forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14_Submartingales.tex
295 lines (257 loc) · 13.9 KB
/
14_Submartingales.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{3_ProbabilitySpaces}
\externaldocument{4_Random_Variables}
\externaldocument{5_Convergence_and_Independence}
\externaldocument{6_Borel_Cantelli_Lemmas}
\externaldocument{12_Conditional_Expectations}
\externaldocument{13_Optional_Stopping}
\begin{document}
\handout{14}{Submartingales}
\section{Submartingales}
\begin{Definition}
Consider a probability space $(\Omega, \scF, \P)$ and a filtration $\scF_0 \subset \scF_1 \subset \ldots \subset \scF$. Suppose $X_n \in \scF_n$ and $\E|X_n|<\infty$. If for all $m\geq n$, $\E[X_m \given \scF_n] \geq X_n$, then we say that $(X_n,\scF_n)_{n\geq0}$ is a \emph{submartingale}. If $\E[X_m \given \scF_n] \leq X_n$, $(X_n,\scF_n)_{n\geq0}$ is called a \emph{supermartingale}.
\end{Definition}
The same proof as in \cref{wk12:MTT} shows that the martingale transform w.r.t.\ a predictable sequence $(A_n)$, which is bounded and non-negative, of a submartingale or supermartingale remains as a submartingale or supermartingale, respectively.
\begin{Theorem}[MTT] \label{wk14:MTT}
If $(A_n)$ is predictable w.r.t.\ $(\scF_n)$, non-negative and bounded, and $(X_n,\scF_n)_{n\geq0}$ is a submartingale (supermartingale), then $(\widetilde{X}_n, \scF_n)_{n\geq0}$ is a submartingale (supermartingale).
\end{Theorem}
\begin{Example}
In a casino game, let $X_n$ be the amount of money you win at time $n$ if you had bet one dollar at each time, starting with $X_0=0$. Recall that a predictable sequence $(A_n)$ is a gambling strategy so that the winnings at time $n$ is
\begin{align*}
\widetilde{X}_n = \sum_{k=1}^n A_k(X_k-X_{k-1}).
\end{align*}
Suppose that $M_n = X_n - X_{n-1} \in \set{-1,1}$ has distribution $\Bern{p}$. Your friend claims that a ``sure-win'' strategy is to choose $A_1=1$ and for $n\geq2$,
\begin{align*}
A_n = \left\{
\begin{array}{ll}
2A_{n-1} &\ \text{if $M_{n-1}=-1$},\\
1 &\ \text{if $M_{n-1}=1$}.
\end{array} \right.
\end{align*}
Assuming that $p>0$, $\{M_n=1 \io\}$ has probability one. Once $M_n=1$, the above strategy recoups all your previous losses with a winning of $-1-2 - \ldots - 2^{n-1} + 2^n = 1$. Therefore, this strategy seems to suggest you can always beat the house. But if $M_n$ is a supermartingale (i.e., $\E[M_m \given \scF_n] \leq M_n$ for $m\geq n$ and this is usually true has the house incorporates some advantages), then $\widetilde{M}_n$ is also a supermartingale. This means \emph{no strategy} can beat the house, in an expectation sense. Many gamblers have gone bankrupt using the above strategy!
\end{Example}
\begin{Lemma}\label{wk14:fnM}
Suppose $f : \Real \mapsto \Real$ is convex, $(X_n,\scF_n)_{n\geq0}$ is an adaptation with $\E|f(X_n)| <\infty$ for all $n\geq0$. Then if either
\begin{enumerate}[i)]
\item $(X_n,\scF_n)_{n\geq0}$ is a martingale; or
\item $(X_n,\scF_n)_{n\geq0}$ is a submartingale and $f$ is increasing,
\end{enumerate}
then $(f(X_n),\scF_n)_{n\geq0}$ is a submartingale.
\end{Lemma}
\begin{proof}
To prove i), from Jensen's inequality, for $n\leq m$, we have $f(X_n) = f(\E[X_m \given \scF_n]) \leq \E[f(X_m) \given \scF_n]$. The proof of ii) is similar.
