forked from wptay/aipt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_Convergence_and_Independence.tex
371 lines (314 loc) · 17.5 KB
/
5_Convergence_and_Independence.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
\documentclass[12pt]{article}
\input{prob_preamble.tex}
\externaldocument{3_ProbabilitySpaces}
\externaldocument{4_Random_Variables}
\begin{document}
\handout{5}{Convergence and Independence}
\section{Convergence}
\begin{Definition}[Almost sure convergence]
We say $X_n \to X$ almost surely (a.s.) or with probability~1 if
\begin{align*}
\P (\set*{\omega: \lim_{n \to \infty} {X_n(\omega)=X(\omega)}})=1.
\end{align*}
\end{Definition}
Recall that in the original MCT in \cref{Monotone Convergence Theorem}, we suppose that $0 \leq X_n(\omega) \leq X_{n+1}(\omega)$ and $X_n(\omega) \to X(\omega)$ for \emph{all} $\omega\in\Omega$. Here, we show that we can replace the condition ``for all $\omega\in\Omega$'' with ``almost surely''. Let
\begin{align*}
A=\set*{\omega \given X_n(\omega) \to X(\omega),\, 0\leq X_n(\omega )\leq X_{n+1}(\omega ),\, n \geq 1}
\end{align*}
and suppose $\P (A)=1$. We have $0\leq X_n \indicatore{A}(\omega)\leq X_{n+1} \indicatore{A}(\omega)$, and $X_{n} \indicatore{A}(\omega) \to X \indicatore{A}(\omega)$ $\forall \omega \in \Omega$. Then from the MCT in \cref{Monotone Convergence Theorem}, we have
\begin{align*}
\E[X_n \indicatore{A}] \to \E[X \indicatore{A}].
\end{align*}
For any $Y \geq 0$, let $Y \wedge n = \min(Y,n)$ for $n\geq 1$. Observe that
\begin{align}
\E[Y\indicatore{A^c}]
&= \E[\lim_{n \to \infty} (Y \wedge n) \indicatore{A^c}]\nn
&= \lim_{n \to \infty} \E[(Y \wedge n)\indicatore{A^c}]\label{XAcMCT}\\
& \leq \lim_{n \to \infty} {n \P (A^c)}\nn
&= 0,\nonumber
\end{align}
where we have use the MCT in \cref{XAcMCT}. Therefore, $\E[X_n \indicatore{A}] = \E X_n$ and $\E[X \indicatore{A}] = \E X$, and the MCT holds if ``$\forall \omega\in\Omega$'' is replaced with ``almost surely'' in its theorem statement. The same thing applies for Fatou's Lemma and the DCT.
\begin{Definition}[Convergence in probability]
If $\forall \epsilon >0$,
\begin{align*}
\lim_ {n \to \infty} \P({|X_n - X| > \epsilon})=0,
\end{align*}
we say that $X_n$ converges to $X$ in probability and write $X_n \convp X$.
\end{Definition}
\begin{Lemma}\label{wk5:Lem:Convergence in probability}
If $X_n \to X$ a.s., then $X_n \convp X$.
\end{Lemma}
\begin{proof}
Suppose $X_n \to X$ a.s., then $\indicator{|X_n-X|> \epsilon} \to 0$ a.s. From DCT (since probability measure is finite), we have $\P(|X_n-X|> \epsilon)\to 0$.
\end{proof}
The converse is not true and here is an example.
\begin{Example}
Suppose $\Omega=[0,1]$. Consider the random variables $X_n$ shown in \cref{wk5:fg:Counter Example}, where $X_n$ follows a similar pattern for $n\geq 5$. We have $X_n \convp 0$, but clearly $X_n \nrightarrow 0$ a.s. as $X_n(\omega) = 1$ for infinitely many values of $n$ for every $\omega\in\Omega$.
\begin{figure}[!htb]
\centering
\includegraphics[width=.6\textwidth]{conv_prob}
\caption{$X_n$ converges in probability but not almost surely.}
\label{wk5:fg:Counter Example}
\end{figure}
\end{Example}
\section{Weak Law of Large Numbers}
Markov’s inequality: Suppose $a>0$ and $X\geq 0$. Then,
\begin{align*}
a \indicatore{\{X\geq a\}}(\omega) \leq X\indicatore{\{X\geq a\}}(\omega)\leq X.
