forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path13_Optional_Stopping.tex
276 lines (253 loc) · 13.9 KB
/
13_Optional_Stopping.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{3_ProbabilitySpaces}
\externaldocument{4_Random_Variables}
\externaldocument{5_Convergence_and_Independence}
\externaldocument{6_Borel_Cantelli_Lemmas}
\externaldocument{12_Conditional_Expectations}
\externaldocument{15_Martingale_Convergence}
\begin{document}
\handout{13}{Optional Stopping}
Review: Consider a probability space $(\Omega, \scF, \P)$. A sequence of sub-$\sigma$-algebras $\scF_0 \subset \scF_1 \subset \ldots \subset \scF$ is called a filtration. Suppose $M_n \in \scF_n$. Then, $(M_n, \scF_n)$ is a martingale if
\begin{align*}
\E \abs{M_n} &< \infty,\ \forall n \geq 0, \\
\E[M_n \given \scF_{n-1}] &= M_{n-1},\ \forall n \geq 0.
\end{align*}
\section{Stopping Times}
\begin{Definition}
The random variable $\tau$ is called a \emph{stopping time} for $(\scF_n)_{n\geq0}$ if $\tau \in \{0,1,\ldots\} \cup \{\infty\}$ and $\{\tau \leq n\} \in \scF_n,\ \forall n \geq 0$.
\end{Definition}
From the definition of $\sigma$-algebras, we have
\begin{align*}
\{\tau > n\} &= \{\tau \leq n\}\setcomp \in \scF_n, \\
\{\tau = n\} &= \{\tau \leq n\} \setminus \{\tau \leq n-1\} \in \scF_n.
\end{align*}
Consider a sequence $(X_n)_{n \geq 0}$. If $\tau < \infty$ a.s., we define
\begin{align*}
X_\tau = \sum_{k=0}^\infty \indicator{\tau=k}X_k
\end{align*}
and we call $X_\tau$ a ``stopped process''. Denote $n \wedge \tau = \min(n, \tau)$ and we have $n \wedge \tau < \infty$ a.s.
\begin{Theorem} \label{wk13:Thm:StoppingProcess}
If $(M_n, \scF_n)$ is a martingale, then $(M_{n \wedge \tau}, \scF_n)$ is a martingale.
\end{Theorem}
\begin{proof}
WLOG, we assume $M_0 = 0$. Let $A_n = \indicator{\tau \geq n} = \indicatore{\{\tau \leq n-1\}\setcomp}$ , where $\{\tau \leq n-1\}\setcomp \in \scF_{n-1}$. Therefore, $A_n$ is predictable. The martingale transform $\left(\sum_{k=1}^n A_k (M_k - M_{k-1}), \scF_n\right)$ is thus a martingale from \cref{wk12:MTT}. Furthermore, we have
\begin{align*}
\sum_{k=1}^n A_k (M_k - M_{k-1})
&= \sum_{k=1}^n \indicator{\tau \geq k} (M_k - M_{k-1}) \\
&= \sum_{k=1}^n \indicator{\tau \geq k} M_k - \sum_{k=0}^{n-1} \indicator{\tau \geq k+1} M_k \\
&= \sum_{k=1}^{n-1} \indicator{\tau = k} M_k + \indicator{\tau \geq n} M_n \\
&= \indicator{\tau \leq n-1} M_\tau + \indicator{\tau \geq n} M_n \\
&= M_{n \wedge \tau},
\end{align*}
and the theorem is proved.
\end{proof}
\begin{Example}[Random walk]\label{wk13:ex:rw}
Let
\begin{align*}
X_i =
\begin{cases}
1 & \text{w.p.}\ \frac{1}{2}, \\
-1 & \text{w.p.}\ \frac{1}{2},
\end{cases}
\end{align*}
for $i \geq 1$ be i.i.d.\ random variables. Let $S_n = \sum_{i=1}^n X_i$. Then, $\left(S_n, \scF_n \right)$ is a martingale (see \cref{ex:wk12_mex_1}).