\end{proof}
\begin{Theorem}\label{wk14:Doob's decomposition}
A submartingale $(X_n,\scF_n)_{n\geq0}$ can be decomposed a.s.\ uniquely as $X_n = Y_n + Z_n$, where $(Y_n,\scF_n)_{n\geq0}$ is a martingale and $(Z_n)_{n\geq0}$ is predictable with $Z_0=0$ and $Z_n\leq Z_{n+1}$ a.s.
\end{Theorem}
\begin{proof}
We first construct a decomposition as follows: Let $Z_0=0$,
\begin{align*}
Z_n=\sum_{k=1}^n \E[X_k-X_{k-1} \given \scF_{k-1}]
\end{align*}
and $Y_n=X_n-Z_n$. By our construction, $Z_n \in \scF_{n-1}$ is predictable and since
\begin{align*}
\E[X_k-X_{k-1} \given \scF_{k-1}] = \E[X_k \given \scF_{k-1}] - X_{k-1} \geq 0,
\end{align*}
we have $Z_n \leq Z_{n+1}$ a.s. Furthermore, $Z_n - Z_{n-1} = \E[X_n \given \scF_{n-1}] - X_{n-1}$ and we obtain
\begin{align*}
\E[Y_n \given \scF_{n-1}] = \E[X_n - Z_n \given \scF_{n-1}] = \E[X_n \given \scF_{n-1}] - Z_n = X_{n-1} - Z_{n-1}= Y_{n-1},
\end{align*}
showing that $Y_n$ is a martingale.
To show uniqueness, we proceed by induction. The requirement that $Z_0=0$ implies that $Y_0=X_0$ uniquely. Suppose the decomposition is unique a.s.\ up to $X_{n-1}$. Then for any decomposition $X_n = Y_n + Z_n$ meeting the criteria,
\begin{align*}
Z_n = \E[Z_n \given \scF_{n-1}] = \E[X_n - Y_n \given \scF_{n-1}] = \E[X_n \given \scF_{n-1}] - Y_{n-1},
\end{align*}
because $Y_n$ is a martingale. This implies that $Z_n$ is unique a.s., and hence so is $Y_n = X_n - Z_n$. The proof is now complete.
\end{proof}
\section{Doob's Inequalities}
\begin{Theorem}[Doob's maximal inequality]\label{wk14:Doob's maximal inequaltiy}
Suppose $(X_n,\scF_n)_{n\geq0}$ is a non-negative submartingale. Let $X_n^* = \max_{0\leq k \leq n} X_k$. Then for all $\lambda \geq 0$,
\begin{align}
\lambda \P(X_n^* \geq \lambda) \leq \E X_n\indicator{X_n^*\geq\lambda} \leq \E X_n.
\end{align}
\end{Theorem}
\begin{proof}
Let $\tau = \inf\set{k \given X_k\geq\lambda}$ be a stopping time. Then $\set{X_n^* \geq\lambda} = \set{\tau\leq n}$ and
\begin{align}\label{tauX}
\lambda \indicator{\tau\leq n} \leq X_\tau \indicator{\tau \leq n} = \sum_{k=0}^n X_k\indicator{\tau=k}.
\end{align}
Since $X_k \leq \E[X_n \given \scF_k]$ $\forall k \leq n$ and $\set{\tau=k}\in\scF_k$, $\E X_k\indicator{\tau=k} \leq \E X_n\indicator{\tau=k}$ for all $k \leq n$. Taking expectations in \cref{tauX}, we obtain
\begin{align*}
\lambda \P(\tau\leq n)
&\leq \E\sum_{k=0}^n X_k\indicator{\tau=k} \\
&\leq \E\sum_{k=0}^n X_n\indicator{\tau=k} \\
&= \E X_n\indicator{\tau\leq n} \\
&= \E X_n \indicator{X_n^*\geq\lambda}\\
&\leq \E X_n.
\end{align*}
\end{proof}
\begin{Corollary}
For $\lambda>0$ and $p\geq 1$,
\begin{align*}
\P(X_n^* \geq\lambda) \leq \ofrac{\lambda^p} \E X_n^p.
\end{align*}
\end{Corollary}
\begin{proof}
From \cref{wk14:fnM}, $(X_n^p)$ is a non-negative submartingale. We then apply \cref{wk14:Doob's maximal inequaltiy}.