\end{align*}
Taking expectations, we have
\begin{align*}
a\P(X\geq a) & \leq \E X,\\
\P(X\geq a) & \leq \frac{1}{a}\E X.
\end{align*}
Chebyshev's inequality follows from Markov's inequality by replacing $X$ with $|X- \E X|^2$ and setting $a=\epsilon^2$: for $\epsilon>0$,
\begin{align*}
\P( |X- \E X | \geq \epsilon) \leq \frac{1}{\epsilon ^2} \var(X).
\end{align*}
\begin{Theorem}[Weak Law of Large Numbers (WLLN)]\label{wk5:Thm:WLLN}
Suppose $X_1,X_2, \ldots$ are such that $\E X_i=0$, $\E X_i^2=\sigma^2<\infty$ and $\E[X_i X_j] \leq 0$ for $i\neq j$. Then,
\begin{align*}
\ofrac{n} \sum_{i=1}^n {X_i} \convp 0 \text{ as } n \to \infty.
\end{align*}
\end{Theorem}
\begin{proof}
We have
\begin{align*}
\E[\left(\frac{1}{n} \sum_{i=1}^n{X_i}\right)^2]
&= \frac{1}{n^2} \E [\sum_{i}^n{X_i^2}+2\sum_{i<j}{X_i X_j}]\\
& \leq \frac{1}{n^2} \sum_{i}^n{\E X_i^2}= \frac{\sigma^2}{n}.
\end{align*}
From Chebyshev's inequality, we then have for any $\epsilon>0$,
\begin{align*}
\P(\abs*{\frac{1}{n} \sum_{i=1}^n{X_i}} \geq \epsilon)\leq \frac{1}{\epsilon^2}\frac{\sigma^2}{n}\to 0,
\end{align*}
as $n\to\infty$.
\end{proof}
\section{Product Measures}
Given two measure spaces $(\Omega_1, \calA_1, \mu_1)$ and $(\Omega_2, \calA_2, \mu_2)$, where both $\mu_1$and $\mu_2$ are $\sigma$-finite, we can define a new measurable space $(\Omega, \calF)$, where $\Omega=\Omega_1\times\Omega_2$ and
\begin{align*}
\calF= \sigma\left\{A \times B: A\in \calA_1, B\in \calA_2 \right\}.
\end{align*}
We call $A\times B$ a rectangle. A natural measure $\mu$ for this measurable space satisfies
\begin{align}\label{prod_mu}
\mu (A \times B )=\mu_1 (A) \mu_2(B)
\end{align}
for all rectanges $A\times B$. It can be checked that the collection of finite disjoint unions of rectangles is an algebra (exercise). To extend this measure $\mu$ to $\calF$, we make use of Caratheodory's Extension Theorem (\cref{Caratheodory Theorem}): we show that for $A\times B = \bigcup_{i \geq 1} {A_i \times B_i}$ a disjoint union of rectangles, we have $\mu (A \times B)= \sum_{i \geq 1} {\mu_1 (A_i) \mu_2(B_i)}$.
For $x \in A$, let $I(x)=\{i:x \in A_i\}$ and $B= \bigcup_{i \in I(x)} {B_i}$ a disjoint union. We have
\begin{align*}
\indicatore{A}(x) \mu_2(B)
&=\indicatore{A}(x) \mu_2\left(\bigcup_{i \in I(x)} {B_i}\right)\\
&= \sum_{i \in I(x)} \indicatore{A}(x) \mu_2 (B_i)\\
& =\sum_{i\geq 1} \indicatore{A_i}(x) \mu_2 (B_i).
\end{align*}
Integrating w.r.t.\ $\mu_1$, we have
\begin{align*}
\mu (A\times B)
%&= \mu_1(A) \mu_2(B)\\
&=\int \lim_{n \to \infty}{\sum_{i=1}^n {\indicatore{A_i} (x)\mu_2 (B_i) \ud \mu_1}}\\
&\stackrel{\text{MCT}}{=}\lim_{n \to \infty} \int {\sum_{i=1}^n {\indicatore{A_i} (x)\mu_2 (B_i) \ud \mu_1}}\\
& =\lim_{n \to \infty}\sum_{i=1}^n{\int \indicatore{A_i} (x)\mu_2 (B_i) \ud \mu_1}\\
& =\sum_{i\geq 1}\mu_1(A_i)\mu_2 (B_i),
\end{align*}
where the interchange of the sum and integral in the penultimate equality holds because the number of terms is finite. Therefore, Caratheodory’s Extension Theorem shows that there is a unique extension of $\mu$ defined by \cref{prod_mu} to $\calF$. This is called a \emph{product measure}. Notationally, we write $\mu = \mu_1 \times \mu_2$.