Let $A, B \in \bbZ^+$ and $\tau = \inf \{n: S_n=A \ \text{or}\ S_n=-B\}$ (the first time $S_n$ hitting $A$ or $-B$ ). From \cref{wk13:Thm:StoppingProcess}, $\left(S_{n \wedge \tau}, \scF_n\right)$ is a martingale. We therefore have
\begin{align*}
\E S_{n \wedge \tau} = \E S_0 = 0.
\end{align*}
Suppose $S_n$ has not hit $-B$ yet. Then, a sequence of $A+B$ realizations of $X_i=1$ will make the sum hit $A$. Let $E_k = \set*{X_i=1\given i \in \big[k(A+B), (k+1)(A+B)\big)}$, which are independent for all $k\geq0$. We have
\begin{align*}
\P(\tau > n(A+B)) \leq \P(\bigcap_{k=0}^{n-1} E_k\setcomp) = \left(1 - \frac{1}{2^{A+B}}\right)^n.
\end{align*}
Furthermore,
\begin{align*}
\E \tau &= \sum_{k=1}^\infty \P(\tau \geq k) \\
&\leq \sum_{n=0}^\infty \P(\tau > n(A+B))(A+B) \\
&\leq (A+B) \sum_{n=0}^\infty \left(1 - \frac{1}{2^{A+B}}\right)^n \\
&< \infty.
\end{align*}
Therefore, $\tau < \infty$ a.s. We also have $\abs{S_{n \wedge \tau}} \leq \max \{A, B\}$. From DCT, we then obtain
\begin{align*}
0= \lim_{n \to \infty} \E S_{n \wedge \tau}
&= \E S_\tau
= A\P(S_\tau = A) - B(1 - \P(S_\tau = A))\\
&\implies
\P(S_\tau = A) = \frac{B}{A+B}.
\end{align*}
We will see another way to prove $\tau<\infty$ a.s.\ in \cref{wk15:ex:rw}.
\end{Example}
\begin{Example}
Let $M_n = S_n^2 - n$ and $(M_n, \scF_n)$ is a martingale (see \cref{ex:wk12_mex_2}) and $\tau$ be the same stopping time as in \cref{wk13:ex:rw}. Then $(M_{n \wedge \tau}, \scF_n)$ is a martingale with $\E M_{n \wedge \tau} = \E M_0 = 0$. We have
\begin{align*}
&\abs{M_{n \wedge \tau}} \leq (A \vee B)^2 + \tau,
\intertext{and since $\tau$ is integrable (see \cref{wk13:ex:rw}), the DCT yields}
&\E M_\tau =\lim_{n \to \infty} \E M_{n \wedge \tau} = 0.
\end{align*}
Therefore, we have $0=\E M_\tau = \E S_\tau^2 - \E\tau$, and
\begin{align*}
\E\tau &= \E S_\tau^2 \\
&= \frac{B}{A+B}A^2 + \frac{A}{A+B}B^2 \\
&= AB.
\end{align*}
\end{Example}
\begin{Example}[Biased random walk]
Let
\begin{align*}
X_i =
\begin{cases}
1 & \text{w.p.}\ p \neq \frac{1}{2}, \\
-1 & \text{w.p.}\ q = 1 - p,
\end{cases}
\end{align*}
for $i \geq 1$ be i.i.d.\ random variables and $\phi(\lambda) = \E e^{\lambda X_1} = p e^\lambda + q e^{-\lambda}$. Let
\begin{align*}
M_n = \frac{e^{\lambda S_n}}{\phi(\lambda)^n}.
\end{align*}
We choose $\lambda$ such that $\phi(\lambda) = 1 \implies e^\lambda = \dfrac{q}{p} \implies M_n = e^{\lambda S_n} = \left(\dfrac{q}{p}\right)^{S_n}$. Then $(M_n, \scF_n)$ is a martingale (see \cref{ex:wk12_mex_4}), and so is $(M_{n \wedge \tau}, \scF_n)$, where $\tau$ is the same stopping time as in \cref{wk13:ex:rw}. We have
\begin{align*}
&\E M_{n \wedge \tau} = \E M_0 = 1,\\
& |M_{n \wedge \tau}| \leq (1 \vee q/p)^{A\vee B}.
