forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_BasicRealAnalysis_I.tex
243 lines (202 loc) · 10 KB
/
1_BasicRealAnalysis_I.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\begin{document}
\handout{1}{Basics of Real Analysis - I}
\section{Introduction}
This basic real analysis introduction covers topics in sequences, compact spaces and continuity. Recommended textbook is ``Principles of Mathematical Analysis'' by Walter Rudin.
\section{Sequences}
Inner product space $\subset$ normed space $\subset$ metric space $\subset$ topological space. Working with metric spaces suffices for our purposes.
\begin{Definition}
A metric space is an ordered pair $\left(\calX, d\right)$ where $\calX$ is a set and $d$ is a metric on $\calX$, such that $\forall x, y, z \in \calX$, the following holds:
\begin{enumerate}[1)]
\item $d(x,y) \geq 0$, where equality holds iff $x=y$.
\item $d(x,y)=d(y,x)$.
\item Triangle inequality: $d(x,y) \leq d(x,z) + d(y,z)$.
\end{enumerate}
\end{Definition}
\begin{Example} Examples of metric space:
\begin{itemize}
\item $\left(\bbR, |x-y|\right)$ (normed space)
\item $\left(\bbR^k, \norm{x-y}_p\right)$, where $p \geq 1$ (normed space)
\item $\ell^p(\Real) = \set*{ x = (x_n)_{n\geq1} \given \norm{x}_p=\parens*{\sum_{n\geq1} |x_n|^p}^{1/p} < \infty}$ (normed space)
\item $\parens{\calX, d}$, where $d(x,y)=0$ if $x=y$ and $d(x,y)=1$ otherwise.
\end{itemize}
\end{Example}
We write $(x_n)$ or $(x_n)_{n\geq1}$ as shorthand for the sequence $x_1, x_2, \ldots$.
\begin{Definition}
For $(x_n) \subset \calX$, we say that $x_n \to x$ as $n\to\infty$ or $\lim_{n\to\infty} x_n=x$ if
\begin{align*}
\forall \epsilon>0,\ \exists N\ \st d(x_n, x) < \epsilon,\ \forall n \geq N.
\end{align*}
\end{Definition}
\begin{Definition}
We say $x_n$ diverges to $\infty$ if there exists $x_0\in\calX$ and
\begin{align*}
\forall K\geq 0,\ \exists N\ \st d(x_n,x_0) \geq K,\ \forall n\geq N.
\end{align*}
\end{Definition}
We define extended real numbers $\overline{\Real} = \bbR \cup \{-\infty, \infty\}.$ For $x \in \bbR$, we have:
\begin{enumerate}[1)]
\item $x + \infty = \infty$
\item $x - \infty = -\infty$
\item $x \cdot \pm\infty = \pm\infty, \forall x > 0$
\item $0 \cdot \pm\infty = 0$ (by convention)
\end{enumerate}
The following lemmas are based on $(\Real, \abs{\cdot})$ but most can be generalized to $(\calX,d)$.
\begin{Lemma}\label{wk1:unique}
If $(a_n)$ converges, then its limit is unique.
\end{Lemma}
\begin{proof}
Supposing $a_n \to a$ and $a_n \to a^\prime$, we have
\begin{align*}
\forall \epsilon > 0,\ \exists N\ \st &|a_n - a| < \epsilon \text{ and } |a_n - a^\prime| < \epsilon,\ \forall n \geq N.
\end{align*}
By the triangle inequality, we obtain:
\begin{align*}
|a - a^\prime| \leq |a_n - a| + |a_n - a^\prime| < 2\epsilon.
\end{align*}
Since $\epsilon$ is arbitrary, $a = a^\prime$.
\end{proof}
\begin{Lemma}\label{lem:conv_bdd}
If $(a_n)$ converges, $|a_n| < \infty$.
\end{Lemma}
\begin{proof}
Supposing $a_n \to a$, $\exists N$, $\st |a_n - a| < 1$, $\forall n \geq N$. Then we obtain
\begin{align*}
|a_n| &\leq |a| + 1, \forall\ n \geq N, \\
\end{align*}
and
\begin{align*}
|a_n| &\leq \max \{a_1, \ldots, a_{N-1}, |a|+1\} < \infty.
\end{align*}
\end{proof}
\begin{Lemma}\label{lem:inc_bdd}
If $(a_n)$ is increasing (i.e., $a_{n+1} \geq a_n$ for all $n\geq1$) and is bounded above, then $(a_n)$ converges.
\end{Lemma}
\begin{proof}
To prove the lemma, we need some definitions. We define $\sup{A}$ = least upper bound (LUB) of $A$ if $ A\neq \emptyset$ and $A \subset\Real$, i.e.,
\begin{enumerate}[1)]
\item $\forall a \in A$, $a \leq \sup{A}$.