The next theorem tells us when we can interchange integrals in general.
\begin{Theorem}[Fubini or Fubini-Tonelli]\label{wk5:Fubini_theorem}
Suppose $(\Omega_1, \calA_1, \mu_1)$ and $(\Omega_2, \calA_2, \mu_2)$ are $\sigma$-finite and $\mu = \mu_1 \times \mu_2$ is the product measure. Consider a measurable function $f:\Omega=\Omega_1\times\Omega_2 \mapsto \Real$. If $f \geq 0$ or $\int{|f|} \ud\mu< \infty$, then
\begin{align*}
\int_{\Omega_1} \int_{\Omega_2} f (x,y) \ud \mu_2 \ud \mu_1 = \int_{\Omega} f \ud \mu = \int_{\Omega_2} \int_{\Omega_1} f (x,y) \ud \mu_1 \ud \mu_2.
\end{align*}
\end{Theorem}
\begin{proof}
Note that implicit in the theorem statement are the following that we need to prove:
\begin{enumerate}[(i)]
\item For each $x \in \Omega_1$, $y \mapsto f(x,y)$ is $\calA_2$-measurable.
\item $x \mapsto \int_{\Omega_2} f(x,y) \ud \mu_2$ is $\calA_1$-measurable.
\item $\int_{\Omega_1} \int_{\Omega_2} f (x,y) \ud \mu_2 \ud \mu_1 = \int_{\Omega} f \ud \mu$.
\end{enumerate}
Without loss of generality, we may assume $\mu_1,\mu_2<\infty$ as the same proof is valid on each partition of $\Omega$ and then we can apply the MCT.
The proof follows the steps discussed at the end of \cref{sec:Expectation}. We first prove the theorem for the simplest case where $f = \indicatore{E}$, where $E\in \calF$, the product $\sigma$-algebra. Let $E_x=\{y:(x,y)\in E\}$.
(i): Fix $x$, then $y \mapsto f(x,y)= \indicatore{E_x}(y)$. We need to show $E_x \in \calA_2$. Let $\calE=\{E \in \calF : E_x \in \calA_2\}$. We have $(E^c)_x=(E_x)^c$ since $y \in (E^c)_x \Leftrightarrow (x,y)\in E^c \Leftrightarrow y\in (E_x)^c$, and $\left(\bigcup_{i\geq1} E_i\right)_x = \bigcup_{i\geq1} (E_i)_x$. Therefore, $\calE$ is a $\sigma$-algebra and it contains all rectangles $A \times B$ where $A\in \calA$ and $B\in \calB$, which implies that $\calF \subset \calE$.
(ii) $\&$ (iii): Let $\calL=\set*{E \in \calF\given f= \indicatore{E} \text{ satisfies (ii) \&(iii)}}$.
\begin{itemize}
\item $\Omega \in \calL$.
\item If $E \in \calL$, $\mu_2((E^c)_x) =\mu_2((E_x)^c)=\mu_2(\Omega_2)-\mu_2(E_x)$. Since $\mu_2(\Omega_2)< \infty$ and $\mu_2(E_x)$ is $\calA_1$-measurable, $\mu_2((E^c)_x)$ is $\calA_1$-measurable. We also have
\begin{align*}
\int \mu_2((E^c)_x) \ud \mu_1
& =\mu_2(\Omega_2)\mu_1(\Omega_1)-\int \mu_2(E_x) \ud \mu_1\\
& =\mu(\Omega)-\mu(E)\\
& =\mu(E^c).
\end{align*}
Therefore, $E^c \in \calL$.