\end{align*}
From DCT, we have
\begin{align*}
\E M_\tau = \lim_{n \to \infty} \E M_{n \wedge \tau} = 1.
\end{align*}
Denoting $\alpha = \P(S_\tau = A)$, we have
\begin{align*}
\E M_\tau = \alpha\left(\frac{q}{p}\right)^A + (1 - \alpha)\left(\frac{q}{p}\right)^{-B}.
\end{align*}
Therefore, we obtain
\begin{align*}
\alpha = \frac{\left(\frac{q}{p}\right)^B}{\left(\frac{q}{p}\right)^{A+B} - 1}.
\end{align*}
\end{Example}
\section{Doob's Optional Stopping Theorem}
In the previous examples, we have $\E M_\tau = \E M_0$ using the DCT and special properties of the stopping time $\tau$. We want to know when this is true in general. But first, a counterexample.
\begin{Example}[Counterexample]\label{wk13:ex:counter}
Let
\begin{align*}
X_n =
\begin{cases}
2^n & \text{w.p.}\ \frac{1}{2}, \\
-2^n & \text{w.p.}\ \frac{1}{2},
\end{cases}
\end{align*}
for $n \geq 0$ be independent random variables. Then $(S_n, \scF_n)$ is a martingale. Let $\tau = \min \{k \geq 0: S_k > 0\}$. When $\tau = k$, we have $S_\tau = S_k = -1 - 2 - 2^2 - \ldots -2^{k-1} + 2^k = 1$. Therefore, $\E S_\tau = 1 \neq \E S_0 = \E X_0 = 0$.
\end{Example}
Let $\tau$ be a stopping time w.r.t.\ $(\scF_n)$. The $\sigma$-algebra (exercise: verify that it is a $\sigma$-algebra)
\begin{align*}
\scF_\tau = \set*{A \in \scF\given \set*{\tau \leq n} \cap A \in \scF_n, \forall n \geq 0}
\end{align*}
consists of all events that depend on information up to the stopping time $\tau$. We have the following properties:
\begin{enumerate}[(i)]
\item $\tau \in \scF_\tau$ ($\tau$ is measurable w.r.t.\ $\scF_\tau$). This is because $\{\tau \leq n\} \cap \{\tau \leq k\} = \{\tau \leq n \wedge k\} \in \scF_{n \wedge k} \subset \scF_n$ since $\tau$ is a stopping time.
\item If $(M_n)$ is adapted to $(\scF_n)$ and $\tau<\infty$ a.s., then $M_\tau \in \scF_\tau$.
Proof: $\forall B \in \calB, \{\tau \leq n\} \cap \{M_\tau \in B\} = \bigcup_{k \leq n} \{\tau =k\} \cap \{M_k \in B\} \in \scF_n$.
\item Let $\tau, \nu$ be stopping times w.r.t.\ $(\scF_n)$. Then $\{\tau < \nu\}, \{\tau = \nu\}, \{\tau > \nu\} \in \scF_\tau, \scF_\nu$.
\item If $A \in \scF_\nu$, then $A \cap \{\tau \geq \nu\}$, $A \cap \{\tau > \nu\} \in \scF_\tau$.
\item $\tau(\omega) \leq \nu(\omega), \forall \omega \in \Omega \implies \scF_\tau \subset \scF_\nu$.
\end{enumerate}
%
\begin{Theorem}[Optional Stopping Theorem] \label{wk13:thm:optional_stopping}
Let $(M_n, \scF_n)$ be a martingale. Suppose
\begin{enumerate}[(i)]
\item $\tau, \nu < \infty$ are stopping times w.r.t.\ $(\scF_n)$,
\item $\E \abs{M_\tau} < \infty$,
\item $\lim_{n \to \infty} \E \abs{M_n} \indicator{\tau \geq n} = 0$.
