$geometry <- NULL
rm(osm_to_dotref)
sum_of_weights_per_dotref <- aggregate(data=dotref_roads, length ~ DotRef+jds_id, FUN=sum)
sum_of_weights_per_dotref <- sum_of_weights_per_dotref %>% arrange(DotRef,desc(length))
sum_of_weights_per_dotref <- sum_of_weights_per_dotref %>% group_by(DotRef) %>% top_n(n=1)
# Now import Gregor file and update with new types
dotref_points <- read.csv('Oscar_DOT_Toid_10m.csv')
dotref_points <- merge(dotref_points, sum_of_weights_per_dotref, by.x = 'Dot_ref', by.y = 'DotRef', all.x=T)
write.csv(dotref_points, 'Oscar_DOT_Toid_10m_V2.csv', row.names = F)
rm(count, dotref_points, dotref_roads, extracted, london_raster, london_kernels_in_use, road_polygons, road_types, sum_of_weights_per_dotref, col_order, end_time, max_x, min_x, max_y, min_y, latlong, road_height_banding, road_width_banding, start_time)
#roads$max_height <- NULL
#roads$min_height <- NULL
#roads$max_width <- NULL
#roads$min_width <- NULL
roads <- merge(roads, sum_of_weights_per_dotref, by.x = 'DotRef', by.y = 'DotRef', all.x=T)
st_write(roads, 'roads_with_dotref_new_type.gpkg', delete_dsn = T)
```