\item If $E_i \in \calL$, $i\geq 1$, are disjoint, then
\begin{align*}
\mu_2\parens*{\parens{\bigcup_{i \geq 1}E_i}_x}
&=\mu_2\left(\bigcup_{i \geq 1}({E_i})_x\right) \\
& = \sum_{i \geq 1} \mu_2((E_i)_x)\\
& =\lim_{n \to \infty} \sum_{i=1}^n \mu_2((E_i)_x),
\end{align*}
which is $\calA_1$-measurable from \cref{lem:wk4:infX_rv} since each $\mu_2((E_i)_x)$ is $\calA_1$-measurable. From the MCT, we have
\begin{align*}
\int \mu_2\left((\bigcup_{i \geq 1}{E_i})_x\right) \ud \mu_1
& = \lim_{n \to \infty}{\int \sum_{i = 1}^n{\mu_2 ((E_i)_x} )\ud \mu_1 }\\
& = \lim_{n \to \infty}{\sum_{i = 1}^n{\int \mu_2 ((E_i)_x} )\ud \mu_1 }\\
& = \lim_{n \to \infty}\sum_{i=1}^n \mu (E_i)\\
& = \mu\parens*{\bigcup_{i \geq 1} {E_i}}.
\end{align*}
\end{itemize}
Therefore, $\calL$ is a $\lambda$-system containing the collection of rectangles, which is a $\pi$-system. From the $\pi$-$\lambda$ Theorem, we obtain $\calF \subset \calL$. We have now shown that Fubini's Theorem holds for $f=\indicatore{E}$, $E \in \calF$.
From the linearity of integrals, the theorem holds for all simple functions $f$.
For $f \geq 0$, $\exists$ simple $f_i \uparrow f$. Applying MCT gives Fubini's theorem for non-negative $f$.
Finally, for general $f=f^+-f^-$, we note that $\int |f| \ud \mu <\infty$ implies $\int f^+ \ud \mu, \int f^- \ud \mu<\infty$, and
\begin{align*}
\int f^+ \ud \mu = \int \int f^+(x,y) \ud \mu_1 \ud \mu_2 \implies \int f^+(x,y) \ud \mu_1 <\infty\ \text{$\mu_2$-a.e.} \\
= \int \int f^+(x,y) \ud \mu_2 \ud \mu_1 \implies \int f^+(x,y) \ud \mu_2 <\infty\ \text{$\mu_1$-a.e.}
\end{align*}
Similarly for $f^-$ so that
\begin{align*}
\int \int f^+(x,y) \ud \mu_1 \ud \mu_2 - \int \int f^-(x,y) \ud \mu_1 \ud \mu_2 = \int \int f(x,y) \ud \mu_1 \ud \mu_2.
\end{align*}
The proof is now complete.
\end{proof}
\begin{Example}
\begin{equation}
\bordermatrix{
& x && \longrightarrow \cr
&\vdots && \vdots && \vdots&& \vdots \cr\\
&0\ && 0 && 0 \ && 1 && \ldots \cr\\
y \bigg\uparrow &0\ && 0 && 1 \ && -1 && \ldots \cr\\
&0\ && 1 && -1 \ && 0 && \ldots \cr\\
&1\ && -1 && 0 \ && 0 && \ldots \cr
}
\end{equation}
We have
\begin{align*}
\sum_y \sum_x f(x,y) &= \sum_y 0 = 0.\\
\sum_x \sum_y f(x,y) &= 1+0+0+\cdots = 1.
\end{align*}
This example shows that the conditions in Fubini's Theorem are essentially necessary.
\end{Example}
\begin{Example}
Suppose $((0,1),\calB (0,1),\lambda) \times ((0,1),2^{(0,1)},\nu)$, where $\nu(A)=|A|$ is the counting measure, which is not $\sigma$-finite. Let
\begin{equation}
f(x,y)=\left\{
\begin{aligned}
1, && \text{if } x=y,\\
0, && \text{otherwise.}
\end{aligned}
\right.
\end{equation}
Then we have
\begin{align*}
\int f(x,y) \ud \nu = 1 \text{ for each } x \implies \int \int f(x,y) \ud \nu \ud \lambda= 1,\\
\int f(x,y) \ud \lambda = 0 \text{ for each } y \implies \int \int f(x,y) \ud \lambda \ud \nu= 0.
\end{align*}
This example shows that $\sigma$-finiteness of the measures is necessary.