\end{enumerate}
Then $\forall A \in \scF_\nu$,
\begin{align*}
\E M_\tau \indicatore{A \cap \{\tau \geq \nu\}} = \E M_\nu \indicatore{A \cap \{\tau \geq \nu\}}.
\end{align*}
\end{Theorem}
An intuitive interpretation is as follows: A martingale $(M_n,\scF_n)$ represents a fair game (e.g., $M_n$ is stock price under an efficient market). A stopping time $\tau$ represents a strategy to stop the game based only on information up to a given time (e.g., to sell off a stock, execute an option, etc.). By taking $A=\Omega$ and $\nu=0$, the theorem says that $\E M_\tau = \E M_0$ for any $\tau$ satisfying the theorem conditions. Thus, there is no ``winning strategy'' in an efficient market! Furthermore, given any two competing strategies $\tau$ and $\nu$, there is no advantage $\nu$ can gain over $\tau$ in terms of expected wealth even on events it has full information about.
In \cref{wk13:ex:counter}, we can check that
\begin{align*}
\E |S_n|\indicator{\tau\geq n} = \P(\tau=n) + (2^{n+1}-1)\P(\tau\geq n+1)= 1,
\end{align*}
which violates the third condition in \cref{wk13:thm:optional_stopping}.
\begin{proof}
For $A \in \scF_\nu$, let $A_n = A \cap \{\nu = n\} \in \scF_n $. We first show that
\begin{align}\label{MtauA}
\E M_\tau \indicatore{A_n \cap \{\tau \geq n\}} = \E M_n \indicatore{A_n \cap \{\tau \geq n\}}.
\end{align}
We have
\begin{align*}
\E M_n \indicatore{A_n \cap \{\tau \geq n\}}
&= \E M_n \indicatore{A_n \cap \{\tau = n\}} + \E M_n \indicatore{A_n \cap \{\tau > n\}} \\
&= \E M_\tau \indicatore{A_n \cap \{\tau = n\}} + \E[ {\E[M_{n+1} \given \scF_n]}\, \indicatore{A_n \cap \{\tau > n\}}] \\
&= \E M_\tau \indicatore{A_n \cap \{\tau = n\}} + \E[ {\E[M_{n+1}\indicatore{A_n \cap \{\tau > n\}} \given \scF_n]} ]\ \ \because \indicatore{A_n \cap \{\tau > n\}} \in \scF_n\\
&= \E M_\tau \indicatore{A_n \cap \{\tau = n\}} + \E M_{n+1} \indicatore{A_n \cap \{\tau \geq n+1\}}.
\end{align*}
By induction, we have for any $m>n$,
\begin{align}
\E M_n \indicatore{A_n \cap \{\tau \geq n\}}
= \E M_\tau \indicatore{A_n \cap \{n \leq \tau < m\}} + \E M_m \indicatore{A_n \cap \{\tau \geq m\}}.\label{wk13:Mtau}
\end{align}
We have
\begin{align*}
&\abs*{\E M_m \indicator{A_n \cap \{\tau \geq m\}}} \leq \E \abs{M_m} \indicatore{\tau \geq m} \xrightarrow{m\to\infty} 0.
\end{align*}
Since $\E |M_\tau| < \infty$, the DCT yields
\begin{align*}
\lim_{m \to \infty} \E M_\tau \indicatore{A_n \cap \{n \leq \tau < m\}}
= \E M_\tau \indicatore{A_n \cap \{\tau \geq n\}}.
\end{align*}
Therefore by letting $m\to\infty$ in \cref{wk13:Mtau}, we obtain \cref{MtauA}. We finally have
\begin{align*}
\E M_\tau \indicatore{A \cap \{\tau \geq \nu\}}
&= \sum_{n \geq 0} \E M_\tau \indicatore{A \cap \{\nu = n\} \cap \{\tau \geq n\}} \\
&= \sum_{n \geq 0} \E M_\tau \indicatore{A_n \cap \{\tau \geq n\}} \\
&\eqa{\cref{MtauA}} \sum_{n \geq 0} \E M_n \indicatore{A_n \cap \{\tau \geq n\}} \\
&= \E M_\nu \indicatore{A \cap \{\tau \geq \nu\}},
\end{align*}
which completes the proof.