\end{proof}
\begin{Example}
Suppose $X_i$, $i\geq1$ are independent with $\E X_i=0$. From \cref{ex:wk12_mex_1}, $S_n$ is a martingale. Doob's maximal inequality (or its corollary) recovers Kolmogorov's maximal equality:
\begin{align*}
\P(\max_{1\leq k\leq n} |S_k| \geq \lambda) \leq \ofrac{\lambda^2} \E S_n^2.
\end{align*}
\end{Example}
Let $p\geq 1$. A r.v. $X \in L^p$ if $\norm{X}_p = \braces*{\E |X|^p}^{1/p} <\infty$. H\"older's inequalty says that for $1\leq p <\infty$, $\odfrac{p} + \odfrac{q} =1$ (i.e., $q=\dfrac{p}{p-1}$), then for any r.v.s $X, Y$,
\begin{align*}
\norm{XY}_1 \leq \norm{X}_p\norm{Y}_q.
\end{align*}
\begin{Lemma}\label{wk14:normXY}
Suppose $X, Y\geq 0$, $\E Y^p < \infty$ for $p>1$ and for all $\lambda\geq 0$, we have
\begin{align*}
\lambda\P(X\geq\lambda) \leq \E Y\indicator{X\geq\lambda}.
\end{align*}
Then,
\begin{align}\label{normXY}
\norm{X}_p \leq \frac{p}{p-1} \norm{Y}_p.
\end{align}
\end{Lemma}
\begin{proof}
Let $X_n = X\wedge n$. We use the fact that
\begin{align*}
z^p = p \int_0^z x^{p-1} \ud x = p \int_0^\infty x^{p-1}\indicator{z\geq x}\ud x
\end{align*}
to obtain
\begin{align*}
\E X_n^p
&= \E[ p\int_0^\infty x^{p-1}\indicator{X_n\geq x} \ud x] \\
&\eqa{\text{Fubini}} p \int_0^\infty x^{p-1} \P(X_n\geq x) \ud x \\
&\leq p \int_0^\infty x^{p-2} \E[Y\indicator{X\geq x}] \ud x\ \text{ since $\set{X_n\geq x}\subset\set{X\geq x}$} \\
&\eqa{\text{Fubini}} p \E[Y \int_0^\infty x^{p-2}\indicator{X\geq x} \ud x] \\
&= \frac{p}{p-1} \E[YX^{p-1}] \\
&\lea{\text{H\"older}} \frac{p}{p-1} \norm{Y}_p \norm{X}_p^{p-1}.
\end{align*}
Therefore, from Fatou's lemma,
\begin{align*}
\norm{X}_p^p \leq \liminf_{n\to\infty} \E X_n^p \leq \frac{p}{p-1} \norm{Y}_p \norm{X}_p^{p-1},
\end{align*}
and we obtain \cref{normXY} (the case $\norm{X}_p=0$ is trivial).
\end{proof}
\begin{Theorem}[Doob's $L^p$ inequality]\label{wk14:DoobLp}
If $(X_n,\scF_n)$ is a non-negative submartingale, then for all $p>1$,
\begin{align}
\norm{X_n^*}_p \leq \frac{p}{p-1} \norm{X_n}_p.
\end{align}
\end{Theorem}
\begin{proof}
We apply \cref{wk14:normXY} with $X=X_n^*$ and $Y=X_n$, together with Doob's maximal inequality (\cref{wk14:Doob's maximal inequaltiy}).
\end{proof}
\cref{wk14:Doob's maximal inequaltiy,wk14:DoobLp} require $(X_n,\scF_n)$ to be non-negative. For a general submartingale $(X_n,\scF_n)$, we can apply these results to $(X_n^+, \scF_n)$ since this is a non-negative submartingale from \cref{wk14:fnM}.
\cref{wk14:DoobLp} holds only for $p>1$. Indeed, there is no corresponding result for $p=1$ as shown in the following example.
\begin{Example}
Consider the random walk in \cref{wk13:ex:rw} with $S_0=0$. Take $B=1$ and $\tau=\inf\set{n\given S_n=-1}$. Let $X_n = S_{n\wedge \tau}$. Then using a result in \cref{wk13:ex:rw} in the second equality below, we have
\begin{align*}
& \E[\max_{m\geq0} X_m] = \sum_{A=1}^\infty \P(\max_{m\geq0} X_m \geq A) = \sum_{A=1}^\infty \ofrac{A+1}=\infty.