\end{Example}
\section{Independence}
Throughout this section, we consider a probability space $(\Omega,\calA,\P)$.
\begin{Definition}
Two events $A$ and $B$ are independent if $\P(A \cap B) = \P(A)\P(B)$. We write $A \independent B$.
\end{Definition}
If $A \independent B$, then it is easy to verify the following:
\begin{enumerate}[(i)]
\item $A^c \independent B$.
\item $A \independent B^c$.
\item $A^c \independent B^c$.
\end{enumerate}
I.e., the two $\sigma$-algebras $\{\emptyset,\Omega ,A, A^c\}$ and $\{\emptyset,\Omega ,B, B^c\}$ are ``independent''.
\begin{Definition}
The sub-$\sigma$-algebra $\calA_i \subset \calA$, $i=1,2,\ldots, n$, are independent if $\forall A_i \in \calA_i$,
\begin{align*}
\P(\bigcap_{i=1}^n {A_i})= \prod_{i=1}^n {\P(A_i)}.
\end{align*}
They are said to be \emph{pairwise independent} if $\P(A_i \cap A_j)=\P(A_i)\P(A_j)$ $\forall i \neq j$.
\end{Definition}
We say that the random variables $X_1,X_2,\ldots,X_n$ are independent if $\sigma(X_i)$, $i=1,\ldots,n$, are independent, i.e., $\forall B_i \in \calB$, $i=1,\ldots,n$,
\begin{align*}
\P (X_1\in B_1,X_2\in B_2,\ldots,X_n\in B_n)= \prod_{i=1}^n {\P(X_i \in B_i)}.
\end{align*}
Note that independence $\implies$ pairwise independence but the converse is false. Here are two counterexamples to show that pairwise independence does not imply independence.
\begin{Example}\label{wk5:Independence1}
\begin{figure}[!htb]
\centering
\includegraphics[width=.2\textwidth]{wk5_tetrahedron.png}
\caption{Dice example: pairwise independence does not imply independence.}
\label{wk5:fg:Independence}
\end{figure}
Consider a fair tetrahedron dice that has one red edge, one green edge and one blue edge as shown in \cref{wk5:fg:Independence}. The bottom has all three colors. Let $r$ be the event that the dice when tossed lands on a face with a red boundary. The events $b$, $g$ and $rgb$ are defined similarly. Then, by symmetry, we have
\begin{align*}
&\P (r)=\P(g)=\P(b)=\frac{1}{2}, \\
&\P (rgb)=\P(rg)=\P(gb)=\P(rb)=\frac{1}{4}.
\end{align*}
Therefore, these events are pairwise independent but not independent.
\end{Example}
\begin{Example}\label{wk5:Independence2}
Consider two six-sided fair dice. Let
\begin{align*}
A_1 & =\{ \text{1st dice is odd} \}, \\
A_2 & =\{ \text{2nd dice is odd} \},\\
A_{sum} & =\{ \text{sum of the two dice is odd} \}.
\end{align*}
We have
\begin{align*}
&\P (A_1) =\P (A_1) =\P (A_{sum}) =\frac{1}{2},\\
&\P (A_1\cap A_2) =\P (A_1\cap A_{sum})=\P (A_2\cap A_{sum}) =\frac{1}{4},\\
&\P (A_1\cap A_2 \cap A_{sum}) =0.
\end{align*}
Therefore, the events are pairwise independent but not independent. In particular, $\sigma(A_1)$ is not independent with $\sigma(\{A_2,A_{sum}\})$.
\end{Example}
\begin{Lemma}\label{wk5:lem:pi-independent}
Suppose the two collections of subsets $\calE$ and $\calC$ are $\pi$-systems and $\P(B \cap C)=\P(B) \P (C),\ \forall B \in \calE$, $C \in \calC$. Then $\sigma (\calE)$ and $\sigma (\calC)$ are independent.
\end{Lemma}
\begin{proof}
Let $\calD_1=\{D \in \calA : \P (D\cap C)= \P(D) \P(C), \forall C \in \calC \}$. As an exercise, one can check that $\calD_1$ is a $\lambda$-system. Since $\calE \subset \calD_1$, from the $\pi$-$\lambda$ theorem we have $\sigma(\calE)\subset \calD_1$.