\end{proof}
%
Some commonly used special cases of \cref{wk13:thm:optional_stopping} are the following:
\begin{enumerate}
\item Let $\nu=0$ and $A = \Omega$. Then from \cref{wk13:thm:optional_stopping}, we have $\E M_\tau = \E M_0$.
\item If $\tau \leq B < \infty$ is bounded a.s., then the conditions in \cref{wk13:thm:optional_stopping} are satisfied.
\item Suppose $\tau <\infty$. If $\abs{M_n} \leq K < \infty$ is bounded a.s., then the conditions in \cref{wk13:thm:optional_stopping} are satisfied.
\end{enumerate}
If we have stronger conditions on the martingale, we can obtain similar optional stopping results without appealing to \cref{wk13:thm:optional_stopping}. One such result is assuming \emph{bounded} martingale differences.
\begin{Lemma}\label{wk13:lem:M_bdd_diff}
Let $(M_n, \scF_n)$ be a martingale. If $\abs{M_n - M_{n-1}} \leq K <\infty$ a.s.\ and $\E \tau < \infty$, then $\E M_\tau = \E M_0$.
\end{Lemma}
\begin{proof}
We have
\begin{align*}
\abs*{M_{n \wedge \tau} - M_0} = \abs*{\sum_{k=1}^{n \wedge \tau} (M_k - M_{k-1})} \leq K\tau.
\end{align*}
Then, from DCT, we obtain
\begin{align*}
\E M_\tau = \lim_{n \to \infty} \E M_{n \wedge \tau} = \E M_0,
\end{align*}
where the last inequality follows from \cref{wk13:Thm:StoppingProcess}.
\end{proof}
%
\begin{Example}
At each time $n = 1, 2, \ldots$, a monkey chooses one letter randomly and uniformly from the 26 English letters. What is the expected time for the monkey to produce the sequence ``ABRACADABRA''?
Solution: Let $T$ be the first time the monkey produces the desired sequence. One can show that $\E T < \infty$ and hence $T < \infty$ a.s. (hint: see \cref{wk13:ex:rw}). Suppose at each time $j$, a new gambler arrives, bet $1$ that the $j$-th letter is ``A''. If he loses, he leaves. If he wins, he receives a reward of 26, bet all of that on the $(j+1)$-th letter being ``B'', and so on according to the sequence ``ABRACADABRA''. When the end of the sequence is reached, he also leaves. Denote $M_n^j$ as the payoff of gambler $j$ at time $n$. We let $M_n^j =0 $ if $n < j$. we have
\begin{align*}
\E M_n^j \leq 26^{n-j+1} &< \infty.
\end{align*}
If the gambler loses before time $n$, we have
\begin{align*}
\E[M_n^j \given \scF_{n-1}] = 0 = M_{n-1}^j.
\end{align*}
Otherwise, he wins $n - j$ times from $j$ till time $n-1$ and we have
\begin{align*}
\E[M_n^j \given \scF_{n-1}] = 26^{n-j+1}\cdot\frac{1}{26} + 0\cdot \frac{25}{26} = 26^{n-j} = M_{n-1}^j.
\end{align*}
Therefore, $(M_n^j, \scF_n)$ is a martingale. Let $X_0=0$ and $X_n = \sum_{j=1}^n (M_n^j-1)$ for $n\geq1$, which is the total payoff of all gamblers at time $n$. It is clear that $(X_n, \scF_n)$ is a martingale and $\abs{X_n - X_{n-1}} \leq 26^{11} + 26^{4} + 26 < \infty$ (consider the maximum increase or decrease in payoff going from time $n-1$ to $n$). From \cref{wk13:lem:M_bdd_diff} (for the case where the martingale has bounded differences), we have
\begin{align*}
&\E[26^{11} + 26^{4} + 26 - T] = \E X_T = \E X_0 = 0. \\
\implies
&\E T = 26^{11} + 26^{4} + 26.
\end{align*}
\end{Example}
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}