\end{align*}
The MCT then implies that $\E[\max_{0\leq m \leq n} X_m] \to \infty$ as $n\to\infty$.
\end{Example}
\section{Uniform Integrability}
\begin{Definition}
A collection of r.v.s $(X_n)_{n\in N}$ is uniformly integrable if
\begin{align}
\sup_{n\in N} \E |X_n|\indicator{|X_n|>K} \to 0,
\end{align}
as $K\to\infty$.
\end{Definition}
If $(X_n)_{n\in N}$ is uniformly integrable, then for $K$ sufficiently large, we have $\sup_{n\in N} \E |X_n|\indicator{|X_n|>K}\leq 1$ and $\sup_n \E|X_n| \leq K+1 <\infty$ is uniformly bounded. Clearly, the converse is false.
\begin{Example}
If $|X_n|\leq Y$, $\forall n\in N$, and $\E Y <\infty$, then
\begin{align*}
\E|X_n|\indicator{|X_n|>K} \leq \E Y\indicator{Y > K} \to 0,
\end{align*}
as $K\to\infty$ from DCT. Therefore $(X_n)_{n\in N}$ is uniformly integrable.
\end{Example}
\begin{Lemma}\label{wk14:ABound}
If $X \in L^1$, then $\forall\epsilon>0$, $\exists\delta>0$ such that if $\P(A)\leq\delta$, then $\E|X|\indicatore{A} \leq \epsilon$.
\end{Lemma}
\begin{proof}
If $\P(A)\leq\delta$, we have for all $K>0$,
\begin{align*}
\E|X|\indicatore{A} \leq K\P(A) + \E|X|\indicator{|X|>K} \leq K\delta + \E|X|\indicator{|X|>K}.
\end{align*}
Choose $K$ sufficiently large so that $\E|X|\indicator{|X|>K}\leq \dfrac{\epsilon}{2}$ and set $\delta=\dfrac{\epsilon}{2K}$. Then from above, we have $\E|X|\indicatore{A} \leq \epsilon$.
\end{proof}
\begin{Proposition}
Let $X \in L^1(\Omega,\scF,\P)$. Then $\set*{\E[X]{\scF'} \given \text{$\scF'$ is a $\sigma$-algebra $\subset \scF$}}$ is uniformly integrable.
\end{Proposition}
\begin{proof}
Fix $\epsilon>0$ and choose $\delta>0$ as in \cref{wk14:ABound}. Pick $K$ large so that $\E|X|/K \leq \delta$. Let $Y=\E[X]{\scF'}$. From Jensen's inequality, $|Y| \leq \E[|X|]{\scF'}$, therefore we have
\begin{align*}
\E[|Y|\indicator{|Y|>K}]
&\leq \E[ \E[|X|]{\scF'} \indicator{\E[|X|]{\scF'} > K}] \\
&= \E|X|\indicator{\E[|X|]{\scF'} > K}\quad \text{since $\set{\E[|X|]{\scF'} > K} \in \scF'$} \\
&\leq \epsilon,
\end{align*}
where the last inequalty follows from \cref{wk14:ABound} as $\P(\E[|X|]{\scF'} > K) \leq \E|X|/K \leq \delta$.
\end{proof}
\begin{Proposition}
Suppose $\varphi : \Real\mapsto\Real_+$ is such that $\lim_{x\to\infty} \dfrac{\varphi(x)}{x} = \infty$. (Examples include $\varphi(x)=x^p$, for $p>1$ and $\varphi(x)=x\log^{+}x$.) If $\E\varphi(|X_n|) \leq C <\infty$, then $(X_n)_{n\in N}$ is uniformly integrable.