Let $\calD_2=\{D \in \calA : \P (B\cap D)= \P(B) \P(D), \forall B \in \sigma(\calE) \}$. Similarly $\calD_2$ is a $\lambda$-system. From above, $\calC \subset \calD_2$ and by the $\pi$-$\lambda$ theorem, we have $\sigma(\calC)\subset \calD_2$. Therefore, $\sigma (\calE) \independent \sigma (\calC)$.
\end{proof}
By induction, if $\calB_i$ for $i=1,\ldots,n$ are $\pi$-systems and are independent, then $\sigma(\calB _i)$ are independent.
\begin{Corollary}
The random variables $X_1,X_2,\ldots,X_n$ are independent if
\begin{align*}
\P (X_1\leq t_1,X_2\leq t_2,\ldots, X_n\leq t_n)= \prod_{i=1}^n {\P(X_i\leq t_i)}.
\end{align*}
\end{Corollary}
\begin{proof}
Since $\{(-\infty,t]: t\in\Real\}$ is a $\pi$-system that generates $\calB(\Real)$, the corollary follows from \cref{wk5:lem:pi-independent}.
\end{proof}
\begin{Lemma}
Suppose that each random variable $X_i$ has pdf $f_i$, $i=1,\ldots,n$. Then $X_1,\ldots , X_n$ are independent iff $\exists$ a joint pdf $f(x_1,\ldots,x_n)=\prod_{i=1}^n {f_i (X_i)}$.
\end{Lemma}
\begin{proof}
`$\Leftarrow$':
\begin{align*}
\P (\bigcap_{i=1}^n \{X_i \in A_i\}) & = \int_{A_1 \times \cdots \times A_n} f(x_1, \ldots, x_n) \ud x_1 \cdots \ud x_n\\
& = \int_{A_1 \times \cdots \times A_n} \prod_{i=1}^n {f(x_i)} \ud x_1 \cdots \ud x_n\\
& = \prod_{i=1}^n \int_{A_i} {f(x_i)} \ud x_i\\
& = \prod_{i=1}^n {\P (X_i \in A_i)}.
\end{align*}
`$\Rightarrow$':
Let $X=(X_1,\ldots,X_n)$. For $A_i \in \calB$, $i=1, \ldots n$, we are given
\begin{align}
\P(X \in A_1\times \cdots \times A_n) & =\prod_{i=1}^n {\P (X_i \in A_i)}\nn
& = \prod_{i=1}^n \int_{A_i} {f_i(x_i)} \ud x_i\nn
& = \int_{A_1 \times \cdots \times A_n} \prod_{i=1}^n f_i(x_i) \ud x_1\cdots\ud x_n.\label{prodA}
\end{align}
We want to show that
\begin{align*}
\P(X\in A) = \int_A \prod_{i=1}^n f_i(x_i) \ud x_1\cdots\ud x_n
\end{align*}
for all $A$ in the product $\sigma$-algebra $\calB(\Real^n)=\sigma \{A_1 \times \cdots \times A_n: A_i \in \calB\}$.
Let $\calL=\{A \in \calE : \P(X\in A)= \int_{A} \prod_{i=1}^n {f_i(x_i)} \ud x_1 \cdots \ud x_n\}$. It can be checked that $\calL$ is a $\lambda$-system and $\calP = \{ {A_1 \times \cdots \times A_n}: A_i \subset \calB\}$ is a $\pi$-system and generates $\calB(\Real^n)$. Since $\calP \subset \calL$ from \cref{prodA}, by the $\pi$-$\lambda$ Theorem, we have $\sigma(\calP) \subset \calL$ and the proof is complete.
\end{proof}
\begin{Lemma}
If $X \independent Y$ and are integrable, then $\E[XY]=\E X \E Y$.
\end{Lemma}
\begin{proof}
The distribution of $(X,Y)$ on $\Real^2$ is the product measure $\P_X \times \P_Y$. From Fubini's theorem, we have
\begin{align*}
\E[XY] = \int_{\Real^2} xy \ud \P_X\times\P_Y(x,y) = \int_\Real x \ud\P_X(x) \int_\Real y \ud \P_Y(y) = \E X \E Y.
\end{align*}
\end{proof}
Suppose $X \independent Y$. For any measurable functions $f$ and $g$, $f(X)\independent g(Y)$ since $\sigma(f(X)) \subset \sigma(X)$.
%\bibliography{mybib}
\bibliographystyle{alpha}
\end{document}