forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_ProbabilitySpaces.tex
339 lines (298 loc) · 17.8 KB
/
3_ProbabilitySpaces.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{1_BasicRealAnalysis_I}
\externaldocument{2_BasicRealAnalysis_II}
\begin{document}
\handout{3}{Probability Spaces}
\section{Introduction}
Recommended reference: ``Probability: Theory and Examples'' by Rick Durrett.
Let $\Omega$ be a sample space. An event is a subset of $\Omega$. We are interested to define a ``likelihood'' or ``chance'' for each event to happen in the future. We call this the probability of the event.
\begin{Example}\label{wk3:example1}
Let $\Omega = [0,1]$, the probability of the event $(a, b]$, where $0\leq a \leq b < 1$ can be defined by
\begin{align*}
\P({(a, b]}) = F(b) - F(a),
\end{align*}
where $F$ is a non-decreasing and right-continuous (we will see later why this is needed) function with
\begin{align*}
&\lim_{x \to 0} F(x) = 0, \\
&\lim_{x \to 1} F(x) = 1.
\end{align*}
However, there are many other events like $\bigcup\limits_{i=1}^{\infty} (a_i,b_i]$ whose probabilities we are interested in. In particular, $\P$ should have the following properties:
\begin{enumerate}[(i)]
\item\label{prop3} $\P(\Omega)=1$.
\item\label{prop1} If $A_1, A_2, \ldots$ are disjoint sets, then
\begin{align*}
\P(\bigcup_{i\geq1} A_i) = \sum_{i\geq1} \P(A_i).
\end{align*}
\item\label{prop2} If $A$ is congruent to $B$ (i.e., $A$ is $B$ transformed by translation, rotation or reflection), then $\P(A)=\P(B)$.
\end{enumerate}
Unfortunately, for these conditions to hold for \emph{all} events would lead to inconsistency. To see why, define an equivalence $x \sim y$ iff $x - y$ is rational. Then $\Omega$ can be partitioned into equivalence classes. Let $N \subset \Omega$ be a subset that contains exactly one member of each equivalence class (we need the axiom of choice here). For each rational number $r \in \bbQ\cap [0,1)$, let
\begin{align*}
N_r = \set*{x+r \given x \in N\cap [0,1-r)} \cup \set*{x+r-1 \given x \in N\cap [1-r,1]},
\end{align*}
i.e., $N_r$ is $N$ translated to the right by $r$ with the part after $[0,1)$ shifted to the front (wrapped around) so that $N_r \subset \Omega=[0,1]$. From properties~\ref{prop1} and \ref{prop2}, we have for any rational $r \in\bbQ\cap [0,1)$,
\begin{align}\label{eq:N_r}
\P(N) = \P(N\cap [0,1-r)) + \P(N\cap [1-r,1)) = \P(N_r).
\end{align}
We also have the following:
\begin{enumerate}
\item Every $x\in\Omega$ belongs to a $N_r$ because if $y\in N$ is an element of the equivalence class of $x$, then $x \in N_r$ where $r = x-y$ if $x\geq y$ or $r=x-y+1$ if $x<y$.
\item Every $x\in\Omega$ belongs to exactly one $N_r$ because if $x\in N_r\cap N_s$ for $r\ne s$, then $x-r$ or $x-r+1$ and $x-s$ or $x-s+1$ would be distinct elements of $N$ belonging to the same equivalence class, contradicting how we chose $N$.
\end{enumerate}
Therefore, $\Omega$ is the disjoint union of $N_r$ over all rational $r\in \bbQ\cap [0,1)$. From properties~\ref{prop3} and \ref{prop1}, we also have $1 = \P(\Omega) = \sum_r \P(N_r)$. But $\P(N_r)=\P(N)$ from \cref{eq:N_r}, so the sum is either $0$ if $\P(N)=0$ or $\infty$ if $\P(N)>0$, a contradiction.