\end{Proposition}
\begin{proof}
Let $\epsilon_K = \sup\set{x/\varphi(x)\given x\geq K}$. Note that $\epsilon_K\to 0$ as $K\to\infty$ because for any $\epsilon>0$, $\exists K$ sufficiently large so that $x/\varphi(x) \leq \epsilon$ for all $x>K$. Then we have
\begin{align*}
\E|X_n|\indicator{|X_n|>K} \leq \epsilon_{K} \E[\varphi(|X_n|)\indicator{|X_n|>K}] \leq C\epsilon_K \to 0,
\end{align*}
as $K\to\infty$.
\end{proof}
\begin{Lemma}\label{wk14:L1_ui}
Suppose $\E|X_n|<\infty$ for all $n\in N$ and $\E|X|<\infty$, then the following are equivalent:
\begin{enumerate}[(i)]
\item\label{wk14:L1_ui:L1} $X_n \to X$ in $L^1$, i.e., $\E|X_n-X| \to 0$ as $n\to\infty$.
\item\label{wk14:L1_ui:ui} $(X_n)_{n\in N}$ is uniformly integrable and $X_n \convp X$.
\item\label{wk14:L1_ui:p} $X_n \convp X$ and $\E|X_n| \to \E|X|$.
\end{enumerate}
\end{Lemma}
\begin{proof}
We show $\ref{wk14:L1_ui:ui} \implies \ref{wk14:L1_ui:L1} \implies \ref{wk14:L1_ui:p} \implies \ref{wk14:L1_ui:ui}$.
$\ref{wk14:L1_ui:ui} \implies \ref{wk14:L1_ui:L1}$: $\forall\epsilon > 0$, $K>0$, we have
\begin{align*}
\E|X_n - X|
&\leq \epsilon + \E|X_n-X|\indicator{|X_n-X|>\epsilon}\\
&\leq \epsilon + \E|X_n|\indicator{|X_n-X|>\epsilon} + \E|X|\indicator{|X_n-X|>\epsilon} \\
&\leq \epsilon + 2K\P(|X_n-X|>\epsilon) + \E|X_n|\indicator{|X_n|>K} + \E|X|\indicator{|X|>K}
\intertext{and}
\limsup_{n\to\infty} \E|X_n - X| &\leq \epsilon + \sup_n \E|X_n|\indicator{|X_n|>K} + \E|X|\indicator{|X|>K}.
\end{align*}
Taking $\epsilon \to 0$ and $K\to\infty$ completes the proof.
$\ref{wk14:L1_ui:L1} \implies \ref{wk14:L1_ui:p}$: From Markov's inequality, for any $\epsilon>0$, we obtain $\P(|X_n-X|>\epsilon) \leq \odfrac{\epsilon} \E|X_n-X| \to 0$ as $n\to\infty$. We also have
\begin{align*}
\abs*{\E|X_n| - \E|X|} \leq \E\abs*{|X_n| - |X|} \leq \E|X_n-X| \to 0,
\end{align*}
as $n\to\infty$.
$\ref{wk14:L1_ui:p} \implies \ref{wk14:L1_ui:ui}$: For any $\epsilon>0$, $\exists n_0$ such that $\forall n\geq n_0$, $\E|X_n| \leq \E|X|+\epsilon/2$. Let
\begin{align*}
\phi_K(x) = \left\{
\begin{array}{ll}
x, & \text{ for $x\in[0,K-1]$}, \\
0, & \text{ for $x> K$}, \\
\text{linear}, & \text{ for $x\in[K-1,K]$}.
\end{array}
\right.
\end{align*}
Then from the DCT, for $K$ sufficiently large,
\begin{align*}
\E|X| - \E\phi_K(|X|) \leq \epsilon.
\end{align*}
Since $\phi_K$ is continuous, the DCT also yields $\E\phi_K(|X_n|) \to \E\phi_K(|X|)$ as $n\to\infty$. Therefore, since $x \geq \phi_K(x) + x\indicator{x>K}$ for all $x\geq0$, we have
\begin{align*}
\E|X_n|\indicator{|X_n|>K}
&\leq \E|X_n| - \E\phi_K(|X_n|)\\
&\leq \E|X| - \E\phi_K(|X|) + \epsilon\\
&\leq 2\epsilon,
\end{align*}
for all $n$ and $K$ sufficiently large and the proof is complete.
\end{proof}
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}