\item if $\gamma < \sup{A}$, $\exists a \in A$, $\st \gamma < a$. \label{item_supA}
\end{enumerate}
For the definition to be well-defined, we need the \rm{LUB/Completeness axiom}: $\sup{A}$ exists in $\Real$ for all $A\ne\emptyset$ bounded above. (Note that this axiom does not hold for $\bbQ$.) If $A$ is not bounded above, we set $\sup A = \infty$. From \cref{item_supA}, we obtain a useful property:
\begin{align*}
\forall \epsilon > 0,\ \exists a \in A,\ \st \sup{A} - \epsilon < a.
\end{align*}
The greatest lower bound of $A$ is written as $\inf A$.
Returning to the proof of the lemma, let $a = \sup{a_n} < \infty$ since $(a_n)$ is bounded. We have
\begin{align*}
&\forall \epsilon > 0,\ \exists N,\ \st a - \epsilon \leq a_N \leq a_n \leq a,\ \forall n \geq N. \\
&\implies a_n \to a.
\end{align*}
\end{proof}
Applying \cref{lem:inc_bdd} to the negative of a sequence, we also conclude that any decreasing sequence that is bounded below converges.
\begin{Remark}\
\begin{enumerate}
\item If $a_n\in \overline{\Real}_+$ and is increasing, then $\lim_{n\to\infty} a_n$ exists (maybe $\infty$).
\item If $a_n\in\Real_+$, then from \cref{lem:inc_bdd}, $\sum_{k=1}^\infty a_k \triangleq \lim_{n\to\infty} \sum_{k=1}^n a_k$ exists.
\end{enumerate}
\end{Remark}
\begin{Definition}
A subsequence of $(a_n)$ is a sequence $(a_{n_i})$, where $n_1 < n_2 < \ldots$ is an increasing sequence of indices.
\end{Definition}
\begin{Lemma}\label{wk1:subseq}
If $a_n \to a \iff a_{n_i} \to a$, for all subsequences $(a_{n_i})$.
\end{Lemma}
\begin{proof}
The direction ``$\Leftarrow$'' is obvious. To prove the other direction, we have $\forall \epsilon > 0$, $\exists N$ $\st |a_n - a| < \epsilon,\ \forall n \geq N$. Therefore, $\forall n_i \geq N$, $|a_{n_i} - a| < \epsilon$.
\end{proof}
\begin{Lemma}\label{lem:mono_sub}
Every sequence $(a_n)$ in $\bbR$ has a monotone subsequence.
\end{Lemma}
\begin{proof}
Suppose there are no increasing subsequences. Then, $\exists n_1$, $\st a_{n_1} \geq a_n$, $\forall n \geq n_1$. Similarly, $\exists n_2 > n_1$, $\st a_{n_2} \geq a_n$, $\forall n \geq n_2$, and so on. This constructs a decreasing subsequence $a_{n_1} \geq a_{n_2} \geq \ldots$.
\end{proof}
\begin{Lemma}\label{lem:bdd_conv}
Every bounded sequence in $\bbR$ contains a convergent subsequence.
\end{Lemma}
\begin{proof}
From \cref{lem:mono_sub}, a bounded sequence has a monotone subsequence, which converges from \cref{lem:inc_bdd}.
\end{proof}
Let $S =$ set of subsequence limits of $(a_n) \subset \overline{\Real}$. We define $\limsup_{n \to \infty} {a_n}=\sup{S}$, and $\liminf_{n \to \infty}{a_n}=\inf{S}$. We have
\begin{align*}
\forall \epsilon > 0,\ \exists s \in S,\ \st \sup{S} - \epsilon/2 \leq s \leq \sup{S}.
\end{align*}
Let $a_{n_i} \to s$ (can you see why such a subsequence must exist?) so that
\begin{align*}
\forall \epsilon > 0,\ \exists N,\ \st |a_{n_i} - s| < \epsilon/2,\ \forall n_i > N.
\end{align*}
Therefore,
\begin{align*}
&|a_{n_i} - \sup{S}| \leq |a_{n_i} - s| + |s - \sup{S}| < \epsilon,
\end{align*}
which implies that $\sup{S} \in S$ and $\sup{S} = \max{S}$, i.e., $\limsup_{n\to\infty} a_n$ exists. Similarly, we have $\inf{S} = \min{S}$.
\begin{Lemma}
Suppose $s = \limsup_{n \to \infty}{a_n} > -\infty$. Then $\forall \epsilon > 0$, $\exists N$ $\st a_n \leq s + \epsilon$, $\forall n \geq N$.
\end{Lemma}
\begin{proof}
If $s = \infty$, the lemma obviously holds. Suppose $s < \infty$. We prove by contradiction. Suppose $\exists \epsilon > 0$ and subsequence $(a_{n_i})$ $\st a_{n_i} > s + \epsilon$. Since $s < \infty$, $(a_{n_i})$ is bounded. Then from \cref{lem:bdd_conv}, $\exists \text{subsubsequence } (a_{n_i'})$, $\st a_{n_i'} \to a' \geq s + \epsilon > s$, a contradiction to the definition of $s$.
\end{proof}
\begin{Lemma}\label{wk1:limsup_infsup}
$\displaystyle\limsup_{n \to \infty} a_n = \inf_{n\geq1} \sup_{m\geq n}{a_m}$ and $\displaystyle\liminf_{n \to \infty}a_n = \sup_{n\geq1} \inf_{m\geq n}{a_m}$.
\end{Lemma}
\begin{proof}
If $\limsup_{n \to \infty} a_n = \pm \infty $, then the result clearly holds. Suppose $-\infty < \limsup_{n \to \infty} a_n = \sup S < \infty$, where $S$ is the set of subsequential limits.
For any $\epsilon > 0$, there exists a subsequence $(a_{n_i})$ $\st \sup{S} - \epsilon \leq a_{n_i}$. Then,
\begin{align*}
\sup{S} - \epsilon &\leq \sup_{m \geq n}{a_m},\ \forall n \geq n_1.
\intertext{Letting $n\to\infty$, we have}
\sup{S} - \epsilon &\leq \lim_{n \to \infty}\sup_{m \geq n}{a_m} = \inf_{n\geq1} \sup_{m\geq n}{a_m},
\end{align*}
since $\sup_{m \geq n}{a_m}$ is a decreasing sequence in $n$. As $\epsilon$ is arbitrary, we have
\begin{align*}
\sup S \leq \inf_{n\geq1} \sup_{m\geq n}{a_m}.
\end{align*}
On the other hand, for each $n\geq 1$, $\exists a_{m_n} \geq \sup_{m \geq n}{a_m} - 1/n$. Then we have
\begin{align*}
\sup{S} \geq \lim_{n \to \infty} a_{m_n} \geq \inf_{n \geq 1} \sup_{m \geq n}{a_m}.
\end{align*}
The other claim is proved similarly and the proof is now complete.
\end{proof}
\section{Cauchy Sequences}
\begin{Definition}
A sequence $(a_n)$ is a Cauchy sequence if $\forall \epsilon > 0$, $\exists N$ $\st d(a_n, a_m) < \epsilon$, $\forall n,m \geq N$.
\end{Definition}
\begin{Lemma}
If $(a_n)$ converges, then it is Cauchy.
\end{Lemma}
\begin{proof}
Suppose $a_n\to a$. Then $\forall \epsilon >0$, $\exists N\ \st d(a_n,a) < \epsilon/2\ \forall n\geq N$. Then $\forall n,m \geq N$, we have
\begin{align*}
d(a_n, a_m) \leq d(a_n,a) + d(a_m,a) < \epsilon.
\end{align*}
\end{proof}
\begin{Definition}
A metric space $(\calX, d)$ in which every Cauchy sequence converges in $\calX$ is complete.
\end{Definition}
Example of an incomplete space is $\Rat$, the set of rational numbers: for every irrational number, one can construct a sequence of rational numbers that converges to it.
\begin{Theorem}\label{wk1:Rcomplete}
$\Real^k$ is complete.
\end{Theorem}
\begin{proof}
WLOG, we prove for $\Real$. We first show 2 lemmas.
\begin{Lemma}\label{lem:Cauchy_bdd}
A Cauchy sequence is bounded.
\end{Lemma}
\begin{proof}
Similar to \cref{lem:conv_bdd}.
\end{proof}
\begin{Lemma}\label{lem:Cauchy_sub}
If $(a_n)$ is Cauchy and there is a subsequence $a_{n_i} \to a$, then $a_n \to a$.
\end{Lemma}
\begin{proof}
For any $\epsilon > 0$, $\exists N$ such that $\forall n, n_i \geq N$,
\begin{align*}
d(a_n, a) \leq d(a_n, a_{n_i}) + d(a_{n_i},a) \leq \epsilon.
\end{align*}
\end{proof}
We now return to the proof of \cref{wk1:Rcomplete}. Let $(a_n)$ be a Cauchy sequence in $\Real$. Then $(a_n)$ is bounded from \cref{lem:Cauchy_bdd}. From \cref{lem:bdd_conv}, there exists a convergent subsequence. \Cref{lem:Cauchy_sub} then implies $(a_n)$ converges and the proof is complete.
\end{proof}
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}