This example shows that it is impossible to define a suitable $\P$ for all possible events, some of which are very weird objects (Banach and Tarski (1924) showed that in $\Real^n$ where $n\geq3$, even stranger subsets can be constructed!). The solution that mathematicians have come up with is to restrict to a collection of subsets \emph{and} a $\P$ with ``nice'' properties, i.e., a $\sigma$-algebra and measure, respectively.
\end{Example}
\section{\txp{$\sigma$}{Sigma}-algebras and Measures}
Let $\calA$ be a collection of events (collection of subsets of $\Omega$).
\begin{Definition}
$\calA$ is an algebra if
\begin{enumerate}[(i)]
\item $\Omega \in \calA$.
\item $A \in \calA \implies A^c = \Omega \setminus A \in \calA$.
\item $A_1, A_2 \in \calA \implies A_1 \cup A_2 \in \calA$. By induction, $A_i \in \calA, \forall i = 1, \ldots, n, \implies \bigcup\limits_{i=1}^{n} A_i \in \calA$.
\end{enumerate}
\end{Definition}
\begin{Definition}
$\calA$ is a $\sigma$-algebra or $\sigma$-field if
\begin{enumerate}[(i)]
\item $\Omega \in \calA$.
\item $A \in \calA \implies A^c = \Omega \setminus A \in \calA$.
\item $A_i \in \calA, \forall i = 1, 2, \ldots \implies \bigcup\limits_{i=1}^{\infty} A_i \in \calA$.
\end{enumerate}
\end{Definition}
$\left(\Omega, \calA\right)$ is called a measurable space if $\calA$ is a $\sigma$-algebra. A set $A \in \calA$ is said to be measurable.
\begin{Definition}
For a measurable space $(\Omega,\calA)$, a function $\P: \calA \mapsto \left[0, 1\right]$ is a probability measure if
\begin{enumerate}[(i)]
\item $\P(\Omega) = 1$.
\item $A_1, A_2, \ldots \in \calA$ with $A_i \cap A_j = \emptyset$, $\forall i \neq j$ $\implies \P(\bigcup\limits_{i=1}^{\infty}A_i) = \sum\limits_{i=1}^{\infty}\P(A_i)$ (countably additive).
\end{enumerate}
\end{Definition}
Let $\calA$ be a $\sigma$-algebra.
\begin{Lemma} \label{wk3:lem:increasing_seq}
Suppose $B_i \in \calA, B_i \subset B_{i+1}, \forall i\geq 1$, then
\begin{align*}
\P(\bigcup\limits_{i=1}^{\infty} B_i) = \lim_{i \to \infty}\P(B_i)
\end{align*}
\end{Lemma}
\begin{proof}
Let $C_1 = B_1, C_i = B_i \cap B_{i-1}^c, \forall i \geq 2$, then the $C_i$'s are disjoint, and we have
\begin{align*}
B_n &= \bigcup\limits_{i=1}^{n} C_i, \\
\bigcup\limits_{i=1}^{\infty} B_i &= \bigcup\limits_{i=1}^{\infty} C_i.
\end{align*}
Then we obtain
\begin{align*}
& \P(\bigcup\limits_{i=1}^{\infty} B_i)
= \P(\bigcup\limits_{i=1}^{\infty} C_i)
= \sum\limits_{i=1}^{\infty} \P(C_i)
= \lim_{n \to \infty} \sum\limits_{i=1}^{n} \P(C_i)
= \lim_{n \to \infty} \P(\bigcup\limits_{i=1}^{n} C_i)
= \lim_{n \to \infty} \P(B_n).
\end{align*}
\end{proof}
\begin{Corollary}
For $A_i \in \calA, \forall\ i=1, 2, \ldots$, we have
\begin{align*}
\lim_{n \to \infty} \P(\bigcup\limits_{i=1}^{n} A_i) = \P(\bigcup\limits_{i=1}^{\infty} A_i).
\end{align*}
\end{Corollary}
\begin{proof}
Let $B_n = \bigcup\limits_{i=1}^n A_i$, which is an increasing sequence. We have $\P(\bigcup\limits_{i=1}^{\infty} A_i) = \P(\bigcup\limits_{n=1}^{\infty} B_n)$. From \cref{wk3:lem:increasing_seq}, we obtain $\P(\bigcup\limits_{n=1}^{\infty} B_n) = \lim\limits_{n \to \infty}\P(B_n) = \lim\limits_{n \to \infty} \P(\bigcup\limits_{i=1}^{n} A_i)$.
\end{proof}
\begin{Corollary}\label{wk3:cor:dec_seq}
For a decreasing sequence $B_i \supset B_{i+1}, \forall\ i\geq1$, we have
\begin{align*}
\P(\bigcap\limits_{i=1}^{\infty} B_i) = \lim_{i \to \infty} \P(B_i).
\end{align*}
\end{Corollary}
%
\begin{proof}
Similar to the proof of \cref{wk3:lem:increasing_seq}.
\end{proof}
\begin{Lemma}
For $A, B \in \calA, A \subset B$, we have $\P(A) \leq \P(B)$.
\end{Lemma}
\begin{proof}
$B = A \cup (B \setminus A) \implies \P(B) = \P(A) + \P(B \setminus A) \geq \P(A)$.
\end{proof}
\begin{Lemma}[Union bound]\label{wk3:lem:union_bound}
For $A_1, A_2, \ldots \in \calA$, we have
\begin{align*}
\P(\bigcup_{i\geq1} A_i) \leq \sum_{i\geq1} \P(A_i).
\end{align*}
\end{Lemma}
\begin{proof}
Let $B_i = A_i \backslash \bigcup_{j<i} A_j$ for $i\geq 1$. Then the $B_i$'s are disjoint, $B_i \subset A_i$, $\bigcup_{i\geq1} A_i = \bigcup_{i\geq1} B_i$ and
\begin{align*}
\P(\bigcup_{i\geq1} A_i)
&= \P(\bigcup_{i\geq1} B_i)\\
&= \sum_{i\geq1} \P(B_i)\\
&\leq \sum_{i\geq1} \P(A_i).
\end{align*}
\end{proof}
In \cref{wk3:example1}, let
\begin{align*}
\calA' = \set*{\bigcup\limits_{i=1}^{n} \left(a_i, b_i\right] \given n \geq 1, \left(a_i, b_i\right] \subset (0, 1], \left(a_i, b_i\right] \cap \left(a_j, b_j\right] = \emptyset, \forall\ i \neq j}.
\end{align*}
Check that $\calA'$ is an algebra. For each element of $\calA'$, we define
\begin{align*}
\P(\bigcup\limits_{i=1}^{n} {(a_i, b_i]}) &= \sum_{i=1}^n \P({(a_i, b_i]})
\end{align*}
for each $n\geq1$. One can show that with this definition, $\P$ is countably additive on $\calA'$, i.e., whenever $A_i \in \calA'$, $i\geq 1$ and $\bigcup_{i\geq 1} A_i \in \calA$ are finite unions of disjoint intervals, we have
\begin{align*}
\P(\bigcup\limits_{i\geq 1} {(a_i, b_i]}) &= \sum_{i\geq 1} \P({(a_i, b_i]}).
\end{align*}
We also have
\begin{align*}
\P({(a, b]})
&= \P(\bigcap\limits_{n=1}^{\infty} {(a, b + 1/n ]}) \\
&= \lim_{n \to \infty} \P({(a, b + 1/n]}) \\
&= \lim_{n \to \infty} \left(F(b+1/n) - F(a) \right) \\
&= F(b) - F(a),
\end{align*}
where the second equality follows from \cref{wk3:cor:dec_seq} and the last equality requires the right-continuity of $F$.
Let $\calA = \sigma(\calA')$ be the $\sigma$-algebra generated by $\calA'$, i.e., the intersection of all $\sigma$-algebras that contain $\calA'$. Note that this is well-defined as a trivial $\sigma$-algebra containing $\calA'$ is the power set of $\Omega$. It is easy to show that $\calA$ is the smallest $\sigma$-algebra containing $\calA'$.
\begin{Theorem}\label{Caratheodory Theorem}
Carath{\'e}odory's Extension Theorem. If $\calA'$ is an algebra, $\P : \calA' \mapsto [0, 1]$ is countably additive on $\calA'$ and $\P(\emptyset)=0$, then $\P$ has a unique extension to $\calA = \sigma(\calA')$.
\end{Theorem}
%
The proof of the existence of such an extension $\P: \calA \mapsto [0,1]$ can be found in the book by Durrett. We focus on the proof of uniqueness here. We make use of the very useful Dynkin's $\pi$-$\lambda$ Theorem.
\begin{Definition}
$\calP$ is a $\pi$-system if $A, B \in \calP \implies A \cap B \in \calP$.
\end{Definition}
\begin{Definition}
$\calL$ is a $\lambda$-system if
\begin{enumerate}[(i)]
\item $\Omega \in \calL$.
\item $A \in \calL \implies A^c = \Omega \setminus A \in \calL$.
\item $A_i \in \calL, \forall\ i\geq1,\ A_i \cap A_j = \emptyset, \forall\ i \neq j \implies \bigcup\limits_{i=1}^{\infty} A_i \in \calL$.
\end{enumerate}
\end{Definition}
\begin{Remark}
If $\calA$ is both a $\pi$-system and $\lambda$-system, then $\calA$ is $\sigma$-algebra.
\end{Remark}
%
\begin{Theorem}[Dynkin's $\pi$-$\lambda$ Theorem] \label{Thm:Dynkin_pi_lambda_thm}
If $\calP$ is a $\pi$-system and $\calL$ is a $\lambda$-system with $\calP \subset \calL$, then $\sigma(\calP) \subset \calL$.
\end{Theorem}
\begin{proof}
Let $\ell(\calP)$ be the smallest $\lambda$-system that contains $\calP$. If $\ell(\calP)$ is a $\pi$-system, $\ell(\calP)$ is a $\sigma$-algebra. Then we have
\begin{align*}
\sigma(\calP) \subset \ell(\calP) \subset \calL.
\end{align*}
Therefore, it suffices to prove that $\ell(\calP)$ is a $\pi$-system. We prove that $\ell(\calP)$ is a $\pi$-system in the following three steps. For any $A \subset \Omega$, let $\calG_A = \{B \subset \Omega : B \cap A \in \ell(\calP) \}$.
Step 1: We show that if $A \in \ell(\calP)$, then $\calG_A$ is $\lambda$-system. This is done by checking the following conditions:
\begin{enumerate}[(i)]
\item $\Omega \cap A = A \in \ell(\calP) \implies \Omega \in \calG_A$.
\item Suppose $B \in \calG_A$. We have $B^c \cap A = \left( \left(B \cap A \right) \cup {A^c} \right)^c$. Then we have
\begin{align*}
B \cap A,\ A^c \in \ell(\calP) \implies \left(B \cap A \right) \cup {A^c} \in \ell(\calP) \implies \left( \left(B \cap A \right) \cup {A^c} \right)^c \in \ell(\calP),
\end{align*}
which implies that $B^c \in \calG_A$.
\item Let $B_i \in \calG_A, \forall\ i = 1, 2, \ldots$ with $B_i \cap B_j = \emptyset, \forall\ i \neq j$. Therefore, $B_i \cap A \in \ell(\calP), \forall\ i = 1, 2, \ldots$ are also disjoint. Then we have
\begin{align*}
\left(\bigcup\limits_{i=1}^{\infty} B_i\right) \cap A = \bigcup\limits_{i=1}^{\infty} (B_i \cap A ) \in \ell(\calP) \implies \bigcup\limits_{i=1}^{\infty} B_i \in \calG_A.
\end{align*}
\end{enumerate}
Step 2: We show that if $B \in \calP \subset \ell(\calP)$, then $\ell(\calP) \subset \calG_B$. Since $\calP$ is a $\pi$-system, we have
\begin{align*}
\forall\ C \in \calP, C \cap B \in \calP \subset \ell(\calP),
\end{align*}
which means that
\begin{align*}
\calP \subset \calG_B,
\end{align*}
where $\calG_B$ is a $\lambda$-system from Step 1 since $B \in \ell(\calP)$. Therefore,
\begin{align} \label{Thm:interm_result2}
\ell(\calP) \subset \calG_B.
\end{align}
Step 3: Consider any $B \in \calP$ and an $A \in \ell(\calP)$. From Step 2, we have $A \in \calG_B$. Therefore, $A \cap B \in \ell(\calP)$ and
\begin{align*}
\calP \subset \calG_A,
\end{align*}
where $\calG_A$ is a $\lambda$-system from Step 1. Thus $\ell(\calP) \subset \calG_A$. This means that for any $C \in \ell(\calP)$, we have
\begin{align*}
C \in \calG_A \implies C \cap A \in \ell(\calP).
\end{align*}
Since $A, C \in \ell(\calP)$, the above result immediately shows that $\ell(\calP)$ is a $\pi$-system.
\end{proof}
We now return to the uniqueness proof of \cref{Caratheodory Theorem}. Suppose $\P_1$ and $\P_2$ are extensions of $\P$ with $\P_1(A) = \P_2(A), \forall\ A \in \calA'$. Let
\begin{align*}
\calL = \{A \in \calA: \P_1(A) = \P_2(A) \}.
\end{align*}
It is easy to see that $\calL$ is a $\lambda$-system due to the properties of probability measures. $\calA'$ is a $\pi$-system since it is an algebra, and $\calA' \subset \calL$ by definition. According to \cref{Thm:Dynkin_pi_lambda_thm}, $\calA = \sigma(\calA') \subset \calL$. Thus, $\P_1 = \P_2$ on $\calA$, meaning the extension is unique on $\calA$.
\section{Regularity}
\begin{Definition} \label{Defns:Borel_sigma_algebra}
Let $(\Omega, d)$ be a metric space. The Borel $\sigma$-algebra is a $\sigma$-algebra generated by the open sets of $\Omega$ (or equivalently, by the closed sets).
\end{Definition}
%
\begin{Lemma}\label{wk3:lem:closed_approx}
Let $\calB$ be the Borel $\sigma$-algebra. Then, $\forall A \in \calB$,
\begin{align} \label{closed_approx}
\P(A) = \sup \set*{ \P(F) \given F \subset A,\, F\ \text{is closed}}.
\end{align}
\end{Lemma}
\begin{proof}
Let
\begin{align*}
\calL = \set*{A \in \calB \given \text{both $A$ and $A^c$ satisfy \cref{closed_approx}}}.
\end{align*}
It can be checked that $\calL$ is a $\lambda$-system (exercise). Let $F$ be closed. It is obvious that $F$ satisfies \cref{closed_approx}. Let $U = F^c$. We show that $U$ also satisfies \cref{closed_approx}. To do this, since $\sup \P(C) \leq \P(U)$ for all closed $C\subset U$, it suffices to show that there is a sequence of closed subsets $F_n\subset U$ such that $\P(U)=\sup_n \P(F_n)$. To this end, for $n\geq 1$, let
\begin{align*}
F_n = \left\{\omega \in \Omega: \min\limits_{x \in F}d(\omega, x) \geq 1/n \right\}.
\end{align*}
Then we have $F_n \subset F_{n+1}$ and $U = \bigcup\limits_{n=1}^{\infty} F_n$. From \cref{wk3:lem:increasing_seq}, we obtain
\begin{align*}
\P(U) = \lim_{n \to \infty} \P(F_n) = \sup\limits_{n \geq 1} \P(F_n).
\end{align*}
Therefore, $U$ satisfies \cref{closed_approx}. As a consequence, $F \in \calL$ for any closed $F$. Since $\calB$ is generated by the closed sets, we have $\calB \in \calL$ and the proof is complete.
\end{proof}
A metric space is separable if it has a countable dense subset, i.e., $\exists \{x_n\}_{n=1}^{\infty}$ such that $\forall \text{open}\ U \subset \Omega$, $x_i \in U$ for some $x_i$. Exercise: show that totally bounded implies separable. The converse is not true (e.g., consider the discrete metric space in \cref{ex:discrete_X}).
\begin{Definition}\label{wk3:def:regular}
We say that a probability measure $\P$ for $(\Omega,\calB)$ is regular if
\begin{align*}
\P(A) = \sup\left\{\P(K): K \subset A, K\ \text{is compact}\right\}
\end{align*}
for all $A\in\calB$.
\end{Definition}
\begin{Theorem}[Ulam]\label{wk3:thm:Ulam}
If $(\Omega, d)$ is a complete separable space with Borel $\sigma$-algebra $\calB$ and probability measure $\P$, then $\P$ is regular.
\end{Theorem}
\begin{proof}
Fix $\epsilon >0$ and let $\{x_i\}_{i\geq 1}$ be a dense subset of $\Omega$. Then for any $m\geq 1$, we have
\begin{align*}
\Omega = \bigcup_{i\geq 1} \overline{B}(x_i,1/m),
\end{align*}
where $\overline{B}(x_i,1/m)$ is the closed ball of radius $1/m$ centered at $x_i$. Since $\P(\Omega)=1$, there exists $n(m)$ sufficiently large so that
\begin{align*}
\P(\Omega\backslash\bigcup_{i=1}^{n(m)} \overline{B}(x_i,\ofrac{m})) \leq \frac{\epsilon}{2^m}.
\end{align*}
Let $K = \displaystyle\bigcap_{m\geq 1}\bigcup_{i=1}^{n(m)} \overline{B}(x_i,1/m)$, which is closed and totally bounded. Since $\Omega$ is complete, $K$ is also complete and hence compact. We then have
\begin{align*}
\P(\Omega\backslash K)
&= \P(\bigcap_{m\geq 1} \left(\Omega\backslash\bigcup_{i=1}^{n(m)} \overline{B}(x_i,1/m)\right))\\
&\leq \sum_{m\geq 1} \frac{\epsilon}{2^m}\\
&\leq \epsilon.
\end{align*}
From \cref{wk3:lem:closed_approx}, for any $A\in\calA$, there exists a closed $F\subset A$ such that $\P(A\backslash F) \leq \epsilon$. Therefore,
\begin{align*}
\P(A\backslash(F\cap K)) \leq 2\epsilon,
\end{align*}
and $F\cap K \subset A$ is a compact set. The theorem is now proved.
\end{proof}
\section{Notes}
\begin{enumerate}[(a)]
\item $([0,1],\calB([0,1]),\lambda)$ is a probability space, where $\lambda((a,b)) = b-a$ is called the Lebesgue measure. This is the uniform distribution on $[0,1]$.
\item Let $f: \Real\mapsto\Real_+$ be a function whose set of discontinuities has Lebesgue measure zero and $\int_{-\infty}^\infty f(x) \ud x=1$. Then $(\Real, \calB(\Real), \P)$ where $\P(A) = \int_A f(x) \ud x$, is a probability space. $f$ is an example of a \emph{probability density function} (pdf).
\item Let $\calX$ be a discrete set. Then $(\calX, 2^\calX, \P)$ where $\P(\{x\}) = p(x)$ with $\sum_{x\in\calX} p(x) =1$, is a probability space. Here, $2^\calX$ denotes the power set of $\calX$, or the collection of all subsets of $\calX$.
\item There exist non-measureable sets, i.e., one cannot assign a measure to these sets without running into logical consistency issues (see \cref{wk3:example1} or Durrett). This is why the existence of probability spaces is non-trivial as we cannot simply define a measure over the power set $2^\Omega$.
\item Exercise: If $A$ is an algebra, then for any $B\in\sigma(A)$, $\exists B_n\in A$ such that
\begin{align*}
\lim_{n\to\infty} \P(B\triangle B_n) = 0,
\end{align*}
where $B\triangle B_n = (B\cup B_n)\setminus(B\cap B_n)$ is the symmetric difference of two sets.
\end{enumerate